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Abstract 

The goal of this thesis is to present a method which when applied to certain noncon- 

vex quadratic programming problems wiU locate the global minimum, all isolated 

local minima and some of the non-isolated local minima. The method ptoceeds by 

formulating a (multi) parametric QP or LP in terms of the data of the given non- 

convex qnadratic programming problem. Based on the solution of the parametric 

QP or LP, a minimization problem is formulated. This problem is unconstrained 

and piece-wise quadratic. A key resdt is that the isolated local minimizers (in- 

cludlig the global minimizer) of the original non-convex problem are in one to one 

correspondence with those of the derived unconstrained problem. As an application, 

the method is applied to the problem of determining if a given symmetric ma& 

is copositive on a given polyhedral cone. We show that the copositivity problem in 

which the matrix has exactly one negative d u e  can be solved in polynomial tirne. 

The results established for non-convex qnadratic programming problems are gener- 

alized to the non-convex problems in which the objective h c t i o n  is nonquadratic 

and the constraints are nonlinear. 
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Chapter 1 

Introduction 

1.1 An 

In t his t hesis , 

Overview of the Thesis 

we consider the following quadratic psogramming problem 

1 
min { c fx  + -x fCx  1 Ax 5 b) ,  

2 

where c E En, b E Em, C is an (n, n) symmetric matrix and A is an (m, n) matrix. If 

C is positive semidefinite, (1.1) is a convex quadratic proghamming problem. This 

type of problem can be solved by any convex quadratic programming algorithm. 

For example, see Van de Panne and Whinston [30], Best and Ritter [IO], and GU 

and Murray [15]. This type of problem can &O be solved in polynomial t h e .  For 

example, see Monteiro and Adla  [20], and Ye and Tse [34]. If C is not positive 

semidefinite, (1.1) is a non-convex quadratic programming problem. In this thesis, 

we will focus out attention on non-convex QP's. This type of problem was proved 

to  be NP-hard even when C has exactly one negative eigenvalae (see Pardalos and 

Vavasis [26]). In the past several years, some dgorithms have been developed to 
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locate a global mïnhker for a non-con- QP. For example, see Konno et al. [17], 

Bomze and Danninger [Il], Murty [2lj, and Vavasis [32] and [33]. Unlike these 

algorithms, our goal is to develop an algorithm to locate both the global minimum 

and the local minima. The approach we use hae is new. It is based on a one to one 

correspondence between local and global minimizers for the given problem and the 

unconstrained daived problem (Theorems 2.2.4 and 2.2.5). Unlike the convex case, 

the number of isolated local minimizers for the non-convex QP codd be exponential 

in the dimensionality of the problem. For example, the problem 

has 2" isolated local rnin;mirexs. In general, it aiIl be diflicult to develop an efficient 

algorithm to locate all isolated local minimizers and some local minimirers. How- 

ever out motivation is a little bit different fkom this. By developing algorithms for 

finding all isolated local minimizers and some local minimizers, we hope that it can 

help us to further understand the skacture of non-convex quadratic programming 

problems and it can provide intuition for developing fnrther efficient algorithms. 

In Chapter 2 of this thesis, we present a method which when applied to certain 

non-convex QP will locate the global minimum, a22 isolated local minima and some 

of the non-isolated local minima. The method proceeds by formulating a ( m a )  

parametric convex QP in terms of the data of the given non-convex QP. Based 

on the solution of the parametric QP, an unconstrained minimiration problem is 

formulated. This problem is pie-wise quadratic. A key result is that the iso- 

lated local minimisers (including the global minhizer) of the original non-convex 

problem are in one to one correspondence with those of the derived anconstrained 

problem. A numerical procedure is developed for a special class of non-convex QP's 

in which C has exactly one negative eigenvalue. 
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In Chapter 3, we develop a numerical decomposition method based on the the- 

ory est ablished in Chapter 2 to locate the global minimum, all isolated local minima 

and some of the nonisolated local minima for general indefinite QP. The procedure 

proceeds by formulating a (malti) parametric LP in terms of the data of the given 

nonconvex QP. We use this and a decomposition procedure to transform the given 

n dimensional nonconvex QP having m linear inequality constraints into k subprob- 

lem QP's, each of which has n - 1 variables and m constraints, where 1 k 5 m 

and k depends on the problem data. Special techniques are developed to ensure 

that k is smd.  The decomposition procedure may then be applied to the snbprob- 

lem QP's. A branch of the decomposition procedure terminates when either the 

subproblem is concave, the sabproblem is convex, the subproblem has a Hessian 

rnatrix having exactly one negative eigenvalae, or, the subproblem has dimension 

1. 

In Chapter 4, we consider the application of the algorithms developed in Chapter 

2 and 3 to a copositivity problem. Especially, for a given (n, n) symmetric matriw 

with exactly one negative eigenvalue and a polyhedral cone, it is proved that de- 

termining if the ma& is copositive on the cone can be solved in polynomid time 

and an algorithm is established for this dass of problems. A slight modification of 

the algorithm can solve a dass  of copositivity problems in which the matrix has 

exactly two negative eigendues. 

In Chapter 5, we generalize the techniques of Chapta 2 to a class of general non- 

convex programming problems. Here the objective function need not be quadratic 

and the constraints need not be linear. 

Findy, in Chapter 6, we summarize the contribution of the thesis and outline 

furt her research directions. 
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1.2 Parametric Quadratic Programming 

In this section, we review some known results and solution methods fot parametric 

programming problems. 

We consider the following mode1 problem 

min c(t)'x + f z'C(t)z 

snbject to e(t)'~ 5 b#), i = 1, . . . , m J 

for t E T, where c(t),*(t) E En, b@) E E1 for i = 1, - - - , m ,  C(t) is an (n,n) 

symmetric positive semidefinite matrix for each t E T and T is a subset of E&. 

In the ma jo re  of cases, C ( t )  and %(t) for i = 1, - , m udl  be independent of 

t . We assume that c ( t ) ,  ai(t), bi(t) and C(t) are continuous on T. Let A(t) = 

(ai@), - , h(t)) ' ,  b(t) = (h(t) ,  , bm(t))', R(t) = {z E II" 1 A(t)z 5 b(t) for 

some x E En) and define a real valued function as folIows: 

[ +-, otherwise. 

The following result gives a snfficient condition for f to be lower semicontinuous. 

Theorem 1.2.1 For any t' E T, if the following system 

hm no nonzero solutions, then f is lower sernicontinuow at t' relative to T. 

Proof. See Best and Ding [5]. 

There are some sdc ien t  conditions for f to be continuous. However such results 

will not be needed in this thesis. SO, n e  will not discuss them fixther. 
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Associated with (1.2) are the Karush-Kuhn-Tucker conditions 

@(t)#z( t )  5 t(t), i = 1, - ,m, 

-c(t) - C(t)z( t )  = x, *(t)ai( t ) ,  t - 

~ ( t )  > 0 ,  i = 1 , - - - , m ,  

w(t)(&(t)'z(t) - bi( t))  = 0,  i = 1, - ,m. 

)lier, or dual variable, associated with constraint i is %(t). Theorems 

1.2.2- 1.2.5 and Corollary 1.2.1 are the well known Karush-Knhn-Tncker conditions 

(see [NI). The importance of the Karush-Knha-Tucker conditions is demonstrated 

in the folloaing theorem. 

Theorem 1.2.2 (Necessary and SufiCient Conditions). For each t E T ,  n-vector 

x ( t  ) is an optimal solution for (1 -2) if and only if there czist numbers ui ( t  ) , - , ~ ( t )  

which, together with z ( t  ) , satlsfy the Karush-Kuhn- Tucker conditions (1.3). 

Related to the primal problem (1.2) is the dnai problem defined by 

where 

W e  will use u to denote the m-vector (ul, - , s)' and u(t) to denote m-vector 

(ui ( t ) , -, ( t  ) )'- The following theorems indicate the relationship between (1.2) 

and (1.4). 

Theorem 1.2.3 (Weak Duality). For each t E T ,  i f z l ( t )  is  feasible for the prima1 

and ( x 2 ( t ) ,  u(t))  is feasible for the dual, then 



CHAPTER 1. INTRODUCTION 6 

Coroilary 1.2.1 For each t T, (1.2) hm an optimal solution if  and o d y  if both 

(1.2) and (1-4) are feasible. 

Let us define a set P as fouows: 

Corollary 1.2-1 implies that (1.2) has an optimal solution if and only if t  E P .  

Theorem 1.2.4 (Strong Duality). For each t E T, if z(t)  is an optimal solution 

f o ~  (1.2), then there ezists an rn-vector u(t) such that ( z ( t ) ,  u( t))  is  optimal for 

Theorem 1-2.5 (Complementary Slackness). For each t E T ,  let z(t )  and (z ( t ) ,u( t ) )  

be feasible for (1.2) and (1.4), ~espectiuely. Necessary and suficient conditions for 

simultaneow optimality of z ( t )  and ( z ( t ) ,  u(t))  are 

~ ( t )  > O irnplies q(t)'z(t)  = bi(t), for i = 1, - - , m, 

.i(t)'x(t) < bi(t) implies ~ ( t )  = O for i = 1, l , m. 

Let I be any subset of (1, - , m) and define a subset P ( I )  as 

ai(t)'z 5 bi( t ) ,  i = 1, - 0 ,  m, 

-c(t)  - C(t ) x = Cicr ~~ ia i ( t ) ,  

ui 2 O for i~ 1, 

~ ( t ) ' z  = &(t) for i E I for some x and 
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By defining y- = O for i % I and Theorem 1.2.5, we can see that (1.2) has an optimal 

solution for any t E P(I). The reason we define P ( I )  is that it may be possible to 

mite down the exp1icit expression for z(t ) when t E P ( I )  . For example, if 

is nonsinguiar for any t E E ~ ,  then 

for any t E P ( I ) ,  where Ai(t) is the ma& whose columns are the gradients of 

those constraints in I ,  and ur(t) is the vector whose components are those u;(t) 

associated with the c o l m s  of Ai(t). From the definition of P ( I ) ,  we have 

Since (1, - , rn) has a finite number of subsets, P is a union of the finite -ber 

of subsets. For any Il, I2 c (1, , m), it is possible to have P(Ii) c P(&) and 
P ( I l )  # P(Ia). So, the right hand side of (1.5) may not be a partition of P. A 

main idea of the numerical procedures for parametric programming problems is 

to esciently partition P into finite number of regions P ( I )  and get the explicit 

expression for the optimal solution on each of these regions. 

We illustrate these ideas by talchg C( t )  C, c(t )  c + tq, e ( t )  ai and 

b; ( t )  s bi + tpi for i = 1 , * - , m  and T r [&,q c El. That is, we consider the 

following parametric quadratic programming problem 

min (c + tq)'t + ;S'CE 

subject to a$< bi + tpi, i = 1, - - O  ,m 
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for T = [t,q c El, where c , q , ~  E En, bi,pc E El for i = 1,--,m; C is an (n,n) 

symmetric positive semidefinite matruri t is finite or -cm and fis 6tiite or +m. Best 

[3] has developed a numerical method for (1.6). An application of Best's method to 

(1.6) d l  produce nnmbers toi tl, - - , t ,  and n-vectors h, hic, i = 1, - - , v satisfying 

is optimal for (1.6) for all t with ti-, 5 t 5 ti and for all i = 1, - , u. It is possible 

to have to = t andfor t ,  = If ta > & the method wil l  condude that (1.6) is 

either unbounded from below or infeasible for t < ta, and, the relevant possibility 

wilI be given. Similarly, if t ,  > 6 then the method will condude that (1.6) is 

either unbounded fiom below or bas no feasible solution for t > t ,  and the relevant 

possibility will be stated. 

The results and ideas for parametric quadratic programming problems discussed 

in this section d l  be ased in Chapters 2, 3 and 5. 



Chapter 2 

Global and Local Quadratic 

Minimizat ion 

2.1 Introduction 

Here we consider the mode1 non-con- quadratic pmgramming problem 

QP 
1 

mi~@z + -x 'Cz  + z'DQ'z 1 Ax 5 b} ,  
2 

where c E En, B E Em, A is an (rn,n) matrix, D and Q are (R, k) matrices, C is 

a symmetric (n,n) positive semidefinite matrix, k < n and x E En is a variable. 

Correspondhg to QP, we consider the parametrïc qnadratic program: 

1 
min{c'x + -xrCz  + t'QI2 1 AZ < b, D'z = t } ,  

2 

where t is a parameter in EL- Let R and R(t) be the feasible regions for Q P  and 

QP ( t ) ,  respectively. Let arg min{QP( t ) )  denote the set of all optimal solutions for 

QP ( t )  . Finally, we formulate 
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where 
in. {c'z + f dCz + fQ'z 1 z E R(t)) ,  if R(t)  # 4, 

+-y otherwise, 

The non-convexity of the objective h c t i o n  of QP stems fkom the term z'DQfx. 

One might question the generality of this mode1 and mggest that the tenn be 

written as s'Hz,  where H is a more general symmetric matrix, perhaps satisfying 

some properties. This situation has been analyzed in Chapter 3, where it is shom 

that for any symmetric matrix H having full rank, there exist (n, k) matrices Q 

and D sati-g E = $[DQf + QD'] (and so z f H z  = z'DQ'z) if and only if H has 

at least two nonzero eigenvalues of opposite sign. In addition, when the required 

condition is satisfied a method to constrnct mch D and Q is given. For the ptuposes 

of this chapter, we will assume that D and Q are alteady adable .  

We note that, in general, the problem of checking isolated local optimality is 

NP-hard, See Murty and Kabadi [22], and, Pardalos and Sr_hnitger [24]. 

We wiIl organize this chapter as follows. In Section 2.2, ne will develop the 

rehtionships between QP, Q P ( t )  and MQP. In partidar, we wiU establish the 

one to one correspondence betaeen isolated local minimirers of QP and MQP. In 

Section 2.3, we wiU specialize these r e d t s  to the dass of non-convex quadratic 

programs with a Hessian whicb ha9 exactly one negative eigendue. We will give 

an algorithm that can not only fmd a global minimixa, but can &O find dl isolated 

minimjzers and some non-isolated Iocal minimiRem. 

2.2 The Relationships Between QP and MQP 

We begin this section with a small example problem which wül illustrate the critical 

relationship between QP and MQP. 
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Example 2.2.1 

minimise : 

QP subject to i 21 2 0.5, 22z1 + 8z2 2 27, 

8s1 + 2 2 ~ ~  2 27, 2 2  2 0.5. 

Here, C = O, n = 2 and we may take D = (1,O)' and Q = (0,l)'. QP(t) can be 

written as 

minimise : tz2 

subject to : 21 2 0.5, 22zi + 8z2 > 27, 
QW) 

8x1 + 2 2 ~ ~  2 27, 2 2  2 0-5, 

23 = t .  

The solution of QP(t) is a piece-wise linear fnnction of t and is snmmarized in Table 

2.1. Examination of Q P ( t )  with Table 2.1 gives f (t): 

Example 2.2.1 is illustrated in Figures 2.1(a) and (b ) . Figure 2.l(a) shows the given 

non-convex problem. The feasible region is shoum as the shaded area. The levd 

set z1x2 = 0.81 is shown with a broken line. It is dear from the figure that there 

are local minima at (0.5,2)' and (2,0.5)' and the global minimum ocears at (.9, -9)'. 

Figure 2 4 b )  shows f (t), a piece-wise quadratic fnnction which by inspection, has 

isolated local minima at t = -5, and 2 and a global minimum at t = .9. Using 

Table 2.1, we see that arg min{QP(.B)) = (0.5,2)' , arg min{QP(2)) = (2, -5)' and 

arg min{QP(.9)) = (-9, -9)'. Thm, the local (global) minima of QP and f (t ) are 

in one to one correspondence for this example. Also note that f ( t )  is a piece-wise 
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Table 2.1: Optimal Solution for Q P ( t )  for Example 2.2.1 

no 

[ ; 1 + t  [ -;] [ ;] + t  [ -;] [; ] + t  [ u  ] 
solution 

Figure 2.1: (a) Example 2.2.1 (b) f (t) for Example 2.2.1 
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quadratic hction of a single variable and so it is sttaightforward to obtaia its local 

and global minimnas. 

Notice that in Example 2.2.1, the local minimizers for both QP and MQP are 

isolated. The requirement that the local minimizers of QP be isolated is key in 

obtaining the one to one correspondence between such points of QP and MQP. 

The final resalt wdl be formdated in Theorem 2.2.4 and be a consequence of 

Theorems 2.2.1-2.2.3, folloaing. 

Theorem 2.2.1 Let t' be a local minimiter for MQP toith f(t') > -m. Then any 

zu E arg min{QP(t')) is a local minimizer for QP. 

Proof: Since t' is a local minimizer for MQP, there exisb a d > O such that 

where Bs(tœ) = {t  E Ek 1 Ilt - t'Il 5 6). Now assume to the contrary, that there is 

an z* E arg min{QP( tœ) )  which is not a local minimixer for QP.  Then there exists 

a sequence {ri) such that 

where Axi < 6, and zà -+ 2'. Since 2' E arg min{QP(ta) ) ,  

1 
f (t') = c'z* + ,(zs)'Cz' + (tœ)'Q'z*. 

Hence 

Since zi -t z', D'xi + D'z' = t*. Thas, there is an M > O snch that 
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Let ti = D'zi for i > M. Then 

1 
f (ti) = inf(c'z + -zfCz + (t')'~'z 1 Az < b, Dfz = t'} 2 

But &om (2.1) and (2.3), we have f (t') 2 f (t*), a contradiction. The assumption 

that there is an z* E arg min{QP(t*)) which is not a local minimiser for QP leads 

to a contradiction and is therefore false. The proof of the theosem is thas complete. 

If t* is an isolated local minimizer of f on Et, we have the foltowing fiutha 

Theorem 2.2.2 If t' ii an isolatcd local minimizer for f on EL with f (ta) > -m 

and arg min{QP(tœ)) is the singleton point {z'), then z* is an isolated local mini- 

mizer for QP. 

ProoE From Theorem 2.2.1, z* is a local minimber for QP. If z* is not an isolated 

locd minimizer for QP, there &ts a sequence {si) c R, 2' + z* and 2' # z* 
for all i such that dz' + $(zà)'Gz' + (zi)'0Q'z' = dz' + i(z')'Cz* + (x')'DQ'xœ. 

Let t' = D'z'. Then t' + t* and f (t') = f (t'). Since arg min{QP(t')) = {z*) 

and 2' # z* for all i, tà # t' for all i .  This contradicts that t* is an isolated locd 

mhimizer for MQP. The proof of the theorem is thus complete. O 

Theorem 2.2.2 is illustrated in Example 2.2.1 where each of the three locd mini- 

mizers for f (t) are isolated, th& corresponding sets, arg rnin{QP (t)), are singletons 

and each such point is an isolated local minimiset for QP. The following example il- 

lustrates Theorem 2.2.1 and in addition, shows that the condition arg min{QP(tœ)) 

be a single point cannot, in g e n d ,  be removed from Theorem 2.2.2. 
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Here we take C = O, n = 2, D = (1, 0)' and Q = (O, 1)'. Then D'z = zl, Q'z = zz 

and QP(t) becomes 

from which f (t) is derived as: 

+oo, otherwise. 

The situation is illustrated in Figures 2.2(a) and 2.2(b). The feasible region 
1 for QP is shown as the shaded area in Figure 2.2(a). It is clear that t* = 5 is 

an isolated local minimizer for f on El. Indeed, it is also the global mhimizer. 

See Figure 2.2(b). However, arg min{QP(t')} = ( ( 0 , ~ ~ ) '  ( f < x, < i) and by 

Theorem 2.2.1, each one of these points is a local (indeed, global) minilaizer for QP. 

These are shown by the darkened line in Figure 2.2(a). Clearly, none of the local 

minimizers for QP is isolated. Thns the condition arg min{QP(tœ)) be a singleton 

is necessary in Theorem 2.2.2. 

Example 2.2.3 

Here we take C = O, n = 2, D = (1,O)'-and Q = (0,1)', Then D'x = xi, Q'z = x, 

and QP ( t )  becomes 
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Figure 2.2: (a) Erample 2.2.2 (b ) f (t ) for Example 2.2 -2 

- - . . . . . . . .  
local . . a - - . - - -  . * . - - - . - - -  

m . . - - - - - -  - . . - - - - . . -  - - - - - - - - -  minima . . - - . . . - . - . . . . , . . . . 
- . m m - * . - - -  . . . . . . - - -  . - - - - - . - - -  

- - * - * * * - -  
. . . . * * . -  - - - * . . - . . . -  . . * - - . - - - -  uz+ Z l  

Figure 2.3: (a) Example 2.2.3 (b) f (t) for Example 2.2.3 

from which f ( t )  is derived as: 

- 2 '  

+oo, otherwise. 

The situation is illustrated in Figures 2.3(a) and 2.3(b). 

Observe that 

and for t > f, arg min{QP(t)) = (t ,  O)'. Also observe that {(f, 4' 1 < z, 5 i} 
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are local optimal so1utions for QP. ln parti&, z* = (i, 1)' is a local optimizer 

for QP bat ta = D'x' = 2 is not a local minimizer for f on EL. Indeed f does not 

possess a local minnnima on El. 

Example 2.2.3 shows that a one to one correspondence betw; local minima 

of QP and f(t) wîl l  not hold without some restrictions. The key requirement 

in establiskg the correspondence is that cozresponding local minimiRas for QP, 

Q P ( t )  and f ( t )  should each be isolated. This wïll be established subsequently. Fust 

we need the following lemma. 

Lemma 2.2.1 Let z' be an Lgolated local minimizer for QP and let t' = D'z'. Let 

{ t i )  Be any sequence with ti -t t' and let 2' E arg mia{QP(ti)). If there ezists an 

M > O such that f(ti)  5 M for dl i ,  then {si) i bounded. 

Proof: Since z- is an isolated local minimiser for QP, there exists a 6 > O such 

that 

for =y z E (Bs(z*) n R) \ {z'). SO, 

for any x E (B@) n R(tœ)) \ {x*). Since c'z + f z fCz  + (t*)'Qtz is convex, we have 

for any z E R(tœ) \ {x'). Hence arg min{QP(t')) = {z'). This implies that there 

does not e s t  a nonzero vector 3 satisfjring the following conditions 

AS 5 O, D's = O ,  (c+  Qt*)'a IO, Cs = O, (2-6) 
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otherwise 2' + a will &O be an optimal solution of QP(tœ) which contradicts 

arg "n{QP(tœ))  = {z'). By Theorem 1.2.1, f is lower semi-continaous at t'. 

Therefore for any 7 > O there exists an e > O snch that f ( t)  2 f (t') - -y for any 

t E Be(tœ). Since t' + tœ, there exists an N > O mch that t' E B,jt') for all i 2 Ai. 

so, 

f (t') - 7 l f (t') l M (2-7) 

for all i 2 N .  Now assume that on the contrary, { s i )  is unbounded, then {x'/l[xil[) 

has a convergent subsequence. Withont loss of gener&ty, let 

Rom f ( t i)  = c'si + 

and 

~(z ' ) 'Cx i  2 + (ti)'Qfzi, (2.7) and (2.8), we have 

Rom Az' < b and D'xi = ti, we have As < O and D's = O. Thas we have d b i t e d  

a non-zero s satisfying (2.6). This is a contradiction and the proof of the lemma is 

complete. O 

Theorem 2.2.3 If x* is an isolated local minimize~ for QP, then t' = D'x* is an 

isolated local rninimizct for MQP, f (t*) = dz*+i(z*)'Cz'+ (t*)'Qtz* and arg min 
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Proof: As the proof of Lemma 2.2.1, we have (2.4), (2.5) and f( t )  2 f (t*) - 7 for 

any t E B.(t*)- Thus, 

1 
f (t') = c'z' + -(z*)'Cz* + (t*)'Qrz* and arg min{QP(tm).) = {r'). 

2 

Now assume to the contrary, that t' is not an isolated local minimizer for MQP. 

Then there exid two sequences {zi) and {ti} with ti = D'xi, ti + t', ti E BE(t*) 

and z' E R \ Bs(zœ) snch that 

1 
c'xi + -(zi) '~zi + (t')Q'zi = f (t') 5 f (t*) . 

2 

By Lemma 2.2.1, {xi) is bounded, so there &ts a convergent subsequence. With- 

out loss of generality, let zà + zo. Then z0 # x*, t* = D'xO, AxO 5 b and 

This contradicts (2.5). The proof of the theorem is thns complete. 0 

Combining Theorem 2.2.2 and Theorem 2.2.3, ne  have the folloning resdt. 

Theorem 2.2.4 A point z* is an isolated local minimizer for QP if and only ift' = 

D'x' is an isokted local minimiter of MQP, f (t') = c'z* + )(z*)'Cz*+ (t*)'Qfz' 

and arg min{QP(tm)) = (2'). 

Remark 2.2.1 Rom Theorem 2.2.1 and Theorem 2.2.4, we know that f WU keep 

all of the critical information concerning isolated local minimixers of QP and some 

of the local minimizers of QP. Thns if ne can locate aU local minimirers of f we 

will obtain all isolated local minimizers and some local minimizers of QP. 

Although the one to one conespondence between local minimizers of QP and 

MQP requires the condition of isolated local minima, this condition is not required 

for global minima as given in Theorem 2.2.5 below. The proof of this resdt can be 

ob t ained fiom definitions dlectly. 
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Theorem 2.2.5 A point t* E E~ with f(t*) > -a às a global mmimïzer of MQP if 

and only if QP Las  a global mininizer z' such üiat Pz* = t*, f (t') = dz' + i(z*)' 

Cz' + (t=)'Qzœ. 

We complete this section by showing how to recognize whether a local minhiza 

is an isolated local minimizer. Suppose that ne know t* is an isolated local- min- 

imizer and we want to know whether corresponding point z* is &O an isolated 

o c  a -  In doing so, we need only ver@ that arg min{QP(t*)) = {x'). 

If C is positive definite, then QP(t) is stnctly convex. Tii this case, z* is neces- 

sarily uniqaely determined and conseqnently arg min{QP(tœ)) = {z'). Otherwise, 

since QP(tœ) is convex, we may assume that z* is computed by some quadratic pro- 

grammuig algorithm and (u, u) = (ui, = .  - , u,,,, V I ,  - - -, vk) is the associated vedor of 

multiplias, where u and v correspond Az 5 b and D'z = t*, respectively- Now by 

Theorem 4.14 of Best and Ritter [9], arg min(QP(te)) can be represented by the 

set of x which sati* 

0'2 = t*, C2 = Cx-, 

a;z = bi, for all i with 1s is m, and ui > 0, 1 (2-9) 

a+ -5 bi, for all i with 1 5 i 5 m, and = 0. 

Let I = {i 1 1 2 i 5 mm, a:x' = bi) and Ar be a snbmatrir of A induced by i-th row 

of A for i E 1. Ifrank([D, C, Ai]) < n, then arg mqQP(t* ) )  is not a singleton, i-e.; 

x' is not an isolated local minimiser. In this case, an alternative local minimizer 

can be computed easily fiom the n d  space of [D, C, Ai]'- In fact, for sny y E En, if 

[D, C, Ail'y = O with y # O, there is a nonzero namber a such that z* + ay satisfies 

(2.9), Le.; 2' + ay is an éilternate local minimizer. If ra,nk([D, C, Ai]) = n, we need 

to consider the following linear programming problem: 
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If p = bi then arg min{QP(t*)) is a singleton, and x' is an isolated local 

minimizer. Otherwise, z' is not an isolated local minimizer and an optimal solution 

of the linear progr;rmming problem is an alternative local minimirer. 

In next section, we are going to disenss some applications of the results estab- 

iished in this section. 

2.3 The Case of a Single Negative Eigenvalue 

In this section we consida out model problem with D and Q being n-dimensional 

uectors; Le., k = 1. To emphasize this we replace D and Q with d and q, respedively. 

The model problem QP becomes 

where c E En, b E Em, A is an (m, n) matrix, d and q E En, C is a symmetric (n, n) 

positive semidefinite matrùr, and x E En. QP(t) becomes 

1 
min{c'x + - 2 % ~  + tq'x 1 Az 5 b, 62 = t ) ,  

2 

where t is a scalar parameter. Let Ri and Rl(t) be feasible regions for QP, and 

Q P l ( t ) ,  respectively. Let arg min{QPi(t)) denote the set of all optimal solutions 

for QP, (t ) . Findy, we formulate 

where 
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and we have ased the sabscript "1" throughout the above to emphasize that k = 1. 

If QP, were written with a more general Hessian matrix 8, rather thaa C + 
' ( d g  2 + qd') then the r d t i n g  problem could be t r d o r m e d  into one having a 

Hessian matrix of the latter form provided H had exactly one negative eigenvalue 

(hence the title of this section). Details of this transformation are given in the next 

chap ter. 

The problem QP, has been shown to be NP-hard by Pardalos and Vavasis [26]. 

Konno et  al. [17] proposed a solution method for a variation of QP, for which 

the constraints were equalities and non-negativity constraints. The method used a 

parametric form of the simplex algorithm and was designed solely to h d  a global 

minimizer. In this section, we will also develop a method to solve QP,. However, in 

contrast to the method of KOMO, OUT method wïil not only locate a global minimizer 

(if one exists), but also all isolated local minimizers and some non-isolated local 

minimizers. Indeed, even if QP, does not possess a global minimiser our method 

will locate al1 isolated local minimizers and some non-isolated local minimizers. 

Moreover, we will show that isolated local minimiaers can be distinguished fiom 

non-isolated local minimiaers by solving a linear programming problem. 

Note that Q P , ( t )  is a convex parametric quadratic programming probiem, with 

the parameter being a scalar. Note &O that the parameter t occurs in both the 

linear part of the objective fanction as well as the right hand-side of a constraint. 

QP,(t) must be solved for all possible t. An appropriate method to use is that of 

Best [3]. Best's method allows explicitly for a parameter in both the linear part of 

the objective h c t i o n  and the right hand-side of the constraints. Also, it dows 

for the possibility that the Hessian of the parametric QP is positive semideftrite, 

rather than just positive dehite. In addition, it supplies aitical information as to 

the status of QP,(t) at the end points of the parametric i n t d .  
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Applying Best's method to QP,(t) vill produce numbers ta, tl, - , t ,  and n-vectors 

hm, hti, i = 1,. . . , v satidjring 

is optimal for Q P 1 ( t )  for all t with ti-l 5 t 5 ti and for all i = 1, - . - U. It is possible 

to have to = -m andfor t ,  = +m. I f  to > -m, B&'s method will conclude that 

QPl(t) is either unbounded fiom beloa or infeasible for t < to,  and, the relevant 

possibility wili be given. Similady, if ift, < oo, then the method will condade that 

QP,(t) is either nnbounded fiom below or has no feasible solution for t > t, and 

the relevant possibility w i .  be stated. Table 2.1 gives the relevant information for 

Example 2.2.1. 

Having solved Q P l ( t ) ,  it remains to solve MQP,. Using hoi and hli from (2.10), 

define the constants 

for i = 1, . . . , u. Rom (2.10), (2.11) and the definition of f (t ) , ne now have 

This shows that fl(t) is piece-nise quadratic on u adjacent intervals. This is illus- 

trated in Figure 2.l(b) with ZJ = 3,to = .5, tl = .9, t2 = 2., and ts = m. The 

simple nature of f ( t )  allows the determination of its l o d  minima as snmmarized 

in Table 2.2. 
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Case 1 concerns points where the left derivative of fl(t) is negative and the right 

derivative is positive. This possibility is illustrated in Figure 2.l(b) with tg = -9 

and t2 = 2. Case 2 corresponds to fi(t) behg stnctly convex on [k+ &] and the 

unconstrained minimum of that quadratic piece lying within the i n t d .  Case 3 

requires that to be finite, f (t) be inaeasing at to and that there be no feasible 

solutions below to. This is illustrated in Figure 2.1(b) for to = -5. Note that the 

relevant possibility will be given by Best's paramehic QP method. Also note that 

if the QP algorithm determines that QP,(t) is anbotmded iiom below for t < to ,  

then to is not a local minimizer for fl(t). For the right-hand end of the intenia, 

Case 4 is analogoas to Case 3. Case 5 occurs when f(t) is constant on the open 

interval (ti-l, tc) , in which case any point Ui the interval is a local minimixer. The 

end points of the interval may or may not be local minimizers. See the discussion 

following Theorem 2.3.1. 

The following result is an immediate consequence of Theorem 2.2.1 

Theorem 2.3.1 Let t;,t;,  - , t ;  le obtained fiom (2.10), (2.11) and Table 2.2. 

Let xf E arg min{QP(t,l)) for i = 1, l , N .  Then xi', i = 1, - 0 ,  N are al2 local 

ninimizers of QPl. Moremer, if QP, possesses a global mininize~, then it is 

that ci which gives the smdlest objective fvnction value for Q P ,  among d l  the 

{xt 1 i = 1,---, N). 

The fondation of Theorem 2.3.1 does not explicitly allow for Case 5 of Table 

2.2. because it de& with particalat points rather than points and intemals. If 

Case 5 does apply, then arg mia{QP(t)) are all local minimiRers of QP,. If the 

left derivative of f (t) is negative at ti-l then ti-, is also a local minimizer of f (t) 

and consequently all elements of atg mh~{QP(t~-~)) are local minimizers of QP,. 

The analogous resdt holds for the right-hand end of the intaval. The information 
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Table 2.2: Detemaination of Local hhîmïzers for fi (t)  

Case Range Conditions Local Min 

of i of f ( t )  

concerning whether QP1 possesses a global minjmîzer can be obtained fiom Best's 

algorithm, (2.10), (2.11) and Table 2.2. This ean be summarized as follows. When 

Best's algorithm terminates with a hi te  to, it also spedes that either QP,(t) is 

unbounded fiom below for t < to, or, Ri(t) = 4 for t < b. The analogous resdt 

holds when t, is finite. Thus if Rl(t)  # t# for t < to with to being finite or Ri(t) # 4 
for t > t, with t, being finite, then QPl has no global minimizer. O t h d s e  both 

have global minimisers if and only if QP, has global minimizer. 
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W e  illustrate this procedure by applying it to an example fiom Floudas and 

Pardalos. [Ml. 

Example 2.3.1 

minimize : 6-52 - 0.52'- y1 -2y2 -3ys - 2y4 - y5 
QPI sabject to :  AX 5 b, O < X  =(%,y)', yi 5 1, i =3,4, 

where 

and A = 

This problem has a known global minimizer (z', y*) = (0,6,0,1,1, O)' with optimal 

objective h c t i o n  value of -11. 

An application of our algorithm to this problem confirms that the above solu- 

tion is indeed the global optimum. In addition, it &O determines that the global 

minimizer is isolated and that (2, i )  = (13.83,0,0,1,0.19,0.12)' is an isolated local 

minimizer with the objective function d u e  -9.26. That is, the problem not only 

has an isolated global minimizer, bat &O a previoasly nndiscovered isolated local 

minimizer. 

In order to finthet test our dgorithm, n e  formtdated some variations of this 

problem. In all cases, the constraints remained the same and only the hear part of 

the objective h c t i o n  was changed. The modified objective f 'c t ions ,  gi(z, y), i = 

1, . . . 4  are shown in Table 2.3 dong with their correspondhg vectors d and q. 

The original Floudas and Pardalos pmblem corresponds to gi(z, y). Each of the 
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Table 2.3: Objective Ftrnctions f t  T b  problems 
gl(z,y) = - 0 . 5 ~ ~  +6.5zœy1 -2y2--3y3 -2y4 - y5 

gz(z,y) = - 0 . 5 ~ " 6 ~ 5 2 - 2 ~ ~  -3y3 - y ~ + 2 z y ~ + 3 ~ & ~  

- 5 2 ~ 3  - 4zy4 + 6zys 

93(2,~) = -0-5z2+6-52 -4312 -4y3 - y5 +2gy1 +3zY2 

- 5 ~ 3  - 4 ~ 4  + 6295 
2 

g4(% Y) = -0.52 + 6-52 f 22y1 + 3zyz + &y3 - 4 q 4  + 6rY5 

Table 2.4: Local and Global Minima for Four Test Problems 

Objective Objective Solution Points Type of Minimum 

Function Value 

(O, 6, O, l , l ,  0)' 

(13.83,0,0,1,0.19,0.12)' 

(12, 0, O, 1, 1, W f  
(0,0.92,1.33,1,0.84,0)' 

(0.52,0,1.44,1,1, O)' 

~ ~ ~ , O , ~ , ~ , ~ , ~ ~ '  

(O, 0.92,1.33,1,0.84, O)' 

(0.5,0,1.45,1,0.97,0)' 

(0.52, O, 1.44,1,1, O)' 

(12.5,0, O, O, 1, O)' 

(0.625, O, 0, 0,1, O)' 

(O, 1.25, O, O, 1, O)' 

(0,7.6,0,0.8,0,0)' 

giobal min, isolated 

local min, isolated 

global min, isolated 

local min, isolated 

local min, isolated 

giobal min, isolated 

local min, isolated 

local min, isolated 

local min, isolated 

global min, isolated 

local min, isolated 

local min, non-isolated 

local min, non-isolated 
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four examples was solved with d = (1,0,0,0,0,0)'. The fist example used q = 

(-0.5, O, O, 0, O, O)' and the remaining three used q = (-0.5,2,3, -5, -4,6)'. The 

results of applying our method to these problems are sammarïzed in Table 2.4. 

Note that the resdts stimmarized in Table 2.4 show that onr method located two 

non-isolated local minimizers for the fourth test problem. This shows that although 

we cannot guarantee that our method will h d  ail non-isolated local m;nim;xers, it 

still may find some, or even ali. 

2.4 Conclusions 

We have developed relationships between a given non-convex quadratic program- 

ming problem QP and a derived nneonstrained (but non-differentiable) quadratic 

problem MQP. We have established that any local minimum of MQP gives a corre- 

sponding local minimum of QP. Furthexmore, the isolated local minimiRas of both 

QP and MQP are in a one to one correspondence. 

For the case that the Hessian of QP has exactly one negative eigendue, we 

have developed an algorithm to compute all isolated local minimilers and some 

non-isolated local minimbers of QP. In addition, the algorithm will compute the 

global minimber of QP, provided it exists, and will provide the information that 

QP is unbounded fiom below when that is the case. The algorithm is illustrated 

by applying it to a problem from the literahire and some variations of it. 



Chapter 3 

A Decomposition Procedure For 

Non-Convex QP 

3.1 Introduction 

In Chapter 2, we have developed a theory to find ail isolated local minimizers and 

some non-isolated local minimizers for the non-convex QP 

by parametnc quadratic programming, whae D and Q are (n, k) matrices. The 

mode1 problem used in Chapta 2 indudes a convex quadratic term in the objective 

funetion for (3.1). However, it is not usehl to inclode it here and we omit it. As 

in Chapter 2, we proceed by formdating the parametric LP 

min{clz + tfQfz 1 Az 5 b, D'z = t ) ,  



where t is a parameter vector in E~. Letting R(t) denote the set of feasible solntions 

for (3.2), the derived problem for (3.1) is 

where 

It is shown in Chapter 2 that the isolated local minimiRers of (3.1) and (3.3) are in 

one to one correspondence. In part idu ,  if t' is a local minimber for (3.3) then 

any optimal solution for (3.2) with t = t* is a local minimîzer for (3.1). 

Althongh the theory was developed for arbitrary k 5 n, the numerical proce- 

dures developed in Chapter 2 were limited to the case of k = 1. In this chapter, 

we address the problem of arbitrary k by using a decomposition approach. The 

method proposed here will begin with the model problem 

min{cfx + zfCz 1 ~ ' z  5 bi, i = 1, . . . , m), 

where C is (n, n) and symmehie. We then give a method which will either constnict 

matrices D and Q satisfying x'DQft = zfCz (so that the model problem is rewritten 

in the model f o m  (3.1)), or, determine that no such matrices D and Q &st. In 

the former case, the decomposition method then generates m snbproblems each 

of dimension n - 1, where m is the namber of mnstraints in (3.1). Solution of 

all of these m subproblems gives a solution to the gïven problem. Each of these 

smaIler problems is in tani decomposed into m subproblems with their dimension 

reduced by 1. The process continues by generating smaller and smder dimensional 

subproblems until the subproblem can be solved directly. One possibility is a 1 

dimensional subproblem which can be solved directly. Other possibilities d be 

mentioned. 
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An obvious difficulty of this approach is that the number of subproblems can 

grow exponentially in m and n. However, in Section 3.3 we will show that perform- 

ing the decomposition in a partidar way wiR result in the number of snbproblems 

being reduced. The matrices D and Q are not tmiquely determined and by con- 

structing them in a part idar  way, the subproblems may be reduced in numbei to 

between 1 and m. 

W e  will give numerical examples to illustrate both the decomposition method 

and the snbproblem reduction procedure. 

3.2 A Decomposition Method 

In this section we propose a method for solving 

where C is (n, n) and indefinite. Although C is not the Hessian matrix for the 

objective function for (3.4) (the Hessian is 2C), we s h d  refer to it as such in 

order to avoid introducing nnnecessary terminology. The method decomposes the 

n dimensionai problem into rn subproblems each having dimension (n - 1). Each of 

these (n - 1) dimensional subproblems is in tum decomposed into rn subproblems 

each of dimension (n-2). The process is continued u t i l  1 dimensional problems are 

reached. These can be solved direetly and combined to provide all local minimizers 

for the previous 2 dimensional problem and so on back np to the (n- 1) dimensional 

problem and finally, the n dimensional problem is solved. The structure of the 

problem is that of a tree. The top node is the given problem fkom which emanate 

m branches to the (n - 1) level. Rom each of these m nodes emanate m branches 

leading to the (n - 2) level. 
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The tree structure of the proposed method is siniilar to a method proposed 

by Murty [21]. Miirty's method produces the global minima, whereas ours win 

produce the global minima plw al1 isolated local minima and some non-Uolated 

local minima The subproblems generated by the h o  methods are quite distinct. 

F'urther, we will show that the number of subproblems at any level can be reduced 

to a nnmba between 1 and rn and the namber of reduced subproblems depends 

on the problem data in a way which wiU be made expliut in Theorem 3.3.1. We 

assume the feasible region for (3.4) is non-nuIl. 

Ln order to apply the theory developed in Chapter 2, we require a method which 

will construct (n, k) matrices Q and D satisfying C = i [Q D' + DQ'] or determine 

that no such Q and D exist. If such Q and D are found, then the objective funftion 

for (3.4) can be written as x'Cz = i[zrQD'x + zfDQ'x] = x'DQfx which is of the 

same form as the objective fnnction for (3.1). We next formulate such a method, 

which we ref'er to as Procedure Q(C). 

Procedure O(C) 

Given an (n, n) symmetric matrix C, Procedure q(C) determines whether or not 

C is indefinite, positive semidehite or negative semidefinite. If C is indefinite, 

Procedure 9 (C) constrncts two (n, n - 1) matrices D and Q with rad@) = n - 1, 

and which satisfy C = :[Dg' + QDq. In this case, we write (E(C) = (Q, D). The 

details of procedure 8(C) are as folIoas. 

W e  hst reqaire an (a, n) nonsingular matrix M and an (n, n) diagonal matrix 

A satisfjring M'CM = A, nhere the diagonal elements of A are d either - 1, O or 

+1. Such matnces may be found by either performiog an eigenvalue decomposition . 

for C or by using a modiiied conjugate direction method described in [7]. The 

latter method reqaires only 0(n3)  mithmetic operations. It is straightforward to 

show that the diagonal elements of A are all nonnegative if and only if C is positive 
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semidefinite, and are a11 non-positive if and only if C is negative semidefinite. In 

either of these cases, Procedure O(C)  terminates wïth the relevant information. 

The remaining possibility is that A has two nonzero diagonal dements of opposite 

sign and this is eqriivalent to C being indefinite. In this case, -Procedure 8(C) 

continues as foUows. 

Suppose k and 1 are mch that At, and Al are both nonzero, have opposite signs, 

and assume k < 1. Then Ak + l\r = O. Let e; denote the i-th unit vector of dimension 

n - 1. If 2 < n, define t) and Q according to 

D' = [e l  ,..., e,+l,ek], and 0' = &A- 

Note that b' differs from the (n - 1, n - 1) identity matrix by the insertion of ek 

after col- 1 - 1. It is straightforward to show that DQ' differs ficm A only in 

the (k, 2)-th and (2, k)-th elements which are 

But then Ak + Ar = O implies 

and thus 

D = (M')-'D and Q = (M')-'Q 

satisfy the conditions of Procedure 9. The procedure is then complete with P(C) = 

(O? 0) 



The decomposition method for (3.4) proceeds as folIows. Because C in (3.4) is 

indefinite, we can staccessfally invoke Procedure O to obtain B(C) = (Q, D) with 

rank(D) = n - 1 and the parametrie LP (3.2) for (3.4) becomes 

For a fixed d u e  of the parameter vector t, (3.5) is an LP. The h o  possibilities 

for its' solution are: 

(a) an optimal solution which is an extreme point, 

(b) an optimal solution which is not an extreme point, or, the problem is un- 

bounded fkom below, 

Each of these possibilities wilL be accounted for separately. 

For the ikst possibility (a), an extreme point for (3.5) must have n active con- 

straints having linearly independent gradients. These must indude the (n - 1) 

linearly independent rows of D' plus at least one of al ,  az, . . . ,&. There are thus 

m possibilities. Let 1 5 k 5 m. The k-th subproblem to be considered is 

Assume first that ak and the colnmns of D are Iinearly independent. 

extreme point is the solution of the shultaneons linear equations 

where 

(3-6) 

The associated 
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Partition Bc' as 

Bi' = [Hk , dl, 

where KI is the (n,n - 1) matrix of the first (ta - 1) colamns of Bcl and d is the 

las t coliunn. 

Note that B&' = 1, ie, 

D'Hk D'd 

akfHk akfd 

û'd = O ,  akfRk = O  and akdd = 1. 

The extreme point z is written as follows; 

2 = Hkt + bkd. 

The remaining (m - 1) constraints of (3.5) must be satisiied; 

aiHkt  5 bi-bkedd, i = l ,  ..., m, i f k .  

For x in (3.8) to be optimal, it must satisfy dnal feasibility for (3.5). However, 

(n - 1) of the constraints for (3.5) are eqnalities and their daal variables are not 

constrained in sign. The dual variable for the sole active inequaüty constraint is 

- (c  + Qt)'d and it must be nonnegative; ie, 

Note that (3.9) and (3.10) define exactly m ineqaality constraints on the (n - 1) 

vector t. 



Using (3.8), the objective fûnction for (3.5) is 

a quadratic h c t i o n  of the (n - 1) components of t. The Hessian term for Fk(t) 

can be simplified as follows. Because 2C = Q D' + DQ', it follows fkom (3.7) 

that 

Multiplying on the left by Hkf gives 

which shows that the symmetrized Hessian for (3.11) can be written as HLCHk. 

Thus the objective hinction for (3.5) is 

It remains to consider the case that ak and the c o b s  of D are linearly depen- 

dent. If rank(A, D') = n - 1, the (3.5) does not possess an extreme point. This is 

considered in possibility (b). O t h d s e ,  r d ( A ,  D') = n and assuming the feasible 

region for (3.5) is non null, this implies that the feasible region for (3.5) possesses 

extreme points (Best and Ritter, 1985, page 69). Thus (3.5) possesses an optimal 

solution which is an extreme point. But because (3.5) contains n - 1 equaity con- 

straints having linearly independent gradients, it follows that one of the constraints 

~ ' z  5 bi7 i = 1,. . . , m, i f k must be active. Suppose its index is j. But then 

this optimal solution cari be obtained from subproblem j and moreover, aj is not 

linearly dependent on the colamns of D. Conseqaently, subproblem k, namely (3.6) 

need not be considered furtha. We snmmarize this as 



Proposition 3.2.1 Suppose a& and the cotumns of D are finearly dependent. Then 

the k-th subproblem (9.6) may l e  omitted. 

The second possibility (b) is that either (3.5) ha9 optimal solutions which are 

not extreme points, or, (3.5) is unbounded Grom below for certain values of t .  We 

now accouut for this. Any solution for D'z = t c m  be wnitten as 

z = ~ ( t )  = Ht + u s ,  

where H is an (n, n - 1) matrix, s is a non zero n-vector with D's = O am 

scalar variable. Moreover, it is straightfomard to compute such H and S. Using 

(3.12), the objective hct ion for (3.5) can be &en as 

The analysis can be continued fùrther by solving the LP 

min{srQt 1 Mt + CAS 5 b),  (3.13) 

where both t and n are taken as variables. The possible conclusions are summarized 

in 

Proposition 3.2.2 Let H and s be as in (3.12). 

(a) If As 5 O ,  then both (3.5) and (9.4) are unbounded from below for al1 t satisfying 

(c'a + tlQ's) < O, AHt + oA8 < b and a 2 0. 

(b)  If As 2 O ,  then both (3.5) and (9.4) are unbounded from befow for al1 t sutkfYing 

(d s  + t'Q's) > O, Mt + oAs < b and a 2 0. 

(c) If As hm at leust two nonzero entries of opposàte sign, then for dl t such that 

AHt + oAs 5 b for some a, x ( t )  is an alternate optimal solution for one of the m 

extreme point mbproblew and thw need no t  be eowidered f i r the t .  



(d) If As = 0, then for al1 t with (ds + trQ's) = O and AHt < b, z(t) is optimal 

for (3.5) for al1 o, (9.5) hm no d n m e  points, each of the m subproblems (5.5) Ls 

uacuous und (3.1) reduces to the single (n - 1)-dimensional problem 

min{c'Ht + trQrHt 1 Mt 5 b, s'Qt = -crs}. 

In snmmary, the decomposition method proceeds as follows. For k = 1, . . . , rn, we 

minimize the quadratic fimction Fk(t) snbject to the constraints (3.9) and (3.lO), 

omitting those which s a t i e  the hypothesis of Proposition 3.2.1. We then account 

for. the varions possibilities of Proposition 3.2.2. If As 5 O, (that is, Proposition 

3.2.2(a) applies), it may or rnay not be mie that there are t with (c'a + tfQ'8) < 0, 

AHt + uAs 5 b and cr 2 O. The relevant possibility rnay be determined by solving 

the LP 

min(s'Qt 1 M t  + uAs 5 b, a 2 0). 

A similar remark applies to Proposition 3.2.2(b). If Proposition 3.2.2(d) applies, 

then (3.4) is reduced to the (n - 1) dimensional problem (3.14) and none of the 

other m subproblems need be solved; i.e., the n dimensional problem (3.4) is simply 

reduced to the n - 1 dimensional problem (3.14). Thus we have deco mposed (3.4), 

having n variables and m constrai.n.ts, into at most m subproblems, each having 

n - 1 variables and m constraints. The process can be continued by decomposing 

each of the n - 1 variable problems into at most m (n - 2) variable problems. The 

decomposition process rnay be continued, generating subproblems of successively 

smaller dimension. There are several possibilities concerning the subproblerns. If 

the Hessian of a subproblem has exactly one negative eigenvalue, then it rnay be 

solved directly by the method desuibed in Chapter 2. Alternatively, the decompo- 

sition may be continued until 1 variable problems are generated and these rnay be 

solved by inspection. If a subproblem is convex, it rnay be solved by any convex 



QP algorithm (e-g. [IO]). However, if a subproblem is concave, it nill be difficult 

to find all isolated local minima and this is a major drawback of this method. 

Let Rk denote the feasible region for the k-th sabproblem; Le., & consists of 

those t which satisfy (3.9) and (3.10). Snppose î is a local minimum for the k- 

th snbproblem. The correspondhg point for (3.4) is given by(3.8); namely i = 

Hki+ bkd. This may or rnay not be a local minimtun for (3.4). It will be a locai 

minimizer for (3.4) provided t is a local minimizer for each subproblem i for which 

i E &. In addition, if the conditions of Proposition 3.2.2 for unbounded fkom below 

are satisfied and JQ% = ds,  then 5 is not a local minimizer for (3.4). Note that 

these conditions are quite simple to check. 

We illustrate these concepts with 

minimize : -21 - 2x2 - 23 + zrC2 

subject to : O < z; 5 1, i = 1,2,3, 

where 
2. -.5 4.5 

c = [ --5 -1. -;:] = [DQr + QD712, 
4.5 -1. 

and for simplicity we take 

For this problem, the parametric LP (3.5) becornes 
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Table 3.1: Two Dimensional Snbproblems for -fiample 3.2.1 

- -  - - -  - 

Active 'x' Objective Fûnction 

Constraint 
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-1 O 1 2 3 4 

Figure 3.1: Two Dimensional Feasible Regions for Example 3.2.1 

There are 6 constraints in the problem. Each generates a snbproblem with two vari- 

ables. The objective fnnction and constraints for each subproblem are snmmarized 

in Table 3.1. As w d ,  the feasible regions for the snbproblems are shown together 

in Figure 3.1. 

In this example, each of the six subproblems ha9 exactly five constraints rather 

than the six one might expect. This is because, for example, when xl = O is active, 

its gradient is linearly dependent on that of xl < 1 and so produces a constraint 

of the form O 5 O. Each of the six Zdimensional problems is non-convex and 

c m  be decomposed into six 1-dimensional problems. Each set of six 1-dimensional 

problems consists of min;mising a piece aise quadratic fiindion over at most 5 

intervals. B y Table 3.2, we know that local miaima can be computed efficiently for 
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the 1-dimensional case. 

Each of the s i x  2 dimensional subproblems is non-convex and each sach Hessian 

has exadly one negative eigenvalue. Each of these six subproblems could be solved 

using the method of Section 2.3 of Chaptet 2. For problems withlaqe numbas of 

constraints, this will be a computationdly more attractive way to proceed. L o d  

minima for the 2-dimensional problem are indicated in Figure 3.1 with cirdes. 

Those with a cross inside (@) are local minima for at least one, but not all the 

regions in which they lie and are thus do not give local minima for the 3-dimensional 

problem. Those with a dot inside (a) are local minima for all the regions in which 

they lie and thus give local minima for the original problem. The local and global 

minimizers for Example 3 -2.1 are shown in Table 3.2. Also shown are the local and 

global solutions for two variations of Example 3.2.1. These variations are obtained 

by changing the linear part of the objective function for Example 3.2.1. 

We complete this section with an example which &strates some of the possi- 

bilities for a problem having local minima but no global minima. 

Example 3.2.2 

min{zlx2 1 - -22 5 O) 

Here A = [O, - 11 and we take Q = [O, 11' and D = [l, O]'. For this problem, the 

parametric LP (3.5) is min{tx2 1 zl = t ,  - 22  < O). We fist  check to see if there 

is a region where the problem is unbounded fiom below. Take H = [1, O]' and 

s = [O, Il'. Because As < O, z(t)  = Ht + os is feasible for all u 2 0. hirthermore, 

ds + trQ's = t < O for aIl t < O. Proposition 3.2.2(b) asserts that the example 

problem is unbounded fiom below for al1 XI < O and all x l  2 0. 

The remaining possibility for this example is that the singie inequality constraint 

is active. h this case, the parametric LP (3.5) reduces to mh{0 1 zl = t ,  - 2 2  = 0). 
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Table 3.2: Optimal Solutions for Example 3.2.1 and Some Variations 

lin- optimal objective point 

term type d u e  

- 3 ~ ~  - 2z2 - 23 global -3.5 (0.5,1, O)' 

local -3-45 (O, 1,0.3)' 

-21 + 2 0 2  - 2 5  f i b d  -0.125 (0.25,0,0)' 

local 0.55 (O, 1,0.3)' 

local 0.5 (0.5,1, O)' 

- 0 . 5 ~ ~  + 2z2 - 23 global -0.05 (0, O, 0.1)' 

local 0.55 (O, 1,0.3)' 

local -0.03125 (0.125, O, 0)' 

local 0.71875 (0.375,1, O)' 

Since the original problem has jnst one constraint, the only restriction on t is (3. IO), 

namely, t 2 O. Thas f (t) = O for all t 2 O and all t 2 O are local minimizers of 

f ( t ) .  However, t = O does not give a Local minimixer for the 2 dimensional probiem 

as it intersects the region {t 1 t < 0) where the problem is unboanded 60m below. 

In summary, the decomposition procedure has determined that for all (xl, x2) 

satisfying z1 < O and xi 2 O the problem is unbounded from below, and, all points 

(xl, 24 satisfying zi > O and zl = O are local minimixera. 



3.3 Reduction of the Nurnber of Subproblems 

In the previous section, we developed a decomposition method for locating all 

isolated local minimizers and some local minimizers. The method depends on the 

adability of two (n, n - 1) matrices D and Q satisfying 

If D and Q satisfy (3.15) and H is any (n - 1, n - 1) nonsinguiar rnatrix, then DH 

together with Q(Hel)' ,  respectively, &O satisfy (3.15); Le., 

Thus, D and Q are not uniquely determined and it is reasonable to consider whether 

matrices D and Q can be constmcted such that the number of subproblems will be 

reduced. If, for example, the colamns of D indude the gradients of one or more of 

the constraints of (3.4), Le., a,,, - ,a& are columns of D, then fiom Proposition 

3 -2.1, the j subproblems ai, * , aj may be omitted. Before we establish the main 

result of this section, we need a lemma as follows. 

Lemma 3.3.1 Let M = [dl, - ,4]' be any (n, n) nonsingular matriz. If (M-')' C 

M-' contains o (6,  k) indefinite principal submatriz, then there d t  two (n, n - 1) 

matrices D and Q with rank(D) = n - 1 such that 

1 
C = -(DQr + QD') 

2 

and at least n - k columns of D are identical to n - k columns of Mt. 

Proof. Without loss of generality, assume that the (k, k) indefinite principal subma- 

trix B is that induced by the 1 s t  k rows and c o h s  of (Mdl)'CM-'. Applying 
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the decomposition procedure to B gives Q(B) = (4, Qt), where the dimensions 

of both DI and Qk are (k, h - l), rank(Dk) = k - 1 and 

Let 

and define 

where denotes the identity matrix of dimension n - k. This implies 

and thus 

where D = M'D and Q = WQ. Since r d ( & )  = k - 1, it fonows that rad@) = 

ta - 1. Therefore rank(D) = r a n k ( ~ )  = n - 1 which completes the verification 

of (3.16). Since D = MD, the fist n- k columns of D are dl ,oo=,&-k.  This 

completes the proof of the lemma. CI 

Theorem 3.3.1 Let M = [dl, ,4, A+I, * ,  &Ir be nofzszngular (n, n) matriz 

and [di, , c&]' be a (r, n) submatk of A, where r n. If (M-')'CM-' contains 

a ( k ,  k )  indefinite principal submatRz B induced by a, , rk mws and columns, 

then there ezLgt two ( R ,  n - 1) matrices D und Q cmth runk(D) = n - 1 such that 

(3.16) holds und (3.4) c m  be decomposed into ut most (m - + + 1)  subproblems 

of dimension (n - 1) by =hg (9.16) and dl the subproblenrs corresponding to the 

following indices may be omitted 
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where I is the total number of elements of the set {7r 1 1 7; < r, i = 1, - O  ,6). 

Proof. By Lemma 3.3.1 and its proof, there eirist two (n,n - 1) matrices D and Q 

with rank(D) = n - 1 mch that (3.16) holds and the wlumns of -D contains dl di 

with j satisfjring . 

j E {1,---,t)\{% 11 57i<', i=l,--,k). 

Rom the definition of 1, we kmw that D contains r - 2 columns of [dl, - , &]. 

From Proposition 3.2.1, these r - 1 subproblems may be omitted. Therefore (3.4) 

can be decomposed into at most (m - r + 1)  snbproblems of dimension (n - 1) by 

using the decomposition (3.16). This completes the proof of the theorem. 0 

From Theorem 3.3.1, we can see that the number of subproblems omitted will 

be bigger if 1 is smder. So, the number of subproblems omitted will be big if B 

is located in the bottom of the right hand side of (M')-'CM-' or dose to the 

bottom of the right hand side of (M')-'CM-'. Ifrank(A) = n, then we can take 

M to be an (n, n) nonsingular submatrix of A. In this case, r and l of Theorem 

3.3.1 will be n and k, respectively. If r d ( A )  = r < n, we can pi& up r linearly 

independent rows of A with any other n - r n-vectors to form nonsingular ma& 

M. In this case, we have O 5 1 k. Rom the above theorem, we caa see that the 

best case occurs when (M-l) CM-' contains a (2,2) indefinite principal submatrix 

for some submatrix M of A. In this case, (3.4) can be decomposed into (m - n + 2) 

(n - 1)-dimensional subproblems , i.e., the biggest number of subproblems omitted 

is n - 2. In fact, we can show that the biggest number of subproblems omitted can 

be n - 1 provided (M-')'CM-' contains a zero diagonal entry for some submatrix 

M of A. This can be explained as follows. Let (MmL)'C Mg' = [fii l .  Withont loss 
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of generalie, assume f, = O. Let 

D2 = and Qt = 

It is easy to check that 

By following the proof of Lemma 3.3.1, ne have 

So, D = MID d have n - 1 columns same as columns of M. Hence the namber 

of subproblems omitted will be n - 1. 

Based on the constructive proof of Lemma 3.3.1, we next give a detailed formu- 

lation for the decomposition (3.16) if there exists an (n,n) nonsingular submatrLE 

M such that (M-')CM-' contains a (k, k) indefinite principal submatrix. We r e k  

to this as procedure 

Procedure !P1(C, M, k )  

Given an (n, n) symmetric matrix C and an (n,n) nonsingnlar ma& M such 

that (M-')'CM-' contains an (k, k) indehite principal submatrix, procedure 

ql(C, M, k) produces two (n, n- 1) matrices D and Q such that C = f [DQ' + Q D i ,  

ra&(D) = n - 1 and at least n - k colnmns of D are formed by some n - k rows 

of M. The details of procedure 91(C, M, k )  are as follows. 

Let (M-')'C Mo' = ( fii) and B be an indefinite submatrir induced by 71, ,7~ 

columns and rows of ( f , )  with 71 < 72 < --• < 7k. By procedure q ( B ) ,  we c m  

compute h o  (k, k - 1) matrices Dk and Qr such that 



Let Dk = (a,), QL = ( q , ) ,  D = (&) and Q = (Pii). Let J = {ri, - , TL) and 

K = (1, - , k). The matrices b and Q are formdated as foIiows 

and 

Now let us demonstrate the above idea with a quadratic programming problem 

having box constraints; Le., we assume (3.4) has the speual form 

min {C'Z + Z'CZ 1 O 5 zi 5 1, i = 1,-*- ,n). (3.17) 

Here, A = (In, -In)', where In is an (n, n) identity rnatnx. So, each nonsingalar 

(n,n) submatrix of A is a diagonal matrix with diagonal entries being 1 or -1. 

Hence in order to check conditions of Theorem 3.3.1, we only need to check if C 

has an indefinite principal submatrix. This gives the following corollaryary 

Corollasy 3.3.1 In (9.17), if C hm an (k ,  k )  indefiite submatriz, then there &t 

two (n, n - 1) matrices D and Q with rank(D) = n - 1 such that 



and ut Zeast n - k columnr of D are fomed  by some n - k nnos of 1'. f i d i e n n o n ,  

(3.17) can be decomposed into at most 2k subpwblenu in n - 1 dimensional space 

by using (9.1 8). 

From CoroUary 3.3.1, we can see that if C has a (2,2) indefinite principal submatrix, 

then (3.17) can be decomposed into at most 4 subproblems in n - 1 dimensional 

space. k fact, it is easy to see that if C has a zero diagond entry, then (3.17) can 

be decomposed into at most 2 subproblems in n - 1 dimensional space. 

Example 3.3.1. Consider (3.17) wïth n = 6 and 

By the conjugate direction algorithm presented in the appendix, it can be checked 

that C has exactly two negative eigenvalues. Also C has two (2,2) indehite prin- 

cipal submatrices as follows: 

For these two principal submatrices, it caa be checked by the conjngate direction 

algorithm that the fist submatrix is the best choice to formulate D, Q and fom 

subproblems because the Hessian of each of the four snbproblems ha9 exactly one 

negative eigenvalue. The method of Section 2.3 of Chapter 2 can be applied dîrectly 

to these subproblems. 
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Remark 3.3.1. If the decomposition procedure in Section 3.2 is pdormed for 

(3.17), the mbproblems wil l  not be qaadratic p r o g r d g  problems with only 

box constraints. But if we are only concemed about a global minimizer for (XI?), 

we can guarantee that the subproblems have only box constraints and the number 

of subproblems can be reduced by the above technique. For example, n e  can use 

Murty's method to genetate subptoblems and use ont techniques to rednce the 

number of mbproblems. 

Finally, let us retum to the general QP and consider how to check the condi- 

tions imposed in Theorem 3.3.1, that is, (M-')'CM-' contains an (k, h) indefinite 

principal submatrix for some (n, n) nonsiagdar matrix M. Rom Corollary 3.3.1, 

we can see that even for the problem with box constraints, we need to check all 

principal submatrices to find the smallest size of such a matrir. If C ha9 a (k, k) 

indefinite principal submatrix and k is a relatively small number (say, k = 2 or 

3), then we can find the sm$lest size of indefinite principal eubmatrix by enumer- 

ating all principal submattices stattïng with (2,2) submatrices. If k is relatively 

large, then this approach will consume a lot of t h e .  If constraints are not box 

constraints, the situation even worse. What we can do is ennmerate some of the 

(n, n) nonsingniar submatrices such that each of them contai. a maximal linearly 

independent columns of A' and check d (2,2) and (3,3) principal snbmatrices for 

(M-l)'C M-' for each enumerated M. Of course, this can not guarantee we can 

h d  a (2,2) or (3,3) indefinite principal submatrk The following proposition tells 

us that we can guarantee to reduce certain number of subproblems although this 

number may be quite small. 

Proposition 3.3.1 Assume that C has kl positive eigenvdues and k2 negative 

eigenvahes, then for uny nonsingular (n, n) submatrL M, each (n-1, n-2) principal 

submatriz of (M-')'CMd1 will be indefinite or singular, when I = min {kl, kt)- 1. 



Proof. Since C has kl positive eigenvalues and k2 negative eigenvalues, so too does 

where B is an (n - 1, n - 1) submatru, Fi is an (1,l) submatrix and F2 is an (1, n - l )  

submatrix. It is d u e n t  to show that B is indefinite or singaiar. If not, B will be 

positive definite or negative definite. Consequently, B is invertible. Hence 

Let us assume B is positive definite (the negative definite case can be treated 

similady). Then (M-')'CMH1 has at most ! negative eigenvalues. But 1 = min 

{kl , k2) - 1 < 4, a contradiction. So B is indefinite or singular. This completes 

the proof of the proposition. 13 

Remark 3.3.2. It can be shoan, that each (n - L, n - 2 )  principal submatrix of 

(M-')'CM-' in Proposition 3.3.1 is indefinite even if it is singular. 

Since we can use a conjugate direction aïgorithm to check the numba of positive 

"genvalues and negative eigenvalues, Proposition 3.2.1 and Theorem 3.3.1 tell us 

that certain numba of subproblems can always be sednced. Befbse concluding this 

section, let us apply the techniques we have deveioped to Example 3.2.1. 

Example 3.3.2. Consida ExampIe 3.2.1. 

Since the Hessian C in Example 3.2.1 contains a principal rabmatru 
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we can decompose it as follows 

Now by setting D'x = t ,  we can decompose the QP into four subproblems. It can 

be checked that two of them are infissible. In fact, for zl = 0, the subproblem has 

the following constraints: 

Obviously, it is infeasible. Similady, we can show that the subproblem correspond- 

ing to 1 3  = 1 is also inféasible. So, there are only two wbproblems formulated for 

this decomposition. Let us write doan these taro subproblems as follows. 

From zz = 1, we have 

subject to O < t i  < 1, 1 stp 5&+2 .  

Rom za = O, we have 



It can be checked that (O,0.3(*/6 + 1) + 1) and (0.5,l) are tao local minimiaers for 

the f irst sabproblern, and (0.5,l) is a local minimilm for the second subproblem. 

So, (0.5,l) aad (0,0.3(4+1)+1) are two local mhhhxs.  Since the corresponding 

points of (0.5,l) and (0,0.3(6 + 1) + 1) in the original space ire (0.5,1,0) and 

(O, 1,0.3), respectively, (0.5,1, O) and (O, 1,0.3) are h o  local minimizers for QP. 

Example 3.3.3 Each of the hal two problems in Table 3.2 were reduced fiom 6 

to 3 2-dimensional subproblems. 

3.4 Conclusion 

We have developed a decomposition method to locate the global mhimnm, all iso- 

lated local minima and some of the nonisolated local minima for a general indefinite 

QP. We have shown that the nnmber of mbproblems can be reduced by conshnct- 

ing a proper decomposition for the Hessian mat& and a correspondhg algorithm 

is also established. 

If the decomposition procedure terminates with the subproblem QP's each one of 

whieh has a Hessian matrix having exactly one negative eigenvalue, then the method 

will compute all isolated local mhimkers and some nonisolated local m i n h i z e x s  

of QP. In addition, the method will compate the global mhim.izer of QP, provided 

it exists, and will provide the information that QP is unbotmded fiom below when 

that is the case. 



Chapter 4 

A Class of Copositivity Problems 

4.1 Introduction 

In this chapter, we will use the resdts developed in Chapter 2 and 3 to solve a 

special class of copositivity problems. 

For a given (n, n) real symmetric mahyr C and a polyhedron cone F, C is cded 

copositive on F if 2 % ~  2 O for any z E F. The problem we are concemed with is 

to determine whether C is copositive on F whenever C and F are given. This is 

an NP-hard problem even for F = ET, the positive orthant of En (see [22]). There 

are severd applications for detetmining whether a piven m a t h  is copositive. For 

example, see [13] and [21]. Let a: E En for i = 1,-- ,m, A = (al,-,&)' and 

define 

Rom the definition of C being copositive on F, it is easy to see that the problem 



can be solved by solving the followhg quadratic programming problem: 

QP a = min {zrCz 1 z E F). 

Obviously, a = O ifF C is copositive on F. 

When F = E;, Vdiaho [29] pointed ont that the copositivity of C on F can be 

solved by 

m i n { z f C z I z i  2 0 ,  i = i , - - , n ,  i # k ,  zk=l) ;  

1-e., 

min {ckk + 2c(k)'z(k) + z (k )%(k)z (k )  

where x(k) = (ci,-~-,zk-~,z~+~,---,xn)', C ( k )  is 

(4-2) 

an (n - 1, n - 1) principal 

submatrix of C obtained by deleting the k-th row and colamn from C, c(k)  = 

(cki, - , ckk-~, C&+I , , ch)', and k  is any fixed index with 1 5 k 5 n. If C con- 

tains a m a c h a l  (n - 1, n - 1) positive semidefiaite principal submatrir, (4.2) is a 

convex problem for some K. So it can be solved by standard quadratic programming 

algorithms. If C contains a maximal (n - 2, n - 2) positive semidefinite principal 

submatrix, then for some k  (4.2) can be solved efficiently by parametric quadratic 

programming techniques. The reader may r e k  to [29] for details. Based on the 

above analpis, we can see that the copositivity problem can be solved efliciently 

for some special dasses of C by quadratic programmuig techniques. 

In this chapter n e  will also consider solving a special classes of copositivity 

problems. We assame that C ha9 exactly one or tao negative eigenvalues and F 

is a general polyhedrd cone defined by (4.1). kr Section 4.2, we wil l  develop an 

algorithm for a class of copositivity problems in which C is an integral diagonal 

matrix. In Section 4.3, we will show how a general copositivity problem in which 
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C has exadly one negative eigenvalue can be trandormed into the fordat ion of 

Section 4.2. In Section 4.4, we win report namencal results for the algorith. 

In what follows, we need the concept of a projected Hessian. 

Dennition 4.1.1 For airy (n, n) symmetric mat* Q, any h E En \ {O) and any 

real namber v,  we c d  Qa the projected Hessian of Q on hfz = v if 

whererank(q,---,v,-l) = n - 1  andvi€{z€En 1 hfz =O)fo r i= I , - - - , n -1 .  

h m  this definition, we c m  see that the projected Hessian Qh of Q on h'z = u 

is independent of v and there are an infinite number of projected Hessians for given 

Q and h. It can be shown that for given Q and h all projected Hessians have same 

number of positive and negative eigenvalues. So, xfCz is convex on hfz = 1 in a 

projected Hessian Ch of C on hrz = 1 is positive semidefinite. 

4.2 An Algorithm 

In this section, we wiU present an algorithm for the dass of copositivity problems 

in which A is a rational mat&, rank(A) = n and C =diag (-ds,  d2, , 4) with 

4 being a positive integer for i = 1, - - , n. Later on, the case that C =diag 

(-dl, -dZ, d3, - ,&) with 4 b&g a positive integer for i = 1, ,n nill alPo be 

discussed. The fust tesult we a9 give is quite simple, but it wi l l  give us a u s a  

idea for the consmiction of the algorithm. 

Proposition 4.2.1 The optimal value a = O iff for any h E 6, if {x E F ( h'x = 

1) is nonempty and bounded, then 
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Proof. The necessary condition is obvious. We need only show the d u e n t  condi- 

tion. Since {z E F 1 hfz = 1) is nonempty and bonnded, {z F 1 h'z = O)= {O). 

Now we daim that h'z > O for any z E F \ {O). Assume on the contrary that the 

daim is not tme, then there is an z' E F \ {O) mch that h'z' 5 O. If h'x' = O, 

then z1 E {x E F 1 h'x = O); Le., {z E F 1 h'z = O) # {O}, a contradiction. 

So, Kt' < O. Since {z E F 1 hfz = 1) is nonempty, let z2 be any element of 

this set. Let X = -hfzL, then X > 0, x1 + Xz2 E F and hf(zl + Az2) = O. SO, 

(x E F 1 h'z = 0) = {O) implies z1 + Az2 = O; i.e., z' = -Xz2. Since z', z2 E F, 

a;x' 5 Oanda;z1 = -Xaiz2 z O f o r i = l , - - , m .  So, ~ + ' = O f o r i = 1 , ~ - - , m .  

Since z1 + 0, rank(A) 5 n - 1, a contradiction. Therefore the c lah is true. Hence 

for any 5 E F \ {O}, Z/hfZ ~ { z  E F 1 h'z = 1) and ( ~ / h ' ~ ) % ( ~ / h ' a )  2 O; i-e., 

f'CE 2 O. So, a = O. The proof of the proposition is thus complete. O 

Example 4.2.1 Let n = 2, C = diag(-1, 1) and F = {z E E2 1 -221 + z2 5 0, 

2 1  - za O). 

For this example, it is easy to see that z E F implies zl 2 O, x2 2 O and zz 2 XI. 

So, X'CZ = Z: - 2: >: O foi any x E F; i.e., C is copositive on F. In the following 

we will give a different approach for this example and hope this approach to be 

generalized to high dimensional problems. In doing so, consider zi = 1. Obviously 

{x E F 1 z1 = 1) = {x E E2 1 XI = 1, 1 5 z2 5 2) and z'Cz = -1 + z: on 

{x E F 1 z1 = 1) is convex. By solving 

we have a = O. So by Proposition 4.2.1, C is copositive on F. 

This is a simple example bat it helps to make the following point. If a hy- 

perplane hfx = 1 can be constructed such that {z E F 1 h'z = 1) is nonempty, 

bounded and x'Cz is convex on {x E F 1 h'z = 11, then the copositivity of C 
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on F can be solved by solving a convex quadratic p r o g r d g  problem. So it is 

necessary to investigate the conditions sach that the proper hyperplane ezists. The 

foUowing charaderbation gïves as a direct information concerniog how to constnict 

a hyperplane such that the projected Hessian of C on the hyperplane is positive 

semidefinite. 

Proposition 4.2.2 ~f Q = d i a u x ,  ,Pa) and 1 < 6 < n with = -1 for 

i =  1 , - - - , k  andpi= 1 f o r j = k + l , - - - , n ,  then foranygiuenvectorh E F\{O), 

Qh has ezactly k - 1 negatiue eigenualues iff 

Proof. First of all, let us consider taro special cases for h as follows. 

(i) Thereexists a j ' w i t h l  < j < ksuchthat hi + O  andk = o f m i =  k + 1 , - - - , m .  

(ü) Thereexistsaiwith k + l < l  $nsuchthat hi #Oandhi=Ofori=l ,-Oe,k.  

Let us consider case (i) first. Since (4.3) alaays holds in this case, we only need 

to show that Qh has exactly k - 1 negative eigenvalues. Without loss of generality, 

let j = 1; Le., hl # O .  Rom h'z = O ,  we c a n e t e  

So, on h'z = O, we have 

which implies that Qh has exactly k - 1 negative eigenvalues. So the proposition 

is trne for case (i). 
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Now let us consider case (5). Since (4.3) does not hold in this case, we only need 

to show that Qh has exactly k negative eigendues. Without loss of generality, let 

1 = n so that h, # O. Rom h'z = O, ne cari arite 

which implies 

Thus Qh has exactly k negative eigendues. Hence the proposition is &O tnie for 

this case. 

In the following, we assume that there exist a j and an 1 with 1 5 j 5 k and 

k + l  5 15 n sueh that hi # O  and hl # O .  Let us treat case k = I hst .  In this 

case, we can write 

from h f x  = O .  So, on h'x = O, we have 

If (4.3) holds, then Cauchy's inequaüty implies 

So, x f Q z  2 O for any z satisfying h'z = O. This implies that Qh is positive 

semidefinite. Conversdy, if Qh is positive semidefinite, then z'Qz 2 O for any z 

satisfj6ng h'x = O. This implies 

for any ( x ~ ,  , 2,) E En-'. By taking zi = k/hr for i = 2, - , n, we have 
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Therefore, the proposition holds for k = 1. Now Let as assame k 2 2. Without loss 

of generality, assume that hl # O and h,, # 0- h m  

we know that Qh c m  be written as 

where b = (-h2/hltD-, -h,,/hi)'. Since h, # O, b,+l # O. By mathematical 

induction, it is not hard to prove that 

So, Qh has exactly k - 1 negative eigenvalues ifE 

has exactly one negative solution which is eqnivalent to 

that is, 

This completes the proof of the proposition. 

From Proposition 4.2.2, it is easy to get the following corollary. 
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Corollary 4.2.1 For a given uector h E G \ {O), a pmjected Hessian C h  of C on 

h'z = 1 is positive semidefinte iff 

Rom Corollary 4.2.1 we can see that there are a lot of choices for the vector h 

such that Ch is positive semidefinite. Among all these h such that Ch is positive 

semidefinite we need to choose one such that {z E F 1 h'x = 1) is nonempty and 

bounded. The following example illustrates how to consmict such h to solve the 

copositivity problem. 

Example 4.2.2 Let n = 

-xi - 2x2 5 0). 

2, C = diag(-1,l) and F = {z E E2 1 zl 

Let us try the approach used in Example 4.2.1. For any a,  /3 E E'  XEFI FI 
aq+ pz2 = 1) is nonempty and bounded, then ,û # O. So, in order to make 

1 2a a2 - pz x f c z  = - - 
p2 p r z i  + PZ 4 

on {x E F 1 azl+ Px2  = 1) conve~, we must have a2 2 P2; i.e., la[ 2 [PI. Now 

consider a point (+/a, 1)'. Since la1 2 [PI, IP/al 5 1. This implies (+/a, 1)' E 

F. Because a(-@/&) + /3 = O, we have 

Therefore {z E F 1 azl + pz2 = 1) i s  unbounded, a contradiction. Hence the 

approach does not work. However if we divide F into two pieces 



and consider the copositivity of C on Fi and Pt, respectively, then the approach 

will work. Obviously, C is copositive on F ifE C is copositive on both of Fr and F2. 

Note that {x E FI 1 2z1 + 2 2  = 1) and {z E F2 1 -221 + = 1) are nonempty, 

bounded and z'Cx is convex on both of them- So fkom 

a2 = min {x%z [ xi < O, -xi - 22, 5 0, -221 + zz = 1) 

we know that C is not copositive on F. 

Now let us return to the general problem f o r d a t e d  at  the beginning of this 

section. Fkom Example 4.2.2, we can see that it is necessary to consider consider 

the following two quadratic programming problems: 

QPl 

and 

QP2 

Obviously, al = a2 = O ifF a = O. The reason we trandorm QP into QP1 and &Pa 

is that a projected Hessian of C on zl = O is positive dehite. Our purpose is to 

perturb zl = O a little bit to form vectors E and h such that {z E F 1 xi 3 O, 

(6)'~ = 1) and {Z E F 1 21 0, (K)'2 = 1) are nonempty and bounded and, Cl; and 

CL are positive semidefinite. In the following, we only consider how to consmict i; 

(as k ca. be consmicted in same way). 

We will proceed as follows. We state a complete algorithm for checking if C 

is copositive on {z E F 1 xi 2 0) ks t .  Then we will show that the algorithm is 

correct step by step. 

Algorithm 4.2.1 
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Step 1. Let r = e - xzlq and Fs = {z E F 1 = O, rrz = 11, where 

e = (1,0, - -  , O)' E En. If F3 # ), go to Step 2. Othemise let I = e and go to Step 

3. 

Step 2. Let 

1 1 
'=- + 1' dxE,l~ii 

), hl = 1 and = mi 

for i =  2,-,n. Go to  Step 3. 

Step 3. Solve 

If a3 2 O or (4.4) is infeasible, C is copositive on {x E F 1 11 2 O). Otherwise, C 

is not copositive on {z E F 1 xi 2 0). 

The fact that Algorithm 4.2.1 works for checking the copositivity of C on {z E 

F 1 2 1  2 0) is shown by the following 5 lemmas. First we asmune {z E F 1 zl 2 
O )  # {O). Later on we will discuss the case {z E F 1 xi 2 0) = {O). 

Lemma 4.2.1 If Fs = q5 in Step 1, then by setting h = e, the set {z E F 1 xl 2 0, 

h'z = 1) is nonempty and bounded and, u projected Hessian Ch of C on h'z = 1 is 

positive semidefinite. 

Proof. Since { x  E F 1 zl = O, r'x = 1) = 4, b E F 1 zl = 0) = {O). Since 

{z E F 1 zl 2 O) # {O), {z E F 121 2 O, h'z = 1) = {z E F 1 XI = 1) is 

nonempty and bounded. The fact that a projected Hessian Ch of C on hrx = 1 is 

positive semidefinite is trivial. This completes the proof of the lemma. O 

In the following, we consider the case F3 + 4 and assume si E {z E En 1 zl = 0, 

r'x = 0) for i = 1, - - , n - 2 snch that sl, * ,  sn-' are lheady independent. 
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Lemma 4.2.2 For any 2' E FI, -ce + rœ, -ce + +* + s', - , -ee + +* f s"-* are 

linearly independmt. 

Proof. By adding ce to each of these vectors, we can see it is d u e n t  to show 

that z*, z' + a', - - - , z' + sn-' are lineady independent. For any real numbers 

XI, - - , such th& 

we have 

Thus, 

Since s', -, sn-2 are linearly independent, A2 = - - = = O which implies 

X i  = O. Hence x', z* + si, ,2* + sn-' are linearly independent. This completes 

the proof of the lemma. O 

Lemma 4.2.3 For any z* E F3, h is a solution to the following system 

hr(-ce + +') = O 

hl(-ce + 2' + s l )  = O 

hf(-ce + z* + sn-*) = O 1 
Proof. Since = c r i  for i = 2, , n and z; = O, we have h'x* = E#Z* = c. 

Similarly, since s', = O for i = 1, , n - 2, we have 

h t ~ ' = d s ' = O  f o r i = l , : - - , R - 2 .  

Since hi = 1, hf(ee) = c. Hence h is a solution to (4.5) and the proof of the lemma 

is complete. O 
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Lemma 4.2.4 The set {z E F 1 zi 2 O, h'z = 1) is  nonempty and bounded. 

Proof. Let z' E F3 be any point. Since hfzu = E > O, we have 

This implies {z E F 1 zl 2 O, h'z = 1) is nonempty. In orda to show {x E F 1 
XI 2 O, h'z = 1) is bounded, it safnces to show 

{X E F 1 XI 2 O, hrz = O) = {O). (4-6) 

Since {x E F 1 xl > O, t'z = 0) = {O), for any 2 E {x E F 1 al 2 O) with 5 # O 

we have rr2 > O. Hence 

In order to establish (4.6), it is sufficient to show 

If (4.7) does not hold, then there exists a vector y with 

Since h is a solution to (4.5) and -ae + r', -ee + x' + sl, -, -ee + x* + are 

linearly independent, there exist red nnmbers XI, , mch that 

There are two cases to consider: yI = O and yl # O. If y1 = O, then fiom 

we have & = O. In this case, 
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This implies r'y = O. This contradids T'Y = 1. Hence we must have y1 # O. Sinee 

we have y1 > O. Since y1 = (-c) E-f &, zt < O. Rom (4.8) and (4.9), we 

have 

This implies 

This contradicts (4.10). Hence the validity of (4.7) is established and the proof of 

the lemma is complete. 0, 

~ e m m a  4.2.5 A projected Hessian Ch of C on hrz = 1 is positive semidefinite. 

Proof. Rom the construction of h and e, we have 

" h; n n CLs ri' 1 h: 
~ - < ~ h ~ = ~ ~ ~ ~ <  5-5-. 
i=2 4 k z  i=a 4(CM Iril)' 4 di 

By Corollary 4.2.1, Ch is positive semidefinite, as requised. 0 

In the above, we assamed that {z E F 1 21 2 O) # {O). If {z E F 1 x1 2 

0) = {O), then fkom Step 1, we have F3 = 4. So h = e and in Step 3, (4.4) wiU be 

infeasible. The algorithm d then tell us that C is copositive on {z È F 1 zl 1 
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0) and the algorithm does iadeed give the correct information. In faet, (4.4) is 

infeasible in {z E F 1 zlz O) = {O). 

In order to use Algorithm 4.2.1 to check if C is copositive on {z E En 1 Ax 5 0, 

XI 5 O), we ody  need to do the folloaing. Let 

for i = 1, , rn and j = 2, , n. Then dieclring if C is copositive on {x E En 1 
Az < 0, z1 _< O) is equident to checbg if C is copositive on {z E En 1 Az < 0, 

XI 2 O), where A = The later can be solved by nsiiig Algorithm 4.2.1 dkectly. 

Rom Algorithm 4.2.1, we can see that h is computed by solving one feasibility 

problem. So h can be computed in polynomial tirne and the size of h can be 

bounded by a polynomial fnnction of 1, where 1 is the size for A, C and e. Since 

(4.4) is a convex quadratic programming problem, it can be solved in polynomial 

time and we have the fouowing. 

Theorem 4.2.1 The copositivity problem fomulated in this section can be solved 

in polynomial time. 

The following example is taken fkom [Il] with a slight modification. The original 

problem is considered in Example 4.2.4. 

Example 4.2.3 Let n = 3, m = 5, and consider 

Let us use Algorithm 4.2.1 to determine if C is copositive on {x E E~ 1 Az 5 O, 

x, 1 0 )  h t .  



C W T E R  4. A CLASS OF COPOSITZIIITY PROBLEMS 68 

Step 1: r = e - CL, % = (2,0,15)' and (0,0,1/15)' is a feagbe solntion to 

{z E E3 1 Az 12 O, z1 = O, r'z = 1). GO to Step 2. 

Step 2: c = min{1/3,1/15) = 1/15, hl = 1, h2 = O and h3 = 1. Go to Step 3. 

Step 3: By setting 23 = 1 - XI, 

becomes 

where 

a3 = min {z'Cz 1 Az 5 

a3 = min (1 - 2s1 + xi 

r 

- Â -  1 - l 1 and O =  (2,4&,3,4,2,O)'. 
O -5 -1 O 

By solving (4.11), we have a3 = O. So, C is copositive on {z E E3 1 Az < 0, 

zl 2 O}. Now let as determine if C is copositive on {x E E3 1 Ax 0, 21 O}. 

By setting al = and = a, for i = 1,- - ,5 andj  = 2,3, it is safncient to 

deteimine if C is copositive on {z E E3 1 Âz 5 0 , q  2 O), where À = [G]. Similar 

as the above, Algorithm 4.2.1 tells as that C is copositive on {z E E3 1 AÏ < 0, 

xi > O); i.e., C is copositive on {z E E3 1 Ax 5 0, 21 5 O). Hence C is copositive 

on {x E En 1 Ax 5 0). 

In what follows, we consider the case that C has two negative eigenvalues; Le., 

C = diag(-dl, -d2, 4, - ,4), where 4 is positive integer for i = 1, , n. Ekom 

Proposition 4.2 2, we get the following corollary. 

Corollary 4.2.2 For a given vector h E F \ {O), a projected Hessian Ch of C on 

h'x = 1 hcrs ezactly one negative eigenvalue iff 



CHAPTER 4- A CLASS OF COPOSITMTY PROBLEMS 69 

Rom Corollaries 4.2.1 and 4.2.2, we can see that we can still use Algorithm 4.2.1 

to solve this copositivity problem, But now (4.4) is a non-convex quadratic pro- 

pamming problem wîth Hessian having exactly one negative eigendue. So, it can 

be solved by the method of Section 2.3 of Chapter 2. By the generalized conja- 

gate direction algorithm developed in Section 3.5 of Chapter 3, we c m  write down 

the parametric formulation for (4.4). However since (4.4) has a qecial structure, 

we can &te down the parametric formulation for (4.4) directly as follows. Rom 

h'z = 1, we have 

so, 

where 

From Ax < O, we have 
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From x1 2 0  and hl > O ,  we have 

So, (4.4) can be written as 

whese 

and 

From Algorithm 4.2.1, n e  know 
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Thedore, C is positive semidefinite. This implies that the above problem is a 

convex paramehic qnadratic programming problem if ne take z, as a parameter. 

Hence it can be solved efliciently by the method of Section 2.3 of Chapter 2. 

Now let us see one more example to illustrate the above ideas. This example is 

taken &om [Il]. 

Example 4.2.4 Let n = 3, m = 5, and consider 

This example is almost the same as Example 4.2.3 except czz = -1 here, the 

element in the second row and column of C. As in Example 4.2.3, let us determine 

if C is copositive on {z E E3 1 Ax < 0, 21 > O) hst .  In Example 4.2.3, we know 

h = (1,0, 1)'. By the above discussion, we know that this h can be used to obtain 

a parametric formulation for (4.4). h tact, by setting X I  = 1 - 23, (4.4) can be 

tr ansformed t O 

min - l+2z3-x:  

By taLing 2 2  as a parameter, the problem becomes a parametric linear programming 

problem. The optimal value of the problem is zero. So, C is copositive on {z E 

E~ 1 AZ < 0, 21 2 O). NOW let us determine if C is copositive on {z E ES 1 AZ 5 0, 

11 5 O). By setting = - ~ l  and = a, for i = 1 , - - - , 5  and j = 2,3, it is 

sdcient to detezmine if C is copositive on {z E ES 1 & < 0, 21 2 O), where 

A = [&j]. Similar as the above, Algorithm 4.2.1 tells us that C is copositive on 
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{ X  E E3 1 AI < 0, zi 2 O); Le., C is copositive on {z E ES 1 Az <_ O, 21 2 O). 

Hence C is copositive on {z E E' 1 Az 5 0). 

So far, we have established an algorithm for a class of copositivity problems in 

which C is a diagonal integral matrix with exactiy one or two negative eigenvalues. 

Thesefore, in order to solve a class of copositivity problems in which C is an (n, n) 

symmetric matrix with exactly one or two negative eigenvahes, it is snfficient to 

transform the problem into the formulation of this section. This wi l l  be discussed 

in the next section. 

4.3 A Polynomial Transformation 

In this section, we assume that both A and C are integral matrices, rank(A) = 

rank(C) = n and C has exactly one negative eigenvalue. Here C need not be a 

diagonal matrix. The purpose of this section is to explain how to trandorm the 

copositivity problem into the formulation of Section 4.2 in polynomial t h e .  

If a symmetric matrix is positive definite ma&, we know that it can be fadored 

into LDL', where D is a diagonal matrix aad L is a unit lower triangular m a t h .  

However when the matrix is not positive definite, the factorization may not work 

as the determinant of some principal minor of the mat& rnay equal to zero. In 

what follows, we will give an algorithm to diagonalize C ks t .  The algorithm is 

developed baded on some modifications of LDL' factorization. Now let us start the 

algorithm. First of all, let us introduce the concept of the unit triangular matrix. 

Definition 4.3.1 An (n, n) r n a e  L = [lG] is called a unit Iowa triangolar matrix 

. ( O forj > i, i = l , - -* ,n  and j = 2 , - - - , n ,  
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We attempt to factor C into LDL', whae D = diag(dll, - , &) and L is 

a unit lower triangniar ma&. Let Ci denote the fith prinapal mhor of C for 

j = 1, - ,n. If det(Cj) # O for all j with 1 5 j 5 n, the process of factoring 

of C into LD L' can be accomplished. In this case, L and D can be computed in 

polynomial time and, the size of L and D are bounded by a polynomial fimction of 

the size of C. The reader may sefet Chapter 2 of [31] for details. In the folLowing, 

let us consider how to deal with the- case that there is a j 

Let k be the smallest number snch that det(4) = 0. 

C into L D L' caa not be continnéd d e r  k - 1 iterations. 

C as follows 

with 1 <nsuchthat 

Then the factorization of 

In this case, ne partition 

Let 

A 

where Ii is an (i, i) identity matrix for i = 1, - = , a. Let C = [fij]. Since det(Ck) = 0, 

we have CL* = O. Since C is nonsingular, c is nonsinguiar. So, there exists a 

j 2 k + 1 sud, that ES- # O. D e h e  

where Q E En is a unit vector with i-th entry being equal to one for i = 1, , n. 
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It is easy to check that &z < O. By setting 

we have ÿCy < O. Since y # O, it m u t  have at least one nonzero component. For 

e;cc,  
pi = - -y for i = 2 , - - - , n  

Y'CY 

and P = (6, p2, --, pn). Then P is nonsingular and 

P'CP = 1 $'CG 

where F is an (n- 1, n- 1) syrnmetnc matrix. Since rank(C) = n and C has exactly 
- - -  

one negative eigenvalae, F is positive definite. So F can be factored into LDL', 

where is an (n - 1, n - 1) unit triangular matrix and R = diag(&, - - , &,,) with 

d, > O for i = 1,-,n. Thus, 

Let 
A1 - k+l @'cc = -- pl, d" = - for i = 1 , - - ,n  - 1, 

Bi+i 
where & and Bi are positive integers for i = 1, - - , n. Then by setting 

M'CM = diag(-dl, d2, * -  , &). 



Now, by putting x = My, it follows that 

C is copositive on {z E En 1 Az 5 0) (4.12) 

if and only if 

diag(-dl, d2, - - - , 6) is copositive on {z E En 1 (AM)y 5 0). (4.13) 

Note (4.13) is precisely the f o d a t i o n  of the copositivity problem diseassed in 

Section 4.2. Since M is computed by matrix inverse with matrix multiplications 

and LD L' factorizations, M can be computed in polynomial time and the size of M 

is boaaded by a polynomial fanction of the size of C. T h d o r e  the size of (4.13) 

is boaaded by a polynomial fimction of the size of (4.12). Now by combining this 

with Theorem 4.2.1, we have the following result. 

Theorem 4.3.1 Assume that rank(A) = mnk(C) = n. If C has ezactly one neg- 

ative eigenvalue, then detemining i f  C is copositive on {z E F 1 Az < 0) can be 

done in polynomial time. 

If C has exactly two negative eigendues, it can also be diagonalized by the 

algorithm similar to the above. It can also be diagonalized by the general conjugate 

direction algorithm developed in Section 3.5 of Chapter 3. So the problem can be 

transformed into the formulation of Section 4.2. Hence this type of problem c m  be 

effiuently solved by parametric quadratic programming techniques. 

We condude this section with two more examples to illustrate the above trans- 

formation process . 

Example 4.3.1 Let 

c =  
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and diagonalize C by the above traflsfonnation process. 

and 

O O 

M'CM= [ -t 1 

-1 -1 3 

Example 4.3.2 Let 

and diagonalize C by the above transfomation process. 

By the process of factoring C into LDL', n e  obtain det(C2) = O. So, we have 

k = 2, Ci = [Y, B = ( 1 3  and 
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Now, let us summariae oar computations as folloas: 

4.4 Numerical Results 

We obtained numerical results by taking C = diag(-l,1, - - - , l ) ,  and A, an (m, n) 

matrix with randomly generated dements. The code was executed on a 486-66 

PC and the computation time is measured in seconds. The r e d t s  of applying our 

method to such data are s~unar ized  in Table 4.1. The qnadratic piogramming 

algorithm used is that of Best and Ritter [IO] as implemented in [9]. 
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Table 4.1: Nuencal Faperhents for Algorithm 4.2.1 

4.5 Conclusion 

W e  have established a polpomial algorithm for a class of copositivity problern in 

which C has one negative eigendue and n - 1 positive eigenvalues. The algorithm 

is extended to solve a dass  of copositivity problems in which C ha9 two negative 

eigendues and n - 2 positive eigenvalues. The algorithm is austrated by n d c a l  

examples and randomly generated data. 
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Chapter 5 

Global and Local Non-convex 

Minimizat ion 

5.1 Introduction 

In this chapter, we generalize the redts established in Chapter 2 to a large dass 

of non-convex minimixation problems. Here we consider the following nonlinear 

programming model 

where g(-,  -), gj(-,  -) : E=*' + El U (-00) U{+OO) for j = 1, , rn and Q C E"+~. 

Let R = { (z , t )  E Q 1 gi(z,t )  5 O, j = 1 , - - - , m )  and R(t) = {z E En 1 (z , t )  E 

0, g j ( z , t )  1 0, j = 1, , m) for each t E E~. 

This model is quite similar to the model used by GeofEion [16]. 

If g(-,  t )  is quasi-convex or con-, then, ne may solve NP by solving the fol- 

lowing main noniinex programming problem 



This approach was used in Chapters 2 and 3 for solvïng non-convex quadratic 

programmuig problems. Also see Best and Ding [6] and [7]. Rdated approaches 

were also used by GeofEon [l6], Kou& [18] and Benders [2]. We aiU discuss these 

later. 

In order to h d  al1 isolated locd minima, some non-isolated local minima and 

the global minimum for NP, we must evalnate f (t) and then solve MNP. We refér 

to this as o u  parametric local optinization procedure. 

Rom the definition of f ,  we can see that the co~ec t i on  between NP and MNP 

is the following parametric nonlinear programming problem 

NP ( t )  min {g(x,t) 1 z E R( t ) )  for t E E~. 

Let arg min{NP(t)) denote the set of all optimal solutions for NP(t). Since we 

want to solve NP by solving MNP, it is necessary to study the relationships between 

N P  and MNP. For example, can MNP represent N P  or how much information c a n  

M N .  retain fiom NP? We will answer these questions partly in this paper. First, 

let us see some examples. 

Example 5 .l. 1 Consider the indefinite quadratic problem 

min {zfz - yfy 1 Az + By 5 b}, 

where x E En, y E E ~ ,  A AE EmXn, B E E~'' and b E Em. 

This problem was studied by Kough [18]. By setting t = y, g(z, t) = z'z -tlt a d  

R( t )  = { x  E E" 1 Ax + Bt 5 b}, MNP and NP(t) can be formulated accordingly. 
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can be written as follows 

min {zrz 1 z E R(t ) )  for t E E'; 

f ( t )  = t't + [ i n f w  I x E W ) } ,  if W) # 4, 
[ +a, otherwise. 

In this example, N P ( t )  is a malti-paramehic convex quadratic progrirmming prob- 

lem. 

Example 5.1.2 Consida the nodinear progr5imming problem 

where c E En, $(-) : E' -+ E', E En, H(-) : E~ -+ EL, bj € E' for j = 1 , - * * , m  

and S is a subset of E~. 

This mode1 was stndied by Benders [2]. Obvioasly, for each fixed y ,  the problem 

is  a linear programming. So, we may put t = y ,  g(z, t )  = dx + $( t )  and R(t)  = 

{Z E En 1 a$z +gj(y) + bj  5 O, i = 1,=-• ,m, z 2 O) for -ch t E S ,  and formulate 

N P ( t )  and MN. accordingly. W(t) and f ( t )  can be written as fohws: 

W t )  min {c'z 1 z E R ( t ) )  for t E E ~ ,  

The problem is a nodinean programming problem, but NP(t) is a linear program- 

ming. Hence it malses the problem much easier to solve in some sense. 

Example 5.1.3 Consider the nonlineâr programming problem 

where 0 is a st~bset of E ~ ~ ,  g(-), &(*) : En -t E', i(-), ij(*) : E' -+ E', g a d  9j 

are convexonEn for j = 1, - - . ,m.  
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Obviously, for each fixed y, the problem is a convex programming problem. So, 

we may set t = y, g(z,t) = g(z) + g( t )  and R(t)  = {z E En 1 k(z) + f i j (y)  < O, 
j = 1, - - , m, (2, t )  E n), and formalate NP(t) and MNP accordïngly. NP(t ) a d  

f(t) can be written as foIlows 

Note that Example 5.1.3 is a general formulation of Examples 5.1.1 and 5.1.2. 

W e  will organize this paper as follows. In Section 5.2, we will develop the 

relationships between NP, NP(t) and MNP. In parti&, we wdl establish a one to 

one correspondence between isolated local minimisers of NP and MNP for a large 

class of non-convex programming problems. In Section 5.3, we will discuss how 

to apply the resdts established in Section 5.2 to some special ciass of non-convex 

problems. 

5.2 The Relationships Between NP and MNP 

In this section, we will discuss some relationships behireen NP and MNP. W e  will 

generalize some results of Chapter 2 and also present some new resdts. First of dl 

we will g ive  a result concerning convexity. 

Proposition 5.2.1 If Q +p a convez subset of G+', gj ( j  = 1, , m) às u convez 

vector finetion on  F+', then (i) g convezity o n  F+' implies f convezity on @ 
and (ii) g quasikonvwity on F + ~  implies f quasi-conuezity on p. 
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Proof. The proofs of (i) and (ii) are quite similar, so we only pmve (i) here. Let 

( t l ,  7l) and (ta, y2) be any h o  points in {(t, 7) E E&+' 1 f (t) 5 7, t E EC, 7 E El). 

We need to show f (atl + (1 - cr)t2 5 ql+ (1 - 47' for all a with O c a < 1. For 

any E > O, since 

f (tl) c 7' + E and f (t2) < 7' + c, 

there exist two points 2' E R(tl) and z2 E R(t2) such that 

Since gj ( j  = 1, - -  - , m) is convex and Q is also convex, it is easy to check or1 + 
(1 - a)x2 E R(atl+ (1 - a)ta). So, 

f (ut' + (1 - a) t2)  5 g(azl + (1 - a)z2, at' + (1 - a)t2) 

1 1  2 2 I 4 s  , t  ) + O - a ) &  , t ) ~ g ' + ( l - a ) ~ * + ~ .  

Since a is any positive number, we have 

The proof of the proposition is thus complete. 

The following result is concerned about one to one correspondence between the 

global minimi7er of NP and MNP. 

Theorem 5.2.1 If a point t* E E& with f(tœ) > -w is a global rninimizer of 

MNP, then for  any z* E arg min{NP(tœ)), (x ' ,  t') is a global minimizer for NP. 

Conversely, if (z*, t*) LP a global minimiter for NP, then t* is  a global minirnizer 

for MNP. 

In the following, we will establish one to one conespondence resdts between 

isolated local minima of NP and MNP for several classes of non-convex program- 

ming problems. The results will be formalated in Theorems 5.2.2-5.2.5 and will 

be the consequences of Propositions 5.2.2-5.2.8, folIowing. 
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Proposition 5.2.2 If tu is a bcd minimkr for MNP, then for any z* E erg 

mi4 NP@' )), (z* , t*) is a local minimker for NP. 

Proof. Since t* is a local minimiRer for MNP,  there ePsts an c > O such that 

f ( t) 2 f (t*) for each t E B.(t*), (5-1) 

where B&') = {t  E~ 1 Ilt - t'Il < a). Assume to the contrary, that (z*, t') 

is not a local minimixer for NP- Then there exists a sequence {(z', t')) c R with 

(xi,  ti) + (xœ, ta) and (zi ,  ti) f (z*, t*) for all i satisfying 

t') < g(z=, t') = f ( f ) .  (5-2) 

Since (z', t') E R for each i, xi E R(ti). Since t' + t', there is a M > O such that 

ti E B.(t*) when i 2 M. Now from (zi,t') E R and (5.2), we have f ( t i )  < f ( t * )  

for each i, this contradicts (5.1) for i 2 M. The proof of the proposition is thus 

complete. O 

Proposition 5.2.3 Assume that t* is an isolated local minimuer for MNP. For 

each z* E arg min{NP(tœ)), i f  the le  is a b > O such that {x E B&') n R(t') 1 
g(x, t*) = f (t'))= {z'), then (z*, t*) is an isolated local minimizer for NP, where 

8,5(zV) = {Z E F 1 112 - x.11 5 6). 

Proof. From Proposition 5.2.2, (z', t*) is a local miniminer for NP. Assume to 

the contrary, that (z*, t*) is not an isolated local minimizer. Then there exists 

a sequence {(xi, t ' ) )  c R with (z',ti) -t (z*, t*) and (z', ti) # (z*, t*) for all i 

satismg 

tJ(zi, t') = g(zm, t*). 
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I f  {à 1 tà # t*, i = 1,2, -) is finite, then there is a M > O such that t' = t* fot dl 

i 2 M. Fkom z' -t a?, there exjsts a N > O such that 2' E B&*) for al l  i 2 N. 

Since {z E B1(xœ) n R(tk) 1 g(zœ, t') = f (t*))= {z*), (5.3) implies zi = z' for dl 

i 2 max {M, N), a contradiction. So {i ( t' # t*, i = 1,2, -) is infinite. Withoat 

ioss of generality, let t;' # t* for alI i. Again from (5.3), ae have 

f (t') < (J(Zi, t i)  = g(x*, t*) = f (t*) for an i. (5-4) 

But t' + t', and thas (5.4) is in contradiction to t* being an isolated local mini- 

IKÜz~~. Hence (z*, t*) must be an isolated local minimizer for NP. The proof of the 

proposition is thns complete. O 

Lemma 5.2.1 Assume that R(t) is convez for each t E E* and g ( - ,  t )  is quasi- 

convez o n  R(t)  for each t € @. If (z', t*) fs an isolated local minirnàzer for NP, 

then there &ts a 6 > O such that 

g(rœ, t') < g(z, t )  for each ( x ,  t )  E R r) B&*, ta) \ {z', t') 

and 

g ( z * ,  t*) < g(z, t*) for each z E R(tœ) \ {o*); 

i. e., arg min{NP(t')) = {z'}. 

Proof. (5.5) is exactly the definition of an isolated local minimîzer for NP. Rom 

(5.5), we have 

g(zœ, t') < g(z, t*) for each ( z , t* )  E RnBr(zœ, t*)  \ {x*,t*). 

This implies 

g(x*, t * )  < g(z, t*) for each x E R(t*) n Ba(zœ) \ {z*). 
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Since g is quasi-convex on R(tœ) and R(t*) is convex, we have 

~ ( L Z - ,  t*) c g (z, tœ) for each z E R( f ) \ {x*); 

i.e., (5.6) holds and arg min{NP(t')) = (2'). This completes the proof of the 

l e m a .  O 

Proposition 5.2.4 Assume that g and gj (j = 1, - ,m) are continuow on 51, 

X {x E F 1 (2, t )  E a, g j ( z i  t )  5 O ,  j = 1, - - , m) îP bounded, f2 is closed, R( t )  

is convez for each t E E* and g ( - , t )  & quasi-convez on R(t) for each t E p. If 
(x' , t') is an isolated local minimuer for NP, then t' is an isolated local rninimiier 

f o ~  MNP and arg mmin(NP(te)) = {z'). 

Proof. By Lemma 5.2.1, there exists a 6 > O such that (5.5) and (5.6) hold. Now 

assume that on the contrary, t' is not an isolated local minimber for MNP. Then 

there exists a seqnence {t i)  c E~ with t' # t' for all i and ti -+ tœ mch that 

From (5.7) and the definition of f ,  we have R(ti) f ;  4 for all i. Since is dosed 

and gj (j = 1, - , m) is continuous on a, R(ti) is a dosed subset for all i. Rom 

R(ti)  c X and the boundedness of X, we know that ~ ( t ' )  is compact for all i. 

Since g is continuous on 51, a global minimber of NP(ti) is attained foi all i. So 

there is a sequence (z') c X with 2' E R(ti) snch that 

g(z', t i)  = f (ti) 5 f (t*) = g(zœ, t') for all i. (5-8) 

Since X is bounded and (2') c X ,  { z i )  has a convergent snbsequence. Without 

loss of generality, let xi -t xO. Because ti + t', there exist  an M > O such that 

Ilt' -t'Il < 5 for ai i 2 M. So (5.5) and (5.8) imply Ild - z*ll 2 ) for all i 2 M .  
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Therefore z0 # 2'. Since $2 is dosed and gj is continuow on 0 ( j  = 1, - - , m) , 
(xo, t*) E R; Le., z0 E R(tœ). Again from (5.8) and the continuity of g on Q, we have 

g(z" , t*) < - g(zW, t'). This contradicts (5.6). Hence t* is an isolated local minimizer 

for MNP. The proof o f  the proposition is complete. O 

Now by combining Proposition 5.2.3 and Proposition 5.2.4, we can get the fol- 

lowing one to one correspondence on isolated local minimizers for NP and MNP. 

Theorem 5.2.2 Assume that g and gj ( j  = 1, - , m) a n  continuous on R, (z E 

F 1 (2, t )  E $2, g j ( z , t )  5 O ,  j  = 1, - - O  ,m) is bounded, 0 i s  closed, R(t) h con- 

vez and g ( - , t )  is quasi-convez on R ( t )  fot each t E @. Then (z*,t*) Ls an ho-  

lated local minimizer for NP iff t' LP an isolated local minimizer for M W  and aTg 

min{NP(t*))  = (2%). 

In Proposition 5.2.4, the assumption that X is bonnded is quite strong. In the 

following we are going to establish several results which are same type as Proposition 

5.2.4 without the boundedness assumption of X. To this end, let T = { t  E E~ 1 

Proposition 5.2.5 Assume that the set-vdued map R(-) is lower semi-continuow 

on T relative to T ,  g and gj are continuow on Q ( j  = 1, , m), Q is closed, R(t)  is 

convez and g(-, t )  is quasi-convez on R(t) for each t E P. If (z*, t') is an i$oloted 

local minimirer for NP, then t' is an isolated local minimizer for MNP and arg 

min(NP(tm)) = (2'). 

Proof. By Lemma 5.2.1, there exists a d > O such that (5.5) and (5.6) hold. Assume 

that on the contrary, t* is not an isolated local minimirer for MNP. Then there exists 

a sequence {t i)  c E~ with t' + t' and ti # t* for dl i satisfying 
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From the definition of f and (5.9), we know R(ti)  # 4 for d i. So, from the lower 

semi-continuïty of R(-) on T relative to T, there exists a sequence {yi) c E" with 

y' E R(ti)  for dl i such that yi + z*. We daim that NP(ti) has an optimd solution 

for d c i e n t l y  large i. If this is not the case, then without loss of generality, we 

may assume that N P ( ~ ' )  has no optimal solutions for al l  i- So for each i, there is a 

sequence {zit) C R(tC) with llzitll -t +ao mch that g(zit ,  ti) -+ f ( tà ) .  Hence there 

is a sequence { z i )  with xi E R(ti) for all i and llzill + +oo such that 

Since {zi/l lxill)  is bounded, it has a convergent subseqnence. Without loss of 

generality, let zi/l(zil[ + xO. SO, for sufnciently large i we have 

and 

By the continuity of g on 51, we have 

Since f2 is closed and gj is contirnous on Q (j = 1, - - -  ,nt), x0 + z' E R(t*). 

O bviously, z0 + z* # 2'. So, (5.10) contradicts (5.6). Hence NP(ti)  has an optimal 

solution for sufficiently large i. Withont loss of generarity, let z' be an optimal 

solution for NP(ti) for all i. Rom (5.9), we have 

S(xi,  ti) 5 f ( ta)  for all i. (5.11) 

Similar to the above we can prove that { x i )  is bounded. So {xi) has a convergent 

subsequence. Without loss of generality, let z' -t 2. Because ti + t*, there exist 
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an M > O such that liti - t'Il < f for all i 2 M. So (5.5) and (5.11) imply 

llzi - zsll 2 ) for all i 2 M. Thedore B # z'. Since 51 is closed and gj is 

continuous on 51 (3 = 1, , m), (2, t') E R; Le., Z E R(t*). Again from (5.11) and 

the continuity of g on Q, we have g(2, t*) 5 &', t'). This contradicts (5.6). Hence 

t' is an isolated local minimirer for MNP. The proof of the proposition is complete. 

0 

By combining Propositions 5.2.3 and 5.2.5, we have the foUowing one to one 

correspondence r d t  on isolated local minimizers betaeen NP and MNP. 

Theorem 5.2.3 Let the set-ualued map R(-)  be lower semi-continuow on T rel- 

ative to T, g and gj are continuous on SI ( j  = 1, - - , m ) ,  0 is closed, R(t) is 

convez and g(*,t) is quasi-convez on R(t) for each t E p. Then (z',t*) is an 

isolated local minimizer for NP iff t' is an isolated local minimiter for MNP and 

arg min{NP(te)) = {z') - 

In the following, we are going to consider the assumption of lower semi-continuity 

of R(=) in Proposition 5.2.5; i.e., we will consider some suffiCient conditions which 

make R(*) a lower semi-continuous set-valued map on T relative to T. In doing so, 

let 

Lemma 5.2.2 Assume that f2 *r a closed subset of F + ~ ,  R is a convez subset of 

IFk, gj is a continuow funetion on Q ( j  = 1, , m) and T # 4. Then &. LP O 

properly dosed convez f i c t i o n  on @ uiith dom(&) = T. 

Proof. Rom the definitions of T and &. , we have dom(&m) = T. Since each gj  is 

continuous on and $2 is closed, R(t) is closed subset of En for each t E E~. SO, 
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for any tl, t2 E T wïth t1 # t2, there are two points z1 E R(tl) and 2% ER() such 

that 

&(tl) = 112' - 2'11 and &(t2) = 112' - z2& 

Since a(zl, tl) + (1 - a)(x2, t2) E R for any a with O < a < 1, azl + (1 - a)z2 
E R(atl + (1 - a)t2). SO T is convex and 

Hence +=* is a properly convex fùnction on E ~ .  Now let us prove that $,- is dosed. 

For any T E R and any sequence {ti)  with gb,.(tà) 5 r for d i and t' -t t*, we 

need to show &(t*) 5 r .  Since &(ti) < r for all i, there is a point z' E ~ ( t ' )  

such that (tà) = 112' - x-11 5 r for aIl à. So {xi} is bounded. Without loss 

of generality, let xi + xo. Since 0 is dosed, (zi, ti) + (xo, to) E Q. Rom the 

continuity of gj, we have gj (~ i ,  tà) -+ gj(zO, to) 5 O for j = 1, , m. SO X" CO R(t*) 

and llz' - 2'11 + 112' - z0l[ 5 r; Le., &(t*) 5 T. Hence $=. is dosed. The proof of 

the lemma is complete. O 

Lernma 5.2.3 Under assumptions of Lemma 5.2.2, R(-) t lower semi-continuow 

on ri(T) relative to T. Furthemon, ifT is locdly simplicz'ai ut t* E T, then R(-) 

2s lower semi-continuous ut t* relative to T. 

Proof. For any t* E n(T), any z' E R(t*) and any sequence {ti) C T with 

ti -t tu, we need to show that there exists a sequence (23 with xi E R(ti) for 

each i such that xi -t 2.. By Lemma 5.2.2, is convex and dom(+=*) = T- 
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By Theorem 5.2.2 of Rockafdar [27], $&a is continuous on i ( T )  relative to T. So, 

Ill,. (ti) -t 11,. (t') = O; Le., t h a e  is a sequence {zà) with zà E R(tà) for all i satisfying 

&a (ti) = 112' - z'll + O. Therefore zà E R(ti) for al1 i and z' -+ 2'. Hence R(*) is 

lower semi-continuous on n(T) relative to T. Similady, if T is locally simplicial at 

t' E T, then by Theorem 10.2 of Rockafellar [27], we h o w  that +=. is continuous 

at t' relative to T for any x* E R(t'). Eence R(-) is lower semi-continuons at t' 

relative to T. The proof of the lemma is complete. CI 

Proposition 5.2.6 Assume thot Q is o closed subset of F", gj and g are con- 

tinuous on f2 (j = 1, = - -, m), R i s  a convez subset of F + ~ ,  g(-, t) ig quasi-convez 

on R(t)  for each t E p. If (z', t*) is an isolated local minimizer for NP, then arg 

min{NP(tœ)) = {z') and t* is an isolated local minimizer for MNP ift' E ri(T) o r  

T is locally simplicial at ta.  

Proof. By Lemma 5.2.1, we have arg min{NP(t*)) = {z*). Ekom Lemma 5.2.3, we 

know that t' E ri(T) (or T is locally simplicial at  tœ) implies R(-) is lower semi- 

continuous at t* relative to T. So, aIl conditions of Proposition 5.2.5 are satided. 

Hence t* is an isolated local minimirer for MNP. This completes the proof of the 

proposition. O 

Remember that k is the dimension of parameter t. If k = 1, we have the 

following corollary from Proposition 5.2.6. 

Corollary 5.2.1 Assume that k = 1, 0 is  a dosed subset of Wk, gj and g are 

continuous on Cl ( j  = 1, ,m), R Ls o convez subset of E'", g(-, t) is quasi-convez 

on R(t)  for each t E p. If (z*, t*) às an isolated local minimizer for NP, then t' is 

an isolated local minimizer for MNP and arg min{NP(ta)) = {x*). 

Proof. By Lemma 5.2.1, we have arg min{NP(t*)) = {z'). Since k = 1, T is an 

interval in El. So, T is locdy simplicial at t for any t E T. By Proposition 5.2.6, t* 
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is an isolated local miniminer for MNP. The proof of the corollary is thas complete. 

Similar to CoroUary 5.2.1, the following corollary also follows fkom Proposition 

5.2.6. 

Corollary 5.2.2 Assume thot is a polyhedron in E"+L, gj(x7 t )  = aiz + b;t + cj, 
ai E F, bj E E*, c i €  E' ( j = l y - - - , m ) ,  g ik~ontinuos onsa andg( - , t )  U qua*- 

ctmvex on R( t )  for each t E @. If ( z* ,  t*) iS an isolated local minimizer for NP, 

then t* is an isolated local minimizer for MNP and arg min{NP(tœ)) = {z'). 

In the folloaing, we dl consider the convex case; i-e., g(-,  t )  is convex on E" for 

each t E E'. We need some assumptions as folIoas. 

Assumption A Let $2 be a closed subset of E"+~,  g and gj ( j  = 1, - - -  ,m) are 

continuous on 51, R(t)  is a conver snbset of En for each t E E ~ ,  g(- ,  t) is convex 

on En and for each t' E T there are r = t(t*) > O and M = M(t') > O such that 

BM(0) n R( t )  # 4 for each t E B&*) nT, where BM(0) = {z E En 1 II x 115 M). 

Remark 5.2.1 The assumption that BM(0) n R(t) # 4 for each t E Be@') n T is 
much weaker than the lower semi-continuity of R(-) on T relative to T. Also, this 

condition is much easier to check than Iowa semi-continuity. 

Proposition 5.2.7 Under Assumption A, i f  (z*,  t') is an isolated local minimizer 

for NP, then t* is an isolated local minimîzer for MNP and arg min{NP(ta)) = 

b') 

Proof. By Lemma 5.2.1, there exists a d > O snch that (5.5) and (5.6) hold. Assume 

that on the contrary, t' is not an isolated local minimizer for MNP. Then there exists 



a senuence {t') E Be(t*) T with ti -+ t* and t' # t* for i satisfying 

Without loss of generality, ne may take O < E 5 j6. Rom ( 5 4 ,  we have 

g(zœ, t') < g ( z ,  ti) for each z E ~ ( t ' )  n B,(zœ). 
Since g( - ,  t i) is contirnous on R(ti) n &(zœ) and R(tà) n B&') is compact, thae is 

an ei > O such that 

g(xœ,  t') + 2 < g(z, t') for each x E ~ ( t ' )  B,(z*) .  (5.13) 

Take a sequence { - y i )  C E' wîth O É < $ for all i and + O .  Then fkom (5.12) 

there is a sequence { x i )  En with zà E R(ti) for all i satisfying 

g ( z i ,  t') c f (t') + ri- (5.14) 

From (5.13), (5.14) and g(xR, t*) = f (t'), we have II xi - z' II > c for each i. Rom 

(5.6), we know { x  E R(t') 1 g(z , t * )  5 g ( z W , t * ) )  = {zu). So, by Corollary 8.7.1 

of Rockafelllar [27], {z E R(t*) 1 g ( x , t * )  5 A )  is bonaded for any X E El. Since 

BM(O) R(t)  # 4 for each t E &(t*) n T, there exists a sequence {yi) Ç R(ti) such 

that II y' 115 M for all i. Without loss of generality, let y' -t y'. NOW we daim 

that (2') is bounded. If this is not hue, we may assume that 11 xi ( 1 - t  +oo and 

xi/ II z' II+ zO. So for any a > O ,  we have 

and 



for d c i e n t l y  large i. Therefore the continnity of g on i m p h  

The continnity of gj ( j  = 1, , m) on 51 and the closedness of f2 imply ad' + yo E 

R(tœ).  Since a is any positive nnmba, (5.15) implies {z E R(t*) 1 g(z,tS) 5 

g(yo, t*)) is unboanded, a contradiction. Hence {zi) is bounded. Without loss of 

generality, let z' -+ Z. Born II zi - z* Il> a for al1 i and (5.14), we have 

g(2,  t') 5 g(zœl t*) and 2 # zœ. 

This contradicts (5.6). Hence t* is an isolated local minimizer for MNP and the 

proof of the proposition is complete. O 

The following example shows that the condition BM(0)n R(t) # 4 for each 

t E Be(t8) n T is necessary in Proposition 5.2.7. 

Example 5.2.1 Let 0 = {(O,O)')U{(x,t) E E* 1 z > 0 , t  > 0,tz = l), m = 0, 

k = n = 1 and g(z,t) G 1 for each ( x , t )  E ES. 

Obviously, Q is closed, g is continnous on Cl, g is convex on R(t) for each t E EL, 

R(0) = {O) and R(t) = {l/t) for each t > O. Rom Figure 5.1 (a), we c m  see that 

(O, O)' is an isolated feasible solution. So, (O, O)' is an isolated local minimizer for 

NP. But f (t) = 1 for t 1 O implies that t* = O is not an isolated local minimber for 

MNP. It is easy to check that BM(0) n R(t) # q5 for each t E B&*) n T does not 

hold. So this condition is necessary in Proposition 5.2.7. 

Now by combining Proposition 5.2.3 and 5.2.7, we have the following one to one 

correspondence theorem for the convex case. 

Theorem 5.2.4 Let Assumption A be satisfied. Then (z*,t*) is an isolated local 

rninimizer for NP iff t* is an isolated local minimizer for MNP and arg nin{NP(t*))  = 

Wb 
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O .5 1 2 O .5 1 2 

Figure 5.1: (a) Example 5.2.1 (b)  f ( t )  for Example 5 -2.1 

In the following, we will consider a special class of problems, n d y  those for which 

g(=, t) is a quadratic convex function on En for each f i ed  t .  In doing so, we need 

the following assumptions. 

Assumption B Let g ( ~ ,  t )  = c(~) ' z  + i d C ( t ) ~  + $( t ) ,  gi(z, t )  = aj(t)'x + b j ( t ) ,  

j = 1,- ,m, S2 = E ~ ' ~ ,  where C(-) : E~ + EnXn, c(:) : E~ + En, $(-) : E' + El, 
( )  : E~ -+ En and hi(*) : E' -+ E1 ( j  = l * = - , m )  are dl continuous on E' and, 

C ( t )  is is a symmetric positive semidefinite matrix for each t E 2'. 

Proposition 5.2.8 Undet the Assumption B, if (x', t') is an isolated local mini- 

mizer for NP, then te is an isolated local minimizer for M W  and arg min{NP(t')) = 

{x*)- 

Proof. Since (z*, t*) is an isolated minimirer for NP, there &ts a 6 > O such that 
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for each z E Bs(ze) II R(t') \ (2'). Since c(t')'z + +zfC(t*)x + d>(tS) is convex on 

R(t* ) , (5.17) also holds for any z E R(t*) \ {z*). So, arg min{NP (t')) = (2'). Let 

and consider 

QW) min {d(t)z + f zfC(t)z 1 z E R(t)) .  

Since {x*) is the solution set of QP(t*) ,  there is no nonzero solution for the following 

system 

.:(t')a 2 O ( j  = 1, - , m), C(ts)s = O, c'(tœ)s 5 0 .  (5.18) 

By Theorem 1.2.1, fi is lower semi-continuous at t'. Therefore f = f l  + $ is lower 

semi-continuoas at t'. So, for any 7 > O, there exists an E > O with c < such that 

f ( t )  2 f (t') - 7 for each t E B,(t*). Now assume that on the contrary, t' is not an 

isolated local mhimizer for MNP, then there exists a sequence {t') c B.@') with 

ti # tœ for all i and ti + t* such that 

Therefore R(ti) # 4 for each i. Thus, QP(ti) has an optimal solution xi for all i; 

W e  daim that {x ' )  is bounded. If this is not hue, ne may assume 

z 
lim - - - s and II Z' Il= +W. 
i-)- II si II t+OO 
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So, the continuity of Ji and ti + t* imply 

Rom (5.19) and (5.20), we have 

and 

(z')'C(ti) xi 
C(t*)s = O and c(t*)'s = - lim 5 O. 

à+- 2 11 zi II 
From aj(ti)'x' + bj(tà) < O for j = 1, , rn, we have aj(t*) 's 5 O for j = 1, - - ,m. 

So, (5.18) has a nonzero solution, a contradiction. Eence {z') P bounded and has 

a convergent subsequence. Withont loss of generality, let t' + zO. Since t' E B4ti) 

and c < 9, (5.16), (5.19) and (5.20) imply z' 4 Br (z*). So, zo # z'. It is easy to 

show z0 E R(tœ).  Hence (5.19) and (5.20) imply 

This contradicts (5.17). Hence t* is aa isolated local rninimizer for MNP. The proof 

of the proposition is complete. 0 

Example 5.2.2. Consider the followhg nonlinear programrning problem 

min - z + z2(2 - sin(t)), 

snbjed to 114 < z 5 1/(1+ coa2(t)), 

O 5 t 5 2%. 

Obviously, the problem is non-convex, but when t is hed ,  it is a convex 

quadratic programming problem. So, we c m  take t as a parameter. Therefore, 
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we have 
-1 

4(~-rin(t)) f o r ~ < t ~ n w i t h z = - & ,  
nn t 01-q 8 f o r r < t < ~ n w i t h z = ! ,  

+- otherwise. 

Example 5 -2.2 is illustrated in Figures 5.2(a) and (b) . Figure 5.2(a) shows the feasi- 

ble region of the example. Figtue 5.2(b) shows f (t) , a piecewise nonlinear fanction 

which by inspection, has two isolated local minimizen z/2 and 27r. So, by Propo- 

sition 5.2.2, the problem dso has two local minimizers (~ /2 ,1 /2 )  and (2r, 1 / 4). 

By Proposition 5.2.3, we can see that ( ~ / 2 , 1 / 2 )  and (27r, 114) are two isolated 10- 

cal minimizers. By Proposition 5.2.8, the problem has exactly two isolated local 

minimizers . 

0 ; f $ 2 7 r  0 ;  r 1 2 ~  

Figure 5.2: (a) Example 5.2.2 (b) f (t) for Example 5.2.2 

Now by combining Proposition 5.2.3 and 5.2.8, ne have the following one to one 

correspondence result on isolated local minimirers between NP and MNP. 

Theorem 5.2.5 Let Assumption B k satisfed. Then (z*, t*) is an isolated local 

minimizer for NP iff  t' is an isolated local minimker for MNP and aTg min{NP(t*)) = 

{2*)- 
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Rom Theorem 5.2.2 to 5.2.5, we can see that for a large h s  of fiuictions g, 

isolated local minimixers for NP and MNP alaays has one to one correspondence. 

In the following section, we are gqing to consider some applications of the r e d t s  

established in this section, 

5.3 Applications 

In this section, we will discuss some applications of the results established in Section 

2. First of ail, we will discuss how to formulate MNP and f. Then we will give 

several concrete examples. Usually, a nonlinear p r o g r d g  problem is given as 

foUows 

where i j ( - )  : En + El and X c En. It is possible that g has no any speud properties 

(for example, convex or quasi-convex) on R(t) for any Z r  = t, where I C (1, - , n) 
and represents a vector indaced by aU components corresponding to the indices 

of I.  However may have some u s a  properties on R(t)  if R(t) is induced by  some 

le-dimensional vector fÙndion h, that is, R(t) = {z E X 1 h(z )  = t ) .  So, MNP may 

where 

In Section 5.2, 

But in (5.21) and 

parameter t is the part of components of variable (2, t) in NP. 

(5.22), parameter t may not be any part of components of z. 



However if we define g(z) as g(z, t )  ; Le., g(z, t )  g(z), 1 r e d t s  established in 

Section 5.2 hold for (5.21) and (5.22). Let us date one of them for (5.21) and (5.22) 

to illustrate this, for exampIe, Proposition 5.2.4. 

Proposition 5.3.1 Assume that g and h are continuow on X ,  X is a compact 

stcbset of E', R(t) is convez and g is puasi-convez on R(t) for each t E p. If z* is 
an isolated local minirnizer for (5.21), Wen t* = h(z*) is an isolated local minirnàier 

for (5.22) and {x E R(t*) 1 g(z) = f(tœ))= {z*). 

Proof. Dehe g(2,t) = g(z), 51 = X x E ~ ,  g i ( ~ , t )  = hi(=) - t j  a d  gj+k(~,t) = 

t j  - h j ( z )  for j = 1, - - , k and m = 28. Since z* is an isolated local rninimiler 

for (5.21), (z*, t*) is an isolated local minimiser for NF. Also it is straightforward 

to check that all other conditions of Proposition 5.2.4 hold. So, t' is an isolated 

local mïnimïzer for (5.22) and {x E R(t*) 1 g(z) = f(tm))= {x'). The proof of the 

proposition is thus complete. O 

In the following, we are going to give several examples. For ail these examples, 

the function f can be computed efficiently by parametric linear programming or 

parametric quadratic programming technique. So, by the results of Section 5.2 and 

the parametric local optimization procedure, we know that a global m;nim;zer (if 

it exists), all isolated local minimisers and some local min;mizers of these examples 

can be computed efficiently- 

Example 5.3.1 Consider 

&+a 
min {q'x + 7 + az+p I Az I b), 

where c,d, q E En, aJ,7 E El, b E Em, A E EmXn and 6 2  + p > O for any 

t E {z E En 1 Az 5 b}. 
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For this problem, a witable choice for h is bz +P. So, 

where R(t)  = {z E En ( Az 5 b, 6% = t - p). Therdore, f ( t )  can be f o d a t e d  

by solving the following parametric programming problem 

This is a parametric linear programming problem. So, it can be solved efficient1y 

for all t. The reader may refer to Best and Ritter [3] or [12] for more d e t a .  Hence 

a global minimizer, ail isolated local minimirers and some local minimisers of (5.23) 

can be computed efnciently by the parametric local optimieation procedure. 

Now let as illustrate Example 5.3.1 by taking 7 = 2, a = -2, /3 = 1, c = (1, -1)', 

q = (-1, O)', d = (1, l)', 

A =  and b = 

XI - 1 2  - 2 
min {2 - XI + 

21 + 1 2  + 1 I O 1 z i I L  O S z a I 1 )  

Then min {c'x + tq'x 1 z E E ( t ) )  have the following solution 
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and 

R(t) = 4  fort < 1 or t >3.  

This implies 
- if 1 st 5 2,  t 

i f 2 < t 1 3 ,  

+a, otheraise 

It is straightforward to check th& t = 1 and t = 3 are two local minima for f and 

t = 3 is a global minimum. So, 

are local and global minima for (5.24), respectively. 

Example 5.3.2 Consider 

where C E EnXn is a symmetric positive semidehite matrix, A E EmXn, C, d,  q E En, 

b E Em, a, P,  7 E El, $(-) : E1 -r E1 is a contin~tous real valued function, dtz+P > O 

for each z E {x E En 1 Az 5 6) and 1 is a positive integer. 

As in Example 5.3.1, a suitable choice for fimetion h is d'z + P ,  that is, R(t ) = 

{X €En 1 AZ S b ,  d t z = t - 0 ) .  SO, 

So, f may be formulated by solving the foilowing parametric programming problem 

min {c'z + tqfz + 2'Cç 1 Az 5 b, 62 = t  - p). 
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This is a parametric qnadratic progranunhg problem and can be solved efficiently. 

The reader may r& to Best [3] for more d e t a .  For some dass of hc t ions  $, 

min {f ( t )  1 t E E1} can be solved efnciently; Le., (5.25) can be solved efficiently for 

a global minimiii:er, al l  isolated local minimiRers and some local mînïmizers by the 

parametric local optimization procedure. 

Remark 5.3.1 Obviously, (5.25) wil l  rednce to (5.23) if 1 = 1, C r O and i> = 0. 

So (5.25) is a generalized f o d a t i o n  of (5.23). 

When 1 = 1 in Example 5.3.2, the model was ased for a portfolio opthkation 

problem in finance by Speakman [28]. 

Example 5.3.3 Consider the indefî.de qnadratic programming problem 

1 
min {c'x + -dCz + z'DQ'x 1 Az < b}, 

2 

where C E EnXn is a symmetric positive semidefinite matrix, D, Q E E"'~, A E 

EmXn, C E  En and b E E*. 

This problem was stndied in Chapter 2 by setting h(z)  = D'x, that is, R(t) = 

(x E En 1 Az 5 b, D'z = t). The reader may refet to Chapter 2 for details. 

Finally, let us analyze a class of cubic mjnimization problems with linear con- 

straints. 

Example 5.3.4 Consider the following cubic minimization problem 

where c E En+', C and & are (n, n) symmetnc matrices, A E E~'("+'), b E Em, 

z E En and y E El are variables. W e  assume that C + y6 is positive semidefinite 

for each y such that {z E En 1 A(%', y')' 5 b )  # #. 
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Obvioasly, we shodd talte y as the parameter t, that is, R(t) = {z E En 1 
A(x', t)' 5 6). So, we have 

So, f may be f o d a t e d  by solving the following patametric p r o g r d g  problem 

This is a paramehic quadratic programming problem with a patameterized Hessian. 

Some specid cases of the problem can be solved efficiently, for example, r a n k ( ~ )  = 1 

or 2. The reader may refer to Best and Caron [4] for more details. Hence some 

special cases of (5.27) can be solved efficiently for a global minimirer, all isolated 

local minimiaers and some local minimizers by the parametic local optimization 

procedure. 

5.4 Conclusion 

We have investigated the relationships between the original nonlinear programming 

problem NP and its main problem MNP. In part idar ,  we have established a one to 

one correspondence between isolated local minimixers for NP and those for MNP 

for a large class of nonlin= progamming problems. These provide some ideas 

and a theoretical background concerning the compatation of a global minimizer, 

all isolated local minimizers and some local minimizers for this class of nonlinear 

programming problems. 

We have shown that for linear fractional programmiag problems, some qaadratic 

hactional programming probiems, some indefinite quadratic programming problems 
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and some cubic p r o g r d g  probIems, a global minimizer (ifit exists), all isolated 

local minimirers and some local minimizen ean be computed efficiently. 



Chapter 6 

Conclusion 

6.1 Introduction 

In this chapter we sammarize the contributions of this thesis and also outline future 

research projects. 

6.2 Contribution of Thesis 

The main contributions of the thesis are iisted bdow. 

(1) We have developed relationships between a given non-convex quadratic pro- 

gramming problem QP and a derived unconstrained (but non-difkrentiable) quadra- 

tic problem MQP. We established that any local minimum of MQP gives a corre- 

sponding local minimum of QP. Also we established that the isolated local minima 

(including the global minimum) of both QP and MQP are in one to one correspon- 

dence. For the case that the Hessian of QP has exactly one negative eigenvalue, 

we have devdoped an algorithm to compute all isolated local minima and some 
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non-isolated local minima of QP by parametric quadratic programming techniques. 

The algorithm WU compute the global minimizer of QP, provided it exists, and will 

provide the information that QP is mbounded from below when that is the case. 

(2) Based on the results stated in (1) and parametric linear programming tech- 

nique we established a decomposition procedure which when applied to indefinite 

quadratic programming problem wi l l  locate all isolated locat minima and some 

non-isolated local minima. The decomposition procedure WU &O locate the global 

minimum of the indefinite quadratic programming problem if it exists, and will 

provide the information that the problem is unbounded from below when that is 

the case. 

(3) We established a polynomial algorithm for a dass of coposotivity problems in 

which the matrix has exactly one negative eigenvalue. A slight modification of the 

algorithm provides an efficient method for a dass of copositivity problems in which 

the matrix has exactly two negative eigendues. 

(4) W e  generalized the results established for non-convex quadratic programming 

problems to general non-convex minimiration problems, that is, the objective h c -  

tion is not quahatic and constraints are not linear. 

6.3 Furt her Research Directions 

In this section we outline some research topics and open questions related to this 

t hesis . 

(1) In Chapter 2 we have devdoped an scient numerical procedure for the non- 

con- quadratic programming problem in which the Hessian has exactly one neg- 

ative eigenvalue. The procedure is clesigned to locate all isolated local minima, 
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some non-isolated local minima and the global minimum. For the same purpose, 

we have developed a decomposition procedure for indefinite quadratic program- 

ming problems. However the decomposition procedare may not be efnüent fkom 

the compntational point of view. Even the indehite QP with a Hessian having 

exactly tao negative eigenvalaes is quite diffaent fkom the non-convex QP with a 

Hessian having exactly one negative eigenvalue. Does there &t an efljcient algo- 

rithm which when applied to the indefinite QP with a Hessian having exadly two 

negative eigenvalues can locate dl isolated local minima, some non-isolated local 

minima and the global minimum? This appears to be an interesting and challenging 

open question. 

(2) In Section 3 of Chapter 3, we have shown that the number of mbproblems 

can be reduced if (M')-'CMa1 contains an indefinite principal submatrix. So we 

need an efficient algorithm to find the smallest indefi.de principal submatrix of 

(M')-'CM-'. Does there exist such an efficient algorithm? 

(3) In Chapter 3 we have developed a decomposition procedure based on the para- 

metric LP technique and a decomposition for indefinite symmetric matrices for 

indefinite quadratic programming problems. Do there exist other decomposition 

procedures for this type of problem? 

(4) In Chapter 5 we have extended the one to one correspondence result for non- 

convex QP to a large classes of non-convex programming problems. In Section 3 

of Chapter 5 we have investigated several applications of the one to one correspon- 

dence result to several classes of non-convex programmihg problems. However in 

these applications the parametric programming problem NP(t) is still a paramet- 

ric quadratic programming problem; i.e., we still use the parametric QP technique 

to compute f (t). Therefore, are there other techniques other than parametric QP 

which we can use to compute f (t) so that we can solve a large classes of non-convex 
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programmïng problems for all isolated local minima, some non-isolated local min- 

ima and the global minimum? 

(5) In Chapter 4 we have shown that the copositivity problem with a Hessian having 

exactly one negative eigenvalue can be solved in polynomial tirne if rank(C) = n. 

Can the problem be solved in polynomial time if rank(C) < n? 
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