Show simple item record

dc.contributor.authorLiu, Rui Peng 14:00:05 (GMT) 14:00:05 (GMT)
dc.description.abstractQuery complexity is one of the several notions of complexity de ned to measure the cost of algorithms. It plays an important role in demonstrating the quantum advantage, that quantum computing is faster than classical computation in solving some problems. Kempe showed that a discrete time quantum walk on hypercube hits the antipodal point with exponentially fewer queries than a simple random walk [K05]. Childs et al. showed that a continuous time quantum walk on \Glued Trees" detects the label of a special vertex with exponentially fewer queries than any classical algorithm [CCD03], and the result translates to discrete time quantum walk by an e cient simulation. Building on these works, we examine the query complexity of variations of the hyper- cube and Glued Tree problems. We rst show the gap between quantum and classical query algorithms for a modi ed hypercube problem is at most polynomial. We then strengthen the query complexity gap for the Glued Tree label detection problem by improving a classical lower bound technique; and we prove such a lower bound is nearly tight by giving a classical query algorithm whose query complexity matches the lower bound, up to a polylog factor.en
dc.publisherUniversity of Waterlooen
dc.subjectQuantum Complexity Theoryen
dc.subjectGraph Search Problemen
dc.titleSome Upper and Lower Bounds regarding Query Complexityen
dc.typeMaster Thesisen
dc.pendingfalse and Optimizationen and Optimizationen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorNayak, Ashwin
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages