Show simple item record

dc.contributor.authorRajasekaran, Aayush 17:00:17 (GMT) 17:00:17 (GMT)
dc.description.abstractAdditive number theory is the study of the additive properties of integers. Perhaps the best-known theorem is Lagrange’s result that every natural number is the sum of four squares. We study numbers whose base-k representations have certain interesting proper- ties. In particular, we look at palindromes, which are numbers whose base-k representations read the same forward and backward, and binary squares, which are numbers whose binary representation is some block repeated twice (like (36)_2 = 100100). We show that all natural numbers are the sum of four binary palindromes. We also show that all natural numbers are the sum of three base-3 palindromes, and are also the sum of three base-4 palindromes. We also show that every sufficiently large natural number is the sum of four binary squares. We establish these results using virtually no number theory at all. Instead, we construct automated proofs using automata. The general proof technique is to build an appropriate machine, and then run decision algorithms to establish our theorems.en
dc.publisherUniversity of Waterlooen
dc.subjectAutomata Theoryen
dc.subjectNumber Theoryen
dc.subjectFormal languagesen
dc.subjectAutomated proofsen
dc.titleUsing Automata Theory to Solve Problems in Additive Number Theoryen
dc.typeMaster Thesisen
dc.pendingfalse R. Cheriton School of Computer Scienceen Scienceen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorShallit, Jeffrey
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages