Show simple item record

dc.contributor.authorXu, David 16:01:04 (GMT) 16:01:04 (GMT)
dc.description.abstractA predictive estimator (PE) is a neural microcircuit hypothesized to explain how the brain processes certain types of information. They participate in a hierarchy, passing predictions to lower layers, which send back prediction errors. Meanwhile, the network learns optimal connection weights in order to minimize the prediction errors. This two-way process has been used to hypothesize models for brain mechanisms, such as visual information processing. However, the standard implementation for a PE uses the same weight matrix for both feed-forward and feed-back projections, which is not biologically plausible. In this thesis, we investigate the predictive estimator using individual feed-forward and feed-back connection weights. We extend the model and introduce the Symmetric Predictive Estimator (SPE). We investigate the dynamics of a SPE network, analyze its stability, and define a general learning rule. A functional model of the SPE is implemented analytically, and in a neural framework using spiking neurons. Both implementations are built as Python modules that can accept generic, numerical inputs. With a series of general experiments, we demonstrate its ability to learn non-linear functions and perform a supervised-learning task. This variation on the PE may provide insights to the theory of predictive estimators and their role in the brain.en
dc.publisherUniversity of Waterlooen
dc.subjectpredictive codingen
dc.subjectneural networksen
dc.subjectcomputational neuroscienceen
dc.subjectpredictive estimatorsen
dc.subjectbiological plausibilityen
dc.subjectperceptual networken
dc.titleBiologically Plausible Neural Learning using Symmetric Predictive Estimatorsen
dc.typeMaster Thesisen
dc.pendingfalse R. Cheriton School of Computer Scienceen Scienceen of Waterlooen
uws-etd.degreeMaster of Mathematicsen
uws.contributor.advisorOrchard, Jeff
uws.contributor.affiliation1Faculty of Mathematicsen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages