Repository logo
About
Deposit
Communities & Collections
All of UWSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kaern, Mads"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Estimating the Stochastic Bifurcation Structure of Cellular Networks
    (Public Library of Science (PLOS), 2010) Song, Carl; Phenix, Hilary; Abedi, Vida; Scott, Matthew; Ingalls, Brian P.; Kaern, Mads; Perkins, Theodore J.
    High throughput measurement of gene expression at single-cell resolution, combined with systematic perturbation of environmental or cellular variables, provides information that can be used to generate novel insight into the properties of gene regulatory networks by linking cellular responses to external parameters. In dynamical systems theory, this information is the subject of bifurcation analysis, which establishes how system-level behaviour changes as a function of parameter values within a given deterministic mathematical model. Since cellular networks are inherently noisy, we generalize the traditional bifurcation diagram of deterministic systems theory to stochastic dynamical systems. We demonstrate how statistical methods for density estimation, in particular, mixture density and conditional mixture density estimators, can be employed to establish empirical bifurcation diagrams describing the bistable genetic switch network controlling galactose utilization in yeast Saccharomyces cerevisiae. These approaches allow us to make novel qualitative and quantitative observations about the switching behavior of the galactose network, and provide a framework that might be useful to extract information needed for the development of quantitative network models.
  • No Thumbnail Available
    Item
    Quantitative Epistasis Analysis and Pathway Inference from Genetic Interaction Data
    (Public Library of Science (PLOS), 2011) Phenix, Hilary; Morin, Katy; Batenchuk, Cory; Parker, Jacob; Abedi, Vida; Yang, Liu; Tepliakova, Lioudmila; Perkins, Theodore J.; Kaern, Mads
    Inferring regulatory and metabolic network models from quantitative genetic interaction data remains a major challenge in systems biology. Here, we present a novel quantitative model for interpreting epistasis within pathways responding to an external signal. The model provides the basis of an experimental method to determine the architecture of such pathways, and establishes a new set of rules to infer the order of genes within them. The method also allows the extraction of quantitative parameters enabling a new level of information to be added to genetic network models. It is applicable to any system where the impact of combinatorial loss-of-function mutations can be quantified with sufficient accuracy. We test the method by conducting a systematic analysis of a thoroughly characterized eukaryotic gene network, the galactose utilization pathway in Saccharomyces cerevisiae. For this purpose, we quantify the effects of single and double gene deletions on two phenotypic traits, fitness and reporter gene expression. We show that applying our method to fitness traits reveals the order of metabolic enzymes and the effects of accumulating metabolic intermediates. Conversely, the analysis of expression traits reveals the order of transcriptional regulatory genes, secondary regulatory signals and their relative strength. Strikingly, when the analyses of the two traits are combined, the method correctly infers ∼80% of the known relationships without any false positives.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback