On the effectiveness of isogeny walks for extending cover attacks on elliptic curves
Loading...
Date
2016-08-23
Authors
Yee, Randy
Advisor
Menezes, Alfred
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
Cryptographic systems based on the elliptic curve discrete logarithm problem (ECDLP) are widely deployed in the world today. In order for such a system to guarantee a particular security level, the elliptic curve selected must be such that it avoids a number of well-known attacks. Beyond this, one also needs to be wary of attacks whose reach can be extended via the use of isogenies. It is an open problem as to whether there exists a field for which the isogeny walk strategy can render all elliptic curves unsuitable for cryptographic use.
This thesis provides a survey of the theory of elliptic curves from a cryptographic perspective and overviews a few of the well-known algorithms for computing elliptic curve discrete logarithms. We perform some experimental verification for the assumptions used in the analysis of the isogeny walk strategy for extending Weil descent-type cover attacks, and explore its applicability to elliptic curves of cryptographic size. In particular, we demonstrate for the first time that the field F_2^{150} is partially weak for elliptic curve cryptography.
Description
Keywords
Elliptic Curves, Isogenies, Cryptography, Discrete Logarithms