Show simple item record

dc.contributor.authorBauman, Shaneen 14:21:32 (GMT) 14:21:32 (GMT)
dc.description.abstractA balanced tournament design of order <I>n</I>, BTD(<I>n</I>), defined on a 2<I>n</I>-set<I> V</i>, is an arrangement of the all of the (2<I>n</i>2) distinct unordered pairs of elements of <I>V</I> into an <I>n</I> X (2<I>n</i> - 1) array such that (1) every element of <I>V</i> occurs exactly once in each column and (2) every element of <I>V</I> occurs at most twice in each row. We will show that there exists a BTD(<i>n</i>) for <i>n</i> a positive integer, <i>n</i> not equal to 2. For <I>n</i> = 2, a BTD (<i>n</i>) does not exist. If the BTD(<i>n</i>) has the additional property that it is possible to permute the columns of the array such that for every row, all the elements of<I> V</I> appear exactly once in the first <i>n</i> pairs of that row and exactly once in the last <i>n</i> pairs of that row then we call the design a partitioned balanced tournament design, PBTD(<I>n</I>). We will show that there exists a PBTD (<I>n</I>) for <I>n</I> a positive integer, <I>n</I> is greater than and equal to 5, except possibly for <I>n</I> an element of the set {9,11,15}. For <I>n</I> less than and equal to 4 a PBTD(<I>n</I>) does not exist.en
dc.format.extent438868 bytes
dc.publisherUniversity of Waterlooen
dc.rightsCopyright: 2001, Bauman, Shane. All rights reserved.en
dc.subjectcombinatorial designsen
dc.subjectbalanced tournament designsen
dc.subjectpartitioned balanced tournament designsen
dc.titleThe Existence of Balanced Tournament Designs and Partitioned Balanced Tournament Designsen
dc.typeMaster Thesisen
dc.pendingfalseen and Optimizationen
uws-etd.degreeMaster of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages