Symmetrically-Normed Ideals and Characterizations of Absolutely Norming Operators
Abstract
The primary objective of this thesis is two fold: first, it is devoted to the study of absolutely norming operators (with respect to various arbitrary symmetric norms on $\mathcal{B}(\mathcal{H})$) with an eye towards the objective of characterizing these classes of operators, and second, it summarizes the first three chapters of the monograph \emph{Introduction to the theory of linear nonselfadjoint operators} by Gohberg and Krein, offering an exposition of the theory of symmetrically-normed ideals (``norm ideals" in older literature) in modern terminologies.
Governed by the intention of providing a fairly comprehensive treatment of this theory, independent of the rest of the thesis, we have distributed this ``exposition" part of the thesis over two chapters, namely Chapter 2 and Chapter 7. While Chapter 2 concerns the elementary theory of s-numbers and provides the necessary background for the chapters to follow, the goal of the seventh chapter is to discuss the theory of symmetrically-normed ideals of the algebra of operators on a Hilbert space, with most of the attention centered around symmetrically-normed ideals of the algebra of compact operators on a (separable infinite-dimensional) Hilbert space. These chapters are, for all practical purposes, entirely independent of the rest of the thesis; the readers interested in the basic theory of these ideals can go through these chapters and leave everything else.
Chapter 3 is concerned with Chevreau's problem of characterizing the class of absolutely norming operators --- operators that attain their norm on every closed subspace. The result of this chapter settles Chevreau's problem by establishing a spectral characterization theorem for such operators.
In Chapters 4 - 6, we first extend the concept of absolutely norming operators to several particular (symmetric) norms (that are equivalent to the operator norm) and then characterize these sets. In particular, we single out three (families of) norms on $\mathcal{B}(\mathcal{H}, \mathcal{K})$: the ``Ky Fan $k$-norm(s)", ``the weighted Ky Fan $\pi, k$-norm(s)", and the ``$(p,k)$-singular norm(s)", and thereafter define and characterize the set of ``absolutely norming" operators with respect to each of these three norms.
In Chapter 8, we restrict our attention to the algebra $\mathcal{B}(\mathcal{H})$ of operators on a separable infinite-dimensional Hilbert space $\mathcal H$ and use the theory of symmetrically normed ideals to extend the concept of norming and absolutely norming from the usual operator norm to arbitrary symmetric norms on $\mathcal{B}(\mathcal{H})$. In addition, this chapter presents a constructive method to produce symmetric norm(s) on $\mathcal{B}(\mathcal{H})$ with respect to which the identity operator does not attain its norm.
Finally, in Chapter 9, we introduce and study the notion of ``universally symmetric norming operators" and ``universally absolutely symmetric norming operators". These refer to the operators that are, respectively, norming and absolutely norming, with respect to every symmetric norm. The setting of this chapter is again a separable infinite-dimensional Hilbert space. This chapter characterizes such operators: the main result of this chapter states that an operator in $\mathcal{B}(\mathcal{H})$ is universally symmetric norming if and only if it is universally absolutely symmetric norming, which is true if and only if it is compact. In particular, this result provides an alternative characterization theorem for compact operators on a separable Hilbert space.
Collections
Cite this version of the work
Satish Kumar Pandey
(2018).
Symmetrically-Normed Ideals and Characterizations of Absolutely Norming Operators. UWSpace.
http://hdl.handle.net/10012/13656
Other formats
Related items
Showing items related by title, author, creator and subject.
-
A Vertex-Weighted Tutte Symmetric Function, and Constructing Graphs with Equal Chromatic Symmetric Function
Aliste-Prieto, José; Crew, Logan; Spirkl, Sophie; Zamora, José (The Electronic Journal of Combinatorics, 2021-04-09)This paper has two main parts. First, we consider the Tutte symmetric function XB, a generalization of the chromatic symmetric function. We introduce a vertex-weighted version ofXB, show that this function admits a ... -
Bandlimited functions, curved manifolds, and self-adjoint extensions of symmetric operators
Martin, Robert (University of Waterloo, 2008-05-20)Sampling theory is an active field of research that spans a variety of disciplines from communication engineering to pure mathematics. Sampling theory provides the crucial connection between continuous and discrete ... -
Enumeration of Factorizations in the Symmetric Group: From Centrality to Non-centrality
Sloss, Craig (University of Waterloo, 2011-04-25)The character theory of the symmetric group is a powerful method of studying enu- merative questions about factorizations of permutations, which arise in areas including topology, geometry, and mathematical physics. This ...