Show simple item record

dc.contributor.authorRampersad, Naraden
dc.date.accessioned2006-08-22 14:26:43 (GMT)
dc.date.available2006-08-22 14:26:43 (GMT)
dc.date.issued2004en
dc.date.submitted2004en
dc.identifier.urihttp://hdl.handle.net/10012/1155
dc.description.abstractThe study of combinatorics on words dates back at least to the beginning of the 20th century and the work of Axel Thue. Thue was the first to give an example of an infinite word over a three letter alphabet that contains no squares (identical adjacent blocks) <i>xx</i>. This result was eventually used to solve some longstanding open problems in algebra and has remarkable connections to other areas of mathematics and computer science as well. In this thesis we primarily study several variations of the problems studied by Thue in his work on repetitions in words, including some recent connections to other areas, such as graph theory. In Chapter 1 we give a brief introduction to the subject of combinatorics on words. In Chapter 2 we use uniform morphisms to construct an infinite binary word that contains no cubes <i>xxx</i> and no squares <i>yy</i> with |<i>y</i>| &#8805; 4, thus giving a simpler construction than that of Dekking. We also use uniform morphisms to construct an infinite binary word avoiding all squares except 0², 1², and (01)², thus giving a simpler construction than that of Fraenkel and Simpson. We give some new enumeration results for these avoidance properties and solve an open problem of Prodinger and Urbanek regarding the perfect shuffle of infinite binary words that avoid arbitrarily large squares. In Chapter 3 we examine ternary squarefree words in more detail, and in Chapter 4 we study words <i>w</i> satisfying the property that for any sufficiently long subword <i>w'</i> of <i>w</i>, <i>w</i> does not contain the reversal of <i>w'</i> as a subword. In Chapter 5 we discuss an application of the property of squarefreeness to colourings of graphs. In Chapter 6 we study strictly increasing sequences (<i>a</i>(<i>n</i>))<i>n</i>&#8805;0 of non-negative integers satisfying the equation <i>a</i>(<i>a</i>(<i>n</i>)) = <i>dn</i>. Finally, in Chapter 7 we give a brief conclusion and present some open problems.en
dc.formatapplication/pdfen
dc.format.extent414475 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.rightsCopyright: 2004, Rampersad, Narad. All rights reserved.en
dc.subjectComputer Scienceen
dc.subjectCombinatorics on wordsen
dc.titleInfinite Sequences and Pattern Avoidanceen
dc.typeMaster Thesisen
dc.pendingfalseen
uws-etd.degree.departmentSchool of Computer Scienceen
uws-etd.degreeMaster of Mathematicsen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages