Show simple item record

dc.contributor.authorHunsberger, Eric
dc.date.accessioned2018-01-08 18:56:38 (GMT)
dc.date.available2018-01-08 18:56:38 (GMT)
dc.date.issued2018-01-08
dc.date.submitted2017-12-07
dc.identifier.urihttp://hdl.handle.net/10012/12819
dc.description.abstractModern machine learning models are beginning to rival human performance on some realistic object recognition tasks, but we still lack a full understanding of how the human brain solves this same problem. This thesis combines knowledge from machine learning and computational neuroscience to create models of human object recognition that are increasingly realistic both in their treatment of low-level neural mechanisms and in their reproduction of high-level human behaviour. First, I present extensions to the Neural Engineering Framework to make its preferred type of model---the “fixed-encoding” network---more accurate for object recognition tasks. These extensions include better distributions---such as Gabor filters---for the encoding weights, and better loss functions---namely weighted squared loss, softmax loss, and hinge loss---to solve for decoding weights. Second, I introduce increased biological realism into deep convolutional neural networks trained with backpropagation, by training them to run using spiking leaky integrate-and-fire (LIF) neurons. These models have been successful in machine learning, and I am able to convert them to spiking networks while retaining similar levels of performance. I present a novel method to smooth the LIF rate response function in order to avoid the common problems associated with differentiating spiking neurons in general and LIF neurons in particular. I also derive a number of novel characterizations of spiking variability, and use these to train spiking networks to be more robust to this variability. Finally, to address the problems with implementing backpropagation in a biological system, I train spiking deep neural networks using the more biological Feedback Alignment algorithm. I examine this algorithm in depth, including many variations on the core algorithm, methods to train using non-differentiable spiking neurons, and some of the limitations of the algorithm. Using these findings, I construct a spiking model that learns online in a biologically realistic manner. The models developed in this thesis help to explain both how spiking neurons in the brain work together to allow us to recognize complex objects, and how the brain may learn this behaviour. Their spiking nature allows them to be implemented on highly efficient neuromorphic hardware, opening the door to object recognition on energy-limited devices such as cell phones and mobile robots.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectlearningen
dc.subjectspiking neural networksen
dc.subjectdeep neural networksen
dc.subjectobject recognitionen
dc.titleSpiking Deep Neural Networks: Engineered and Biological Approaches to Object Recognitionen
dc.typeDoctoral Thesisen
dc.pendingfalse
uws-etd.degree.departmentSystems Design Engineeringen
uws-etd.degree.disciplineSystem Design Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws.contributor.advisorEliasmith, Chris
uws.contributor.advisorOrchard, Jeff
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages