Show simple item record

dc.contributor.authorMa, Kede
dc.date.accessioned2017-10-12 13:15:07 (GMT)
dc.date.available2017-10-12 13:15:07 (GMT)
dc.date.issued2017-10-12
dc.date.submitted2017-10-10
dc.identifier.urihttp://hdl.handle.net/10012/12538
dc.description.abstractThe great content diversity of real-world digital images poses a grand challenge to automatically and accurately assess their perceptual quality in a timely manner. In this thesis, we focus on blind image quality assessment (BIQA), which predicts image quality with no access to its pristine quality counterpart. We first establish a large-scale IQA database---the Waterloo Exploration Database. It contains 4,744 pristine natural and 94,880 distorted images, the largest in the IQA field. Instead of collecting subjective opinions for each image, which is extremely difficult, we present three test criteria for evaluating objective BIQA models: pristine/distorted image discriminability test (D-test), listwise ranking consistency test (L-test), and pairwise preference consistency test (P-test). Moreover, we propose a general psychophysical methodology, which we name the group MAximum Differentiation (gMAD) competition method, for comparing computational models of perceptually discriminable quantities. We apply gMAD to the field of IQA and compare 16 objective IQA models of diverse properties. Careful investigations of selected stimuli shed light on how to improve existing models and how to develop next-generation IQA models. The gMAD framework is extensible, allowing future IQA models to be added to the competition. We explore novel approaches for BIQA from two different perspectives. First, we show that a vast amount of reliable training data in the form of quality-discriminable image pairs (DIPs) can be obtained automatically at low cost. We extend a pairwise learning-to-rank (L2R) algorithm to learn BIQA models from millions of DIPs. Second, we propose a multi-task deep neural network for BIQA. It consists of two sub-networks---a distortion identification network and a quality prediction network---sharing the early layers. In the first stage, we train the distortion identification sub-network, for which large-scale training samples are readily available. In the second stage, starting from the pre-trained early layers and the outputs of the first sub-network, we train the quality prediction sub-network using a variant of stochastic gradient descent. Extensive experiments on four benchmark IQA databases demonstrate the proposed two approaches outperform state-of-the-art BIQA models. The robustness of learned models is also significantly improved as confirmed by the gMAD competition methodology.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectBlind Image Quality Assessmenten
dc.subjectPerceptual Image Processingen
dc.subjectHuman Perceptionen
dc.subjectgMAD Competitionen
dc.subjectLearning-to-Ranken
dc.subjectDeep Neural Networksen
dc.titleBlind Image Quality Assessment: Exploiting New Evaluation and Design Methodologiesen
dc.typeDoctoral Thesisen
dc.pendingfalse
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws.contributor.advisorWang, Zhou
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages