Show simple item record

dc.contributor.authorDo Yeon, Lee
dc.date.accessioned2018-05-09 16:51:47 (GMT)
dc.date.available2018-05-09 16:51:47 (GMT)
dc.date.issued2018-05-09
dc.date.submitted2018-05-08
dc.identifier.urihttp://hdl.handle.net/10012/13264
dc.description.abstractThis thesis addresses challenges in short-term scheduling of multipurpose facilities using mathematical optimization. Such approach involves the formulation of a predictive model and an objective function, and the development of a solution strategy around such scheduling model formulation in order to obtain an operating schedule that achieves certain objectives, such as maximization of throughput or minimization of makespan. There are many choices that must be made in these aspects of short-term scheduling, and these choices often lead to a trade-off between the solution quality and computational time. This thesis presents two studies analyzing the quality-CPU time trade-off in two major aspects: time representations in model formulation, and the strategy for handling multiple conflicting objectives. The ultimate goal is to develop bi-objective short-term scheduling approaches to tackle industrial-sized problems for multitasking multipurpose plants that are computationally inexpensive, but provide practical schedules with a good balance between throughput and makespan. The first study addresses the first aspect of interest and compares two different time representation approaches: discrete-time and continuous-time approaches. This comparison is made considering maximization of throughput as the sole objective. We show that, for the modeling framework implemented in this work, the selected discrete-time formulation typically obtained higher quality solutions, and required less time to solve compared to the selected continuous-time formulation, as the continuous-time formulation exhibited detrimental trade-off between computational time and solution quality. We also show that within the scope of this study, non-uniform discretization schemes typically yielded solutions of similar quality compared to a fine uniform discretization scheme, but required only a fraction of the computational time. The second study builds on the first study and develops a strategy around an efficient non-uniform discretization approach to handle the conflicting objectives of throughput maximization and makespan minimization, focusing on a priori multi-objective methods. Two main contributions are presented in this regard. The first contribution is to propose a priori bi-objective methods based on the hybridization of compromise programming and the U+03B5-constraint method. The second is to present short-term operational objective functions, that can be used within short-term scheduling to optimize desired long term objectives of maximizing throughput and minimizing makespan. Two numerical case studies, one in a semiconductor processing plant and an analytical services facility, are presented using a rolling horizon framework, which demonstrate the potential for the proposed methods to improve solution quality over a traditional a priori approachen
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectSchedulingen
dc.subjectOptimizationen
dc.subjectMultipurpose planten
dc.subjectMultitaskingen
dc.subjectMulti-objectiveen
dc.subjectTime representationen
dc.subjectMixed integer linear programmingen
dc.titleSolution Strategies in Short-term Scheduling for Multitasking Multipurpose Plantsen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentChemical Engineeringen
uws-etd.degree.disciplineChemical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.comment.hiddenPlease note the use of unicode U+03B5 for epsilon in the abstract.en
uws.contributor.advisorRicardez-Sandoval, Luis
uws.contributor.advisorFukasawa, Ricardo
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages