Repository logo
About
Deposit
Communities & Collections
All of UWSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Goldberg, Daniel N."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Characterizing subglacial hydrology within the Amery Ice Shelf catchment using numerical modeling and satellite altimetry
    (Wiley, 2024-04-20) Wearing, Martin G.; Dow, Christine F.; Goldberg, Daniel N.; Gourmelen, Noel; Hogg, Anna E.; Jakob, Livia
    Meltwater forms at the base of the Antarctic Ice Sheet due to geothermal heat flux (GHF) and basal frictional dissipation. Despite the relatively small volume, this water has a profound effect on ice-sheet dynamics. However, subglacial melting and hydrology in Antarctica remain highly uncertain, limiting our ability to assess their impact on ice-sheet dynamics. Here we examine subglacial hydrology within the Amery Ice Shelf catchment, East Antarctica, using the subglacial hydrology model GlaDS. We calculate subglacial melt rates using a higher-order ice-flow model and two GHF estimates. We find a catchment-wide melt rate of 7.03 Gt year−1 (standard deviation = 1.94 Gt year−1), which is ≥50% greater than previous estimates. The contribution from basal dissipation is approximately 40% of that from GHF. However, beneath fast-flowing ice streams, basal dissipation is an order of magnitude larger than GHF, leading to a significant increase in channelized subglacial flux upstream of the grounding line. We validate GlaDS using high-resolution interferometric-swath radar altimetry, with which we detect active subglacial lakes and fine-scale ice-shelf basal melting. We find a network of subglacial channels that connects areas of deep subglacial water coincident with active subglacial lakes, and channelized discharge at the grounding line coinciding with enhanced ice-shelf basal melting. The concentrated discharge of meltwater provides 36% of the freshwater released into the ice-shelf cavity, in addition to ice-shelf basal melting. This suggests that ice-shelf basal melting is strongly influenced by subglacial hydrology and could be affected by future changes in subglacial discharge, such as lake drainage or channel rerouting.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback