Show simple item record

dc.contributor.authorHivonen, Jeffrey
dc.date.accessioned2017-02-13 15:27:27 (GMT)
dc.date.available2017-02-13 15:27:27 (GMT)
dc.date.issued2017-02-13
dc.date.submitted2017-02-01
dc.identifier.urihttp://hdl.handle.net/10012/11311
dc.description.abstractSediment transport is a fundamental component of research into river morphology and related engineering practices. The relationship between flow and sediment particle entrainment underpins many of the empirical models used to estimate sediment transport dynamics. The scientific literature reports a research gap specific to the thresholds of mobility of different sized particles in non-gravel bed systems, including those in bedrock channels. Particle tracer technology was used to study coarse sediment entrainment and transport dynamics in an urban, bedrock controlled stream channel in Toronto, Ontario, Canada. Passive integrated transponders were inserted in constrained and unconstrained particles within an incised reach of stream. The distribution of particles transport distances conformed to a two-parameter gamma distribution model, which assumes integrations of the travelled series of steps and rests. Size selective dependency of path length was found to increase for coarser clasts, as compared to observed conditions for gravel-bed systems. Coarser particles were also found to transport in an unconstrained mode, as compared to finer grains. A force exceedance model was applied to further test the performance of reported size selective transport relationships for the study site. Many particles were found to transport at critical shear ratios less than 1, when assuming a modified Shields’s based model for entrainment. Field data was then used to determine a reference shear based on the smallest magnitude competent storm. The results show that, when compared to alluvial gravel-bed conditions, finer particles require larger thresholds to mobilize and the inverse is true for coarser particles. Using the reference shear conditions, rates of sediment transport were calculated and compared to common models for coarse particle transport. The results confirm size selectivity by grain class and indicate differentiations between fine and coarse transport relationships for the site. This research confirms non-conformity of particle entrainment and transport relationships for the study site, when compared to common empirical model for gravel-bed rivers. The results may be used to obtain critical entrainment parameters and sediment transport relationships, which can then be used to inform design criteria for regional watercourses having like lithology and morphology.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectsediment transporten
dc.subjectbedrocken
dc.subjecturban riversen
dc.subjecttracer studiesen
dc.subjectRFIDen
dc.subjectfluvial geomorphologyen
dc.subjectinterbedded shaleen
dc.titleThresholds and Sediment Transport Dynamics in an Interbedded Shale and Limestone Controlled Urban Watercourseen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentCivil and Environmental Engineeringen
uws-etd.degree.disciplineCivil Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorAnnable, William
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages