Repository logo
About
Deposit
Communities & Collections
All of UWSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hwang, Steven, 1998-"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    The Edmonds-Giles Conjecture and its Relaxations
    (University of Waterloo, 2022-12-23) Hwang, Steven, 1998- ; Guenin, B. (Bertrand)
    Given a directed graph, a directed cut is a cut with all arcs oriented in the same direction, and a directed join is a set of arcs which intersects every directed cut at least once. Edmonds and Giles conjectured for all weighted directed graphs, the minimum weight of a directed cut is equal to the maximum size of a packing of directed joins. Unfortunately, the conjecture is false; a counterexample was first given by Schrijver. However its ”dual” statement, that the minimum weight of a dijoin is equal to the maximum number of dicuts in a packing, was shown to be true by Luchessi and Younger. Various relaxations of the conjecture have been considered; Woodall’s conjecture remains open, which asks the same question for unweighted directed graphs, and Edmond- Giles conjecture was shown to be true in the special case of source-sink connected directed graphs. Following these inquries, this thesis explores different relaxations of the Edmond- Giles conjecture.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback