Show simple item record

dc.contributor.authorYee, Randy 13:28:54 (GMT) 13:28:54 (GMT)
dc.description.abstractCryptographic systems based on the elliptic curve discrete logarithm problem (ECDLP) are widely deployed in the world today. In order for such a system to guarantee a particular security level, the elliptic curve selected must be such that it avoids a number of well-known attacks. Beyond this, one also needs to be wary of attacks whose reach can be extended via the use of isogenies. It is an open problem as to whether there exists a field for which the isogeny walk strategy can render all elliptic curves unsuitable for cryptographic use. This thesis provides a survey of the theory of elliptic curves from a cryptographic perspective and overviews a few of the well-known algorithms for computing elliptic curve discrete logarithms. We perform some experimental verification for the assumptions used in the analysis of the isogeny walk strategy for extending Weil descent-type cover attacks, and explore its applicability to elliptic curves of cryptographic size. In particular, we demonstrate for the first time that the field F_2^{150} is partially weak for elliptic curve cryptography.en
dc.publisherUniversity of Waterlooen
dc.subjectElliptic Curvesen
dc.subjectDiscrete Logarithmsen
dc.titleOn the effectiveness of isogeny walks for extending cover attacks on elliptic curvesen
dc.typeMaster Thesisen
dc.pendingfalse and Optimizationen and Optimizationen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorMenezes, Alfred
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages