Show simple item record

dc.contributor.authorBommireddi, Venkata Abhinav 16:56:57 (GMT) 16:56:57 (GMT)
dc.description.abstractWe show that for any constants $\epsilon > 0$ and $p \ge 1$, given oracle access to an unknown function $f : \{0,1\}^n \to [0,1]$ it is possible to determine if the function is submodular or is $\epsilon$-far from every submodular function, in $\ell_p$ distance, with a \emph{constant} number of queries to the oracle. We refer to the process of determining if an unknown function has a property, or is far from every function having the property, as \emph{property testing}, and we refer to the algorithm that does that as a tester or a testing algorithm. A function $f : \{0,1\}^n \to [0,1]$ is a \emph{$k$-junta} if there is a set $J \subseteq [n]$ of cardinality $|J| \le k$ such that the value of $f$ on any input $x$ is completely determined by the values $x_i$ for $i \in J$. For any constant $\epsilon > 0$ and a set of $k$-juntas $\mathcal{F}$, we give an algorithm which determines if an unknown function $f : \{0,1\}^n \to [0,1]$ is $\frac{\epsilon}{10^6}$-close to some function in $\mathcal{F}$ or is $\epsilon$-far from every function in $\mathcal{F}$, in $\ell_2$ distance, with a constant number of queries to the unknown function. This result, combined with a recent junta theorem of Feldman and \Vondrak (2016) in which they show every submodular function is $\epsilon$-close, in $\ell_2$ distance, to another submodular function which is a $\tilde{O}(\frac{1}{\epsilon^2})$-junta, yields the constant-query testing algorithm for submodular functions. We also give constant-query testing algorithms for a variety of other natural properties of valuation functions, including fractionally additive (XOS) functions, OXS functions, unit demand functions, coverage functions, and self-bounding functions.en
dc.publisherUniversity of Waterlooen
dc.subjectProperty testingen
dc.subjectSubmodular functionsen
dc.titleTesting Submodularityen
dc.typeMaster Thesisen
dc.pendingfalse R. Cheriton School of Computer Scienceen Scienceen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorBlais, Eric
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages