Show simple item record

dc.contributor.authorBian, Jingyun 13:22:26 (GMT) 13:22:26 (GMT)
dc.description.abstractLarge sparse matrices representation is a fundamental problem in big data processing and analysis. In some applications dealing with large sparse matrices, the I/O of these sparse matrices is the bottleneck of the whole system. To reduce the requirement of memory bandwidth in this scenario, it is important to develop alternative compact representations of large sparse matrices, while facilitating, if possible, matrix operations. In this thesis, we propose two grammar-based methods to compactly represent a sparse binary matrix with the capability of random accessing an element in the matrix. The first approach combines dimension coding (proposed by Yang[12]) with one of raster scan or Hilbert scan, where the so-called directionless grammar is applied. With the power of scanning, dimension coding’s capability of representing 1-D sparse signals can be extended to 2-D sparse matrices. This approach inherits the random accessibility of dimension coding. In the second approach, we will introduce a new concept called Context-free Bipartite Grammar (CFBG) and present a framework wherein large sparse binary matrices can be represented by CFBG. Similar to the traditional concept of Context-free Grammar (CFG), a CFBG consists of a set of production rules. Unlike CFGs, however, the right member of each production rule in a CFBG is a labeled bipartite graph with each edge labeled either as a variable or terminal symbol. As the right-hand side of a production rule is an ordered edge set, CFBG is also directionless. Two bipartite grammar transforms, a Sequential D-Neighborhood Pairing Transform (SNPT) and an Iterative Pairing Transform (IPT), are further presented to convert any binary matrix into a CFBG representing it. Experiments show that compared with popular sparse matrix storage methods such as compressed row storage and quadtree, grammar-based sparse binary matrix representations can reduce the storage requirement of sparse matrices significantly (by a factor of as much as 70).en
dc.publisherUniversity of Waterlooen
dc.subjectSparse Matrixen
dc.subjectBipartite Graphen
dc.titleGrammar-Based Representations of Large Sparse Binary Matricesen
dc.typeMaster Thesisen
dc.pendingfalse and Computer Engineeringen and Computer Engineeringen of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorYang, En-hui
uws.contributor.advisorYang, En-hui
uws.contributor.affiliation1Faculty of Engineeringen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages