A Geometric B-Spline Over the Triangular Domain
Loading...
Date
2003
Authors
Ingram, Christopher
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
For modelling curves, B-splines [3] are among the most versatile control schemes. However, scaling this technique to surface patches has proven to be a non-trivial endeavor. While a suitable scheme exists for rectangular patches in the form of tensor product B-splines, techniques involving the triangular domain are much less spectacular.
The current cutting edge in triangular B-splines [2] is the DMS-spline. While the resulting surfaces possess high degrees of continuity, the control scheme is awkward and the evaluation is computationally expensive. A more fundamental problem is the construction bears little resemblance to the construction used for the B-Spline. This deficiency leads to the central idea of the thesis; what happens if the simple blending functions found at the heart of the B-Spline construction are used over higher dimension domains?
In this thesis I develop a geometric generalization of B-Spline curves over the triangular domain. This construction mimics the control point blending that occurs with uniform B-Splines. The construction preserves the simple control scheme and evaluation of B-Splines, without the immense computational requirements of DMS-splines. The result is a new patch control scheme, the G-Patch, possessing <i>C</i>0 continuity between adjacent patches.
Description
Keywords
Computer Science, geometric design, b-spline, triangular surfaces