UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Robustness in Dimensionality Reduction

Loading...
Thumbnail Image

Date

2016-04-14

Authors

Liang, Jiaxi

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Dimensionality reduction is widely used in many statistical applications, such as image analysis, microarray analysis, or text mining. This thesis focuses on three problems that relate to the robustness in dimension reduction. The first topic is the performance analysis in dimension reduction, that is, quantitatively assessing the performance of a algorithm on a given dataset. A criterion for success is established from the geometric point of view to address this issues. A family of goodness measures, called \textsl{local rank correlation}, is developed to assess the performance of dimensionality reduction methods. The potential application of the local rank correlation in selecting tuning parameters of dimension reduction algorithms is also explored. The second topic is the sensitivity analysis in dimension reduction. Two types of influence functions are developed as measures of robustness, based on which we develop graphical display strategies for visualizing the robustness of a dimension reduction method, and flagging potential outliers. In the third part of the thesis, a novel robust PCA framework, called \textsl{Performance-Weighted Bagging PCA}, is proposed from the perspective of model averaging. It obtains a robust linear subspace by weighted averaging a collection of subspaces produced by subsamples. The robustness against outliers is achieved by a proper weighting scheme, and possible choices of weighting scheme are investigated.

Description

Keywords

Robustness, Dimensionality reduction, Influence function, Performance measure, PCA

LC Keywords

Citation