The Libraries will be performing routine maintenance on UWSpace on July 15th-16th, 2025. UWSpace will be available, though users may experience service lags during this time. We recommend all users avoid submitting new items to UWSpace until maintenance is completed.
 

Density and Structure of Homomorphism-Critical Graphs

Loading...
Thumbnail Image

Date

2018-08-22

Authors

Smith-Roberge, Evelyne

Advisor

Postle, Luke

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Let $H$ be a graph. A graph $G$ is $H$-critical if every proper subgraph of $G$ admits a homomorphism to $H$, but $G$ itself does not. In 1981, Jaeger made the following conjecture concerning odd-cycle critical graphs: every planar graph of girth at least $4t$ admits a homomorphism to $C_{2t+1}$ (or equivalently, has a $\tfrac{2t+1}{t}$-circular colouring). The best known result for the $t=3$ case states that every planar graph of girth at least 18 has a homomorphism to $C_7$. We improve upon this result, showing that every planar graph of girth at least 16 admits a homomorphism to $C_7$. This is obtained from a more general result regarding the density of $C_7$-critical graphs. Our main result is that if $G$ is a $C_7$-critical graph with $G \not \in \{C_3, C_5\}$, then $e(G) \geq \tfrac{17v(G)-2}{15}$. Additionally, we prove several structural lemmas concerning graphs that are $H$-critical, when $H$ is a vertex-transitive non-bipartite graph.

Description

Keywords

homomorphism, circular colouring, graph theory, potential method, discharging, circular flow conjecture, odd cycle, critical

LC Subject Headings

Citation