Show simple item record

dc.contributor.authorGAO, AORAN
dc.date.accessioned2016-05-12 17:55:42 (GMT)
dc.date.available2016-05-12 17:55:42 (GMT)
dc.date.issued2016-05-12
dc.date.submitted2016-05-11
dc.identifier.urihttp://hdl.handle.net/10012/10466
dc.description.abstractThis study deals with the desalination of high-salinity water using membranes by pervaporation. The membrane performance was characterized with water flux and salt rejection. It was shown that a water flux of 1.6 kg/m²h and almost complete salt rejection (99.9%) were achieved at 65℃. The water flux increased with an increase in temperature, and the temperature dependence of water flux obeyed an Arrhenius type of equation. The water flux decreased with an increase in the salinity of the feed solutions; increasing salt concentration from 1 to 20 wt% resulted in a 50% reduction in water flux, whereas the salt rejection was not influenced. The water flux varied with the type of the salts (i.e., NaCl, Na2SO4 and MgCl2) in the feed water, but the salt rejection remained over 99.9%, regardless of salt types and concentrations. Batch operation (10 hours) of desalination was studied to investigate the permeation flux variation in pervaporation process. The permeation flux continuously decreased during the course of operation, and when there was 20 wt% of salts in the feed solution, the water flux was 30% lower than pure water flux. The permeation flux could be recovered after the membrane surface was rinsed by water flow. In order to get an insight into water transport in the membrane, experiments were also carried out with membranes of different thicknesses. The water flux decreased with an increase in the membrane thickness from 39 to 88μm, and the membrane thickness dependence of water flux followed the Fick’s law. Mass transport in the membranes was analyzed quantitatively. The apparent diffusion coefficient of water was shown to decrease with an increase in salt concentration in the feed solution. The salt solubility in the membrane followed the order of MgCl2>NaCl>Na2SO4, and the salt permeability in the membrane followed the order of NaCl>MgCl2>Na2SO4. Moreover, the concentration profile within the membrane was also determined experimentally.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectdesalinationen
dc.subjectpervaporationen
dc.subjecthigh-salinity wateren
dc.subjectmembraneen
dc.titleDesalination of high-salinity water by membranesen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentChemical Engineeringen
uws-etd.degree.disciplineChemical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Applied Scienceen
uws.contributor.advisorFeng, Xianshe
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages