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Abstract

The goal of this thesis is to present a method which when applied to certain noncon-
vex quadratic programming problems will locate the global minimum, all isolated
local minima and some of the non-isolated local minima. The method proceeds by
formulating a (multi) parametric QP or LP in terms of the data of the given non-
convex quadratic programming problem. Based on the solution of the parametric
QP or LP, a minimization problem is formulated. This problem is unconstrained
and piece-wise quadratic. A key result is that the isolated local minimizers (in-
cluding the global minimizer) of the original non-convex problem are in one to one
correspondence with those of the derived unconstrained problem. As an application,
the method is applied to the problem of determining if a given symmetric matrix
is copositive on a given polyhedral cone. We show that the copositivity problem in
which the matrix has exactly one negative value can be solved in polynomial time.
The results established for non-convex quadratic programming problems are gener-
alized to the non-convex problems in which the objective function is nonquadratic

and the constraints are nonlinear.
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Chapter 1

Introduction

1.1 An Overview of the Thesis

In this thesis, we consider the following quadratic programming problem
min {¢z + %z'Cm | Az < B}, (L.1)

where c € E*, b € E™, C is an (n,n) symmetric matrix and A is an (m,n) matrix. If
C is positive semidefinite, (1.1) is a convex quadratic programming problem. This
type of problem can be solved by any convex quadratic programming algorithm.
For example, see Van de Panne and Whinston [30], Best and Ritter [10], and Gill
and Murray [15]. This type of problem can also be solved in polynomial time. For
example, see Monteiro and Adler [20], and Ye and Tse [34]. If C is not positive
semidefinite, (1.1) is a non-convex quadratic programming problem. In this thesis,
we will focus our attention on non-convex QP’s. This type of problem was proved
to be NP-hard even when C has exactly one negative eigenvalue (see Pardalos and
Vavasis [26]). In the past several years, some algorithms have been developed to
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locate a global minimizer for a non-convex QP. For example, see Konno et al. [17],
Bomze and Danninger [11], Murty [21], and Vavasis [32] and [33]. Unlike these
algorithms, our goal is to develop an algorithm to locate both the global minimum
and the local minima. The approach we use here is new. It is based on a one to one
correspondence between local and global minimizers for the given problem and the
unconstrained derived problem (Theorems 2.2.4 and 2.2.5). Unlike the convex case,
the number of isolated local minimizers for the non-convex QP could be exponential
in the dimensionality of the problem. For example, the problem
min{~3 (i~ 0S5 <L i=1,000,m)
has 2" isolated local minimizers. In general, it will be difficult to develop an efficient
algorithm to locate all isolated local minimizers and some local minimizers. How-
ever our motivation is a little bit different from this. By developing algorithms for
finding all isolated local minimizers and some local minimizers, we hope that it can
help us to further understand the structure of non-convex quadratic programming

problems and it can provide intuition for developing further efficient algorithms.

In Chapter 2 of this thesis, we present a method which when applied to certain
non-convex QP will locate the global minimum, all isolated local minima and some
of the non-isolated local minima. The method proceeds by formulating a (multi)
parametric convex QP in terms of the data of the given non-convex QP. Based
on the solution of the parametric QP, an unconstrained minimization problem is
formulated. This problem is piece-wise quadratic. A key result is that the iso-
lated local minimizers (including the global minimizer) of the original non-convex
problem are in one to one correspondence with those of the derived unconstrained
problem. A numerical procedure is developed for a special class of non-convex QP’s

in which C has exactly one negative eigenvalue.
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In Chapter 3, we develop a numerical decomposition method based on the the-
ory established in Chapter 2 to locate the global minimum, all isolated local minima
and some of the nonisolated local minima for general indefinite QP. The procedure
proceeds by formulating a (multi) parametric LP in terms of the data of the given
nonconvex QP. We use this and a decomposition procedure to transform the given
n dimensional nonconvex QP having m linear inequality constraints into k subprob-
lem QP’s, each of which has n — 1 variables and m constraints, where 1 < k< m
and k depends on the problem data. Special techniques are developed to ensure
that k is small. The decomposition procedure may then be applied to the subprob-
lem QP’s. A branch of the decomposition procedure terminates when either the
subproblem is concave, the subproblem is convex, the subproblem has a Hessian
matrix having exactly one negative eigenvalue, or, the subproblem has dimension

1.

In Chapter 4, we consider the application of the algorithms developed in Chapter
2 and 3 to a copositivity problem. Especially, for a given (r,n) symmetric matrix
with exactly one negative eigenvalue and a polyhedral cone, it is proved that de-
termining if the matrix is copositive on the cone can be solved in polynomial time
and an algorithm is established for this class of problems. A slight modification of
the algorithm can solve a class of copositivity problems in which the matrix has

exactly two negative eigenvalues.

In Chapter 5, we generalize the techniques of Chapter 2 to a class of general non-
convex programming problems. Here the objective function need not be quadratic

and the constraints need not be Linear.

Finally, in Chapter 6, we summarize the contribution of the thesis and outline

further research directions.
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1.2 Parametric Quadratic Programming

In this section, we review some known results and solution methods for parametric

programming problems.

We consider the following model problem

min c(t)'z + 12'C(t)z } L2

subject to a;(t)'z < b(t), i=1,---,m
for t € T, where c(t),ai(t) € E", b(t) € E' for ¢t = 1,---,m, C(t) is an (n,n)
symmetric positive semidefinite matrix for each t € T and T is a subset of E-.
In the majority of cases, C(t) and a;(t) for ¢ = 1,--~,m will be independent of
t. We assume that c(t), ai(t), b;(t) and C(¢) are continuous on T. Let A(t) =
(a1(t), ==, am()), B(t) = (bu(t),--~,bm(t)), R(t) = {z € R" | A(t)z < b(t) for
some z € E"} and define a real valued function as follows:

sy < | B0+ 100 A2 <BOY, E RO # 4,
400, otherwise.

The following result gives a sufficient condition for f to be lower semicontinuous.

Theorem 1.2.1 For any t™ € T, if the following system

A(t")s <0,
c(t*)s <0,
C(t)s=0

has no nonzero solutions, then f is lower semicontinuous at t* relative to T'.

Proof. See Best and Ding [5].

There are some sufficient conditions for f to be continuous. However such results

will not be needed in this thesis. So, we will not discuss them further.
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Associated with (1.2) are the Karush-Kuhn-Tucker conditions
ai(tYz(t) < bi(t), i=1,---,m, ‘
—c(t) = C()(t) = T2, m(t)aslt),
ul(t) 20, i=1,-,m,
wi(t)(a:(t)2(t) = Bi(8) = 0, i =1,---,m.
The multiplier, or dual variable, associated with constraint ¢ is u;(£). Theorems
1.2.2—1.2.5 and Corollary 1.2.1 are the well known Karush-Kuhn-Tucker conditions
(see [19]). The importance of the Karush-Kuhn-Tucker conditions is demonstrated

b (1.3)

/

in the following theorem.

Theorem 1.2.2 (Necessary and Sufficient Conditions). For each t € T, n-vector
z(t) is an optimal solution for (1.2) if and only if there ezist numbers uy(t),-- -, um(t)
which, together with z(t), satisfy the Karush-Kuhn-Tucker conditions (1.3).

Related to the primal problem (1.2) is the dual problem defined by
max Q(z,t) — I, wi(bilt) — ai(t)'z)
subject to — c(t) — C(t)z = £ 2, u;ai(t), (1.4)
; 20, t=1,--+,m,
where
Q(z,t) = c(t)'z + %z'C(t)z.
We will use u to denote the m-vector (u;,---,%n)’ and u(t) to denote m-vector

(ua(t), *+ -, um(t))’. The following theorems indicate the relationship between (1.2)
and (1.4).

Theorem 1.2.3 (Weak Duality). For eacht € T, if z,(t) is feasible for the primal
and (z2(t), u(t)) ts feasible for the dual, then

Qz1(t),£) 2 Q(za(t), 1) = 3 w(t)(Bilt) — aslt) za(2))-
=1
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Corollary 1.2.1 For eacht € T, (1.2) has an optimal solution if and only if both
(1.2) and (1.4) are feasible.

Let us define a set P as follows:

ai(t)z < b(t), t =1,---,m,
P=gteT| —c(t) - C(t)z = L%, wiai(t),

u; > 0for somezand u;, 1=1,---,m

Corollary 1.2.1 implies that (1.2) has an optimal solution if and only if ¢ € P.

Theorem 1.2.4 (Strong Duality). For eacht € T, if z(t) is an optimal solution
for (1.2), then there ezists an m-vector w(t) such that (z(t),u(t)) is optimal for
(1.4) and

Q0. 6) = Q((8)6) = 3 w(e)b(e) - at) ()

Theorem 1.2.5 (Complementary Slackness). For eacht € T, let £(t) and (z(t), u(t))
be feasible for (1.2) and (1.4), respectively. Necessary and sufficient conditions for
sitmultaneous optimality of z(t) and (z(t),u(t)) are

ui(t) > 0 implies a;(t)'z(t) = bi(t), fori=1,---,m,
a;(t)'z(t) < bi(t) implies us(t) =0 fori=1,--.,m.

Let I be any subset of {1,---,m} and define a subset P(I) as

4 3

ai(t)'z < bl(t)y 1= 11 cee,m,

—c(t) — C(t)z = T;cruiai(t),

P(I)=+teT
u; >0foriel,

ai(t)'z = bi(t) for ¢ € I for some z and u; |
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By defining u; = 0 for ¢ € I and Theorem 1.2.5, we can see that (1.2) has an optimal
solution for any ¢ € P(I). The reason we define P([) is that it may be possible to
write down the explicit expression for z(t) when ¢ € P(I). For example, if

C(t) Aty
Ar(t) O

is nonsingular for any t € EF, then

w0) | _[cw aey ] [ -
u,-(t) A[(t) 0 b(t)

for any t € P(I), where A}(t) is the matrix whose columns are the gradients of
those constraints in I, and u(t) is the vector whose components are those u;(t)

associated with the columns of A}(¢). From the definition of P(I), we have

P=\{P()[IC L, m}}. (15)

Since {1,---,m} has a finite number of subsets, P is a union of the finite number
of subsets. For any [;,I, C {1,---,m}, it is possible to have P([;) C P(Il;) and
P(I,) # P(Iz). So, the right hand side of (1.5) may not be a partition of P. A
main idea of the numerical procedures for parametric programming problems is
to efficiently partition P into finite number of regions P(I) and get the explicit

expression for the optimal solution on each of these regions.
We illustrate these ideas by tiking C(t) = C, c(t) = c + tq, ai(t) = a; and
bi(t) = b +tp; for i = 1,--- m and T = [t,f] C E'. That is, we consider the

following parametric quadratic programming problem

(16)

min (c +tq)'z + 1z'Cz
subject to a;z < b; +tp;, 1=1,---,m
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for T = [¢,£] C E!, where ¢,q,a; € E*, b;,p; € E* fori = 1,---,m; C is an (n,n)
symmetric positive semidefinite matrix, ¢ is finite or —oo and £ is finite or +co. Best
[3] has developed a numerical method for (1.6). An application of Best’s method to
(1.6) will produce numbers ¢o, ¢y, - - - , £, and n-vectors hos, hyi, ¢ = 1,- - -, v satisfying

zi(t) = ho;i + thy:

is optimal for (1.6) for all ¢ with ¢;_; <t <t;and foralli=1,---,». It is possible
to have tc = ¢t and/or ¢, = £. If t; > t, the method will conclude that (1.6) is
either unbounded from below or infeasible for ¢ < ¢o, and, the relevant possibility
will be given. Similarly, if ¢, > ¢, then the method will conclude that (1.6) is
either unbounded from below or has no feasible solution for ¢ > t, and the relevant

possibility will be stated.

The results and ideas for parametric quadratic programming problems discussed

in this section will be used in Chapters 2, 3 and 5.



Chapter 2

Global and Local Quadratic

Minimization

2.1 Introduction

Here we consider the model non-convex quadratic programming problem
QP min{c'z + %z’ Cz+2'DQ'z | Az < b},

where c € E*, b € E™, A is an (m,n) matrix, D and @ are (n, k) matrices, C is
a symmetric (n,n) positive semidefinite matrix, ¥ < n and z € E" is a variable.
Corresponding to QP, we consider the parametric quadratic program:

1
2
where t is a parameter in E*. Let R and R(t) be the feasible regions for QP and
QP(t), respectively. Let arg min{QP(t)} denote the set of all optimal solutions for
QP(t). Finally, we formulate

QP(t) min{c'z + -z'Cz +t'Q'z | Az < b,D'z = t},

MQP min{f(¢) | ¢ € E*},

9
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where

fit) = inf {¢z + }z'Cz +t'Q’z | z € R(t)}, if R(t) # ¢,
<400, otherwise.

The non-convexity of the objective function of QP stems from the term z'DQ'z.
One might question the generality of this model and suggest that the term be
written as z’Hz, where H is a more general symmetric matrix, perhaps satisfying
some properties. This situation has been analyzed in Chapter 3, where it is shown
that for any symmetric matrix H having full rank, there exist (n, k) matrices Q
and D satisfying H = }[DQ’ + QD’] (and so z’Hz = z'DQ’'z) if and only if H has
at least two nonzero eigenvalues of opposite sign. In addition, when the required
condition is satisfied a method to construct such D and Q is given. For the purposes
of this chapter, we will assume that D and @ are already available.

We note that, in general, the problem of checking isolated local optimality is
NP-hard, See Murty and Kabadi [22], and, Pardalos and Schnitger [24].

We will organize this chapter as follows. In Section 2.2, we will develop the
relationships between QP, QP(t) and MQP. In particular, we will establish the
one to one correspondence between isolated local minimizers of QP and MQP. In
Section 2.3, we will specialize these results to the class of non-convex quadratic
programs with a Hessian which has exactly one negative eigenvalue. We will give
an algorithm that can not only find a global minimizer, but can also find all isolated

minimizers and some non-isolated local minimizers.

2.2 The Relationships Between QP and MQP

We begin this section with a small example problem which will illustrate the critical
relationship between QP and MQP.
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Example 2.2.1

minimize : Z;Z;
QP subject to : z; > 0.5, 22z, + 8z; > 27,
81:1 + 22z3 2 27, T3 Z 0.5.

Here, C = 0, n = 2 and we may take D = (1,0) and Q = (0,1)’. QP(t) can be

written as

minimize : {z;
subject to: z; > 0.5, 22z; + 8z, > 27,
QP(t)
8z, 4+ 22z, > 27, z, > 0.5,

I =t.

The solution of QP(t) is a piece-wise linear function of ¢ and is summarized in Table

2.1. Examination of QP(¢) with Table 2.1 gives f(t):

£(27 — 22¢)/8, if 0.5 <t<0.9,
ft) =14 #(27—8t)/22, f09<t<2,
t/2, if t> 2.

Example 2.2.1 is illustrated in Figures 2.1(a) and (b). Figure 2.1(a) shows the given
non-convex problem. The feasible region is shown as the shaded area. The level
set z1z2 = 0.81 is shown with a broken line. It is clear from the figure that there
are local minima at (0.5,2)’ and (2,0.5)’ and the global minimum occurs at (.9,.9)".
Figure 2.1(b) shows f(t), a piece-wise quadratic function which by inspection, has
isolated local minima at ¢ = .5, and 2 and a global minimum at ¢ = .9. Using
Table 2.1, we see that arg min{QP(.5)} = (0.5,2)’ , arg min{QP(2)} = (2,.5)' and
arg min{QP(.9)} = (.9,.9)". Thus, the local (global) minima of QP and f(t) are

in one to one correspondence for this example. Also note that f(t) is a piece-wise
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Table 2.1: Optimal Solution for QP(¢) for Example 2.2.1

t <05 05<t<09 09<t<2 t>2.
no
0 1 0 1 0 1
feasible +t +i +t
27 22 27 _8 1 0
solution s s 22 2 2
T2 f(t)
A A
2 — Al -
I ’
SOOI & oy ’
9 OSSN g
N Saane
5 — P~
1Ty = 0‘81/ T
0 T 5 T 1 T >t

0 b 9 2 0 5.9 2
Figure 2.1: (a) Example 2.2.1 (b) f(t) for Example 2.2.1
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quadratic function of a single variable and so it is straightforward to obtain its local

and global minimizers.

Notice that in Example 2.2.1, the local minimizers for both QP and MQP are
isolated. The requirement that the local minimizers of QP be isolated is key in
obtaining the one to one correspondence between such points of QP and MQP.
The final result will be formulated in Theorem 2.2.4 and will be a consequence of
Theorems 2.2.1-2.2.3, following.

Theorem 2.2.1 Let t* be a local minimizer for MQP with f(t*) > —oo. Then any
z~ € arg min{QP(t")} is e local minimizer for QP.

Proof: Since t* is a local minimizer for MQP, there exists a 4 > 0 such that
f(t) > f(t") for any t € Bs(t"), (2.1)

where B;(t*) = {t € E* | ||t — ¢*|| < ¢}. Now assume to the contrary, that there is
an z* € arg min{QP(¢")} which is not a local minimizer for QP. Then there exists
a sequence {z'} such that

do + %(z‘)'Cz‘ + (&)Y DQ' < do + -;—(:::')'Cz' +(EYQ'z,
where Az* < b, and z* — z". Since z" € arg min{QP(¢")},
fE) = do= + %(z‘)'Cz' +(t)Q'z"
Hence
dzt + %(:c‘)’Cz‘ + ()Y DQ’'z* < f(t7). (2.2)
Since z* — z*, D’z* — D'z* = t*. Thus, there is an M > 0 such that

D'z’ € Bs(t"), wheneveri> M. (2.3)
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Let t: = D'z for i > M. Then

fE) = mf{dz +52'Ca+ (YQz] Az <b, D'z = £}

< doi+ %(zi)'Cz‘ +(EYQ' (since Az < b, D'z = £)

= d'+ %(zi)'Czi + (') DQ'Z < f(t7) (from (2.2)).
But from (2.1) and (2.3), we have f(t‘) > f(t*), a contradiction. The assumption
that there is an z* € arg min{QP(¢*)} which is not a local minimizer for QP leads

to a contradiction and is therefore false. The proof of the theorem is thus complete.
a

If ¢* is an isolated local minimizer of f on E*, we have the following further

result.

Theorem 2.2.2 Ift" is an isolated local minimizer for f on E* with f(t*) > —oco
and arg min{QP(t*)} is the singleton point {z"}, then z* is an isolated local mini-

maizer for QP.

Proof: From Theorem 2.2.1, z* is a local minimizer for QP. If z* is not an isolated
local minimizer for QP, there exists a sequence {z'} C R, z* — z" and z* # z*
for all i such that ¢z* + }(2')Cz* + (2°) DQ'z* = dz" + Y(z")Cz* + (z”)'DQ'z".
Let £ = D'z*. Then ¢ — t* and f(t) = f(t*). Since arg min{QP(t*)} = {z"}
and z* # z* for all i, t* # ¢* for all i. This contradicts that ¢* is an isolated local

minimizer for MQP. The proof of the theorem is thus complete. 0

Theorem 2.2.2 is illustrated in Example 2.2.1 where each of the three local mini-
mizers for f() are isolated, their corresponding sets, arg min{QP(¢)}, are singletons
and each such point is an isolated local minimizer for QP. The following example il-
lustrates Theorem 2.2.1 and in addition, shows that the condition arg min{QP(¢*)}

be a single point cannot, in general, be removed from Theorem 2.2.2.
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Example 2.2.2

. 1 1 13 1
QP xmn{—-zzl - ‘2'32 + 122 I ) > 57-8— <z < —}.

Here we take C =0, n =2, D = (1,0)’ and @ = (0,1)’. Then D'z = z,, Q'z = z,
and QP(t) becomes

1 1 1 3 1
in{—-— . > o - -
QP(t) min{ 4t+(t 2):1:;) | ¢ > 53 <z < 3 },

from which f(t) is derived as:

f(t)={ e FE25

400, otherwise.

The situation is illustrated in Figures 2.2(a) and 2.2(b). The feasible region
for QP is shown as the shaded area in Figure 2.2(a). It is clear that t~ = 1 js
an isolated local minimizer for f on E!. Indeed, it is also the global minimizer.
See Figure 2.2(b). However, arg min{QP(t")} = {(},22)' [ < z; < !} and by
Theorem 2.2.1, each one of these points is a local (indeed, global) minimizer for QP.
These are shown by the darkened line in Figure 2.2(a). Clearly, none of the local
minimizers for QP is isolated. Thus the condition arg min{QP(¢*)} be a singleton

is necessary in Theorem 2.2.2.

Example 2.2.3

. 1 1 1 1
QP mm{-zzl = 3% + 1% |24 > 510z < 5}

Here we take C =0, n = 2, D = (1,0)' and @ = (0,1), Then D'z =z, Q'z = z,
and QP(t) becomes

1 1 1 1
inf—= S > - < < -
QP(t) min{—gt + (¢ = 3)2[¢2 5, 0<2 < 5},
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2 f(t)
A A
1/2 + local { ..................... 1/8 — -
3/8 | minima | Lol _
/ 0 T / >t
1/4 r —> = 1/2,/3/2
0 1/2 1 -1/8 —
Figure 2.2: (a) Example 2.2.2 (b) f(t) for Example 2.2.2
Z2 f(t)
) L SR
5 local {:;:;:;:;:;:;:;:;:;: "1 o5 1.
- Ll —125 —
25 - manima ()00 N\
SRR —.25 — .
O > Iy
0 5 1.
Figure 2.3: (a) Example 2.2.3 (b) f(t) for Example 2.2.3

from which f(#) is derived as:
3, ift>3,

ft) = { S

+o00, otherwise.
The situation is illustrated in Figures 2.3(a) and 2.3(b).
Observe that

acg min{QP(3)} = { (5,2 [0 <z < 3}

and for ¢ > 1, arg min{QP(t)} = (¢,0)". Also observe that {(,2;)'| } < z2 < 3}
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are local optimal solutions for QP. In particular, z* = (1,3})’ is a local optimizer
for QP but ¢* = D'z" = { is not a local minimizer for f on E'. Indeed f does not

possess a local minimizer on E!.

Example 2.2.3 shows that a one to one correspondence between local minima
of QP and f(t) will not hold without some restrictions. The key requirement
in establishing the correspondence is that corresponding local minimizers for QP,
QP(t) and f(t) should each be isolated. This will be established subsequently. First

we need the following lemma.

Lemma 2.2.1 Let = be an isolated local minimizer for QP and let t* = D'z". Let
{t'} be any sequence with t* — t* and let z* € arg min{QP(t*)}. If there ezists an
M >0 such that f(t') < M for all i, then {z'} is bounded.

Proof: Since z* is an isolated local minimizer for QP, there exists a § > 0 such

that

/= 1 =\/ = w\/ ! - ! 1 ’ ’ 14

dz +§(z )'Cz" + (z°) DQ'z <cz+§zCz+zDQz (2.4)
for any z € (Bs(z*) N R) \ {z"}. So,

c':::'-}—%(a:')’Cz'-{-(t')’Q':l:' <clz+_;_zl

Cz +(t7)'Q'z
for any z € (Bs(z") N R(t"))\ {z*}. Since dz + }2'Cz + (t*)'Q’z is convex, we have
dz" + %—(z‘)'Cz' +()YQ'z" <z + %z’Cz + (") Q'z (2.5)

for any z € R(t*) \ {z"}. Hence arg min{QP(¢*)} = {z*}. This implies that there

does not exist a nonzero vector s satisfying the following conditions

As <0, D's=0, (c+Qt*)s <0, Cs =0, (2.6)
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otherwise z* + s will also be an optimal solution of QP(t*) which contradicts
arg min{QP(t*)} = {z"}. By Theorem 1.2.1, f is lower semi-continuous at ¢*.
Therefore for any 4 > 0 there exists an € > 0 such that f(£) > f(¢*) — v for any
t € Be(t"). Since t* — t*, there exists an N > 0 such that ¢ € B.(¢") for all i > N.
So,

fE)-v<fEYs M (2.7)

for all : > N. Now assume that on the contrary, {z‘} is unbounded, then {z*/||z’||}
has a convergent subsequence. Without loss of generality, let

z . ;
Jlim o = and Jim 2] = +oo. (2.8)

From f(t') = dz* + }(z*)'Cz’ + (#)'Q'Z’, (2.7) and (2.8), we have

is'C.ew = lim £¢) 0

2 oo |22
and
oo (@)0Z L f(E)
c+ Qt")Ys + lim — = lim —= ={,
(et QEYs + B0 Sl = &2 1
le.;
1\ 'Y
Cs=0and (c+Qt")s = —lim (z)Cz <0

me 2l T
From Az’ < band D'z = ¢!, we have As < 0 and D’'s = 0. Thus we have exhibited
a non-zero s satisfying (2.6). This is a contradiction and the proof of the lemma is

complete. (m]

Theorem 2.2.3 If z* is an isolated local minimizer for QP, then t* = D'z" is an
isolated local minimizer for MQP, f(t*) = dz*+3(z")'Cz"+ (') Q'z* and arg min
{QP(t")} ={="}.
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Proof: As the proof of Lemma 2.2.1, we have (2.4), (2.5) and f(t) > f(t*) —« for
any t € B,(t"). Thus,

1 - = -
f(t) =<z + -2-(3')'0:1:' + (£°)'Q'z" and arg min{QP(¢t")} = {="}-

Now assume to the contrary, that ¢* is not an isolated local minimizer for MQP.
Then there exist two sequences {z°} and {t‘} with ¢ = D'z?, ¢ — ¢*, t' € B.(t")
and z* € R\ Bj(z") such that

i L i i i i -

¢z’ + () Cz* + () Q'z* = f(¥') < F(¥°)-

By Lemma 2.2.1, {z*} is bounded, so there exists a convergent subsequence. With-
out loss of generality, let z* — z°. Then z° # z*, t* = D'z%, Az® < b and

crzn + é(zo)lczo + (tc)Ileo g f(t‘).
This contradicts (2.5). The proof of the theorem is thus complete. m]

Combining Theorem 2.2.2 and Theorem 2.2.3, we have the following result.

Theorem 2.2.4 A point z~ is an isolated local minimizer for QP if and only ift™ =
D’z" is an isolated local minimizer of MQP, f(t*) = dz" + }(z")Cz™+ (£°)Q'z"
and arg min{QP(t*)} = {z°}.

Remark 2.2.1 From Theorem 2.2.1 and Theorem 2.2.4, we know that f will keep
all of the critical information concerning isolated local minimizers of QP and some
of the local minimizers of QP. Thus if we can locate all local minimizers of f we

will obtain all isolated local minimizers and some local minimizers of QP.

Although the one to one correspondence between local minimizers of QP and
MQP requires the condition of isolated local minima, this condition is not required
for global minima as given in Theorem 2.2.5 below. The proof of this result can be
obtained from definitions directly.
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Theorem 2.2.5 A point t* € E* with f(t*) > —oo is a global minimizer of MQP if
and only if QP has a global minimizer z* such that D'z" =t*, f(t*) = dz* + 3(z")’
Cz* + (t7)'Qz".

We complete this section by showing how to recognize whether a local minimizer
is an isolated local minimizer. Suppose that we know t* is an isolated local min-
imizer and we want to know whether corresponding point z* is also an isolated
local minimizer. In doing so, we need only verify that arg min{QP(t*)} = {z"}.
If C is positive definite, then QP(t) is strictly convex. In this case, z* is neces-
sarily uniquely determined and consequently arg min{QP(¢*)} = {z*}. Otherwise,
since QP(¢*) is convex, we may assume that z* is computed by some quadratic pro-
gramming algorithm and (%,v) = (%, -+, %m,v1,- -, %) is the associated vector of
multipliers, where u and v correspond Az < b and D'z = t*, respectively. Now by
Theorem 4.14 of Best and Ritter [9], arg min{QP(¢*)} can be represented by the
set of z which satisfy

D'z =t*, Cz =Cz"*,

aiz = b;, for all £t with 1 <¢<m, and u; > 0, (2.9)

a;z < b;, for all  with 1 <i<m, and u; =0.
Let I = {i|1 < i <m, alz" = b;} and A be a submatrix of A induced by i-th row
of Afor: € I. If rank([D, C, A}]) < n, then arg min{QP(£*)} is not a singleton, i.e.;
z" is not an isolated local minimizer. In this case, an alternative local minimizer
can be computed easily from the null space of [D, C, A})’. In fact, for any y € E", if
[D,C, AfJ'y = 0 with y # 0, there is a nonzero number a such that z* + ay satisfies
(2.9), i.e.; z* + ay is an alternate local minimizer. If rank([D, C, A}]) = n, we need
to consider the following linear prograzhming problem:

u = min{ ¥ o'z | (29) }.

i€l
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If p = Yierb: then arg min{QP(¢*)} is a singleton, and z* is an isolated local
minimizer. Otherwise, £* is not an isolated local minimizer and an optimal solution

of the linear programming problem is an alternative local minimizer.

In next section, we are going to discuss some applications of the results estab-

lished in this section.

2.3 The Case of a Single Negative Eigenvalue

In this section we consider our model problem with D and @ being n-dimensional
vectors; 1.e., k = 1. To emphasize this we replace D and @ with d and g, respectively.
The model problem QP becomes

QP, min{c'z + %—z'Cz + (d'z)(q'z) | Az < b},

where ¢ € E*, b € E™, A is an (m,n) matrix, d and q € E*, C is a symmetric (r,n)
positive semidefinite matrix, and z € E*. QP(¢) becomes

QP,(¢) min{c'z + %z'Ca: +tq'z | Az < b,d'z = t},

where ¢ is a scalar parameter. Let R, and R,;(t) be feasible regions for QP, and
QP, (t), respectively. Let arg min{QP;(¢)} denote the set of all optimal solutions
for QP,(t). Finally, we formulate

MQP, min{f,(t) | ¢ € E'},

where

f (t) _ inf {c'z + %3'03 +tq'z I T E R;(t)}, if Rl(t) # ¢,
! +00, otherwise,
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and we have used the subscript "1” throughout the above to emphasize that & = 1.

If QP, were written with a more general Hessian matrix H, rather than C +
3(d¢’ + qd’) then the resulting problem could be transformed into one having a
Hessian matrix of the latter form provided H had exactly one negative eigenvalue
(hence the title of this section). Details of this transformation are given in the next
chapter.

The problem QP, has been shown to be NP-hard by Pardalos and Vavasis [26].
Konno et al. [17] proposed a solution method for a variation of QP, for which
the constraints were equalities and non-negativity constraints. The method used a
parametric form of the simplex algorithm and was designed solely to find a global
minimizer. In this section, we will also develop a method to solve QP,. However, in
contrast to the method of Konno, our method will not only locate a global minimizer
(if one exists), but also all isolated local minimizers and some non-isolated local
minimizers. Indeed, even if QP, does not possess a global minimizer our method
will locate all isolated local minimizers and some non-isolated local minimizers.
Moreover, we will show that isolated local minimizers can be distinguished from

non-isolated local minimizers by solving a linear programming problem.

Note that QP,(¢) is a convex parametric quadratic programming problem, with
the parameter being a scalar. Note also that the parameter ¢ occurs in both the
linear part of the objective function as well as the right hand-side of a constraint.
QP,(t) must be solved for all possible ¢. An appropriate method to use is that of
Best [3]. Best’s method allows explicitly for a parameter in both the linear part of
the objective function and the right hand-side of the constraints. Also, it allows
for the possibility that the Hessian of the parametric QP is positive semidefinite,
rather than just positive definite. In addition, it supplies critical information as to
the status of QP,(¢) at the end points of the parametric interval.
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Applying Best’s method to QP, (t) will produce numbers £, ¢,, - - - , ¢, and n—vectors
hoi, ks, 1 =1,...,v satisfying

zi(t) = hos + th A (2.10)

is optimal for QP,(t) for all £ with ¢;_; <t <t;andforallt=1,...v. It is possible
to have ¢, = —oo and/or ¢, = +o00. If {; > —oo, Best’s method will conclude that
QP,(t) is either unbounded from below or infeasible for ¢ < to, and, the relevant
possibility will be given. Similarly, if ¢, < co, then the method will conclude that
QP,(t) is either unbounded from below or has no feasible solution for ¢ > ¢, and
the relevant possibility will be stated. Table 2.1 gives the relevant information for
Example 2.2.1.

Having solved QP,(t), it remains to solve MQP,. Using ko; and h;; from (2.10),
define the constants

vii = choi + 3hoi'Chas,
Yo = chyi + hoi' Chy; + ¢'hei, (2.11)
Yai = +h'Chy + ¢'hy;,

for i =1,...,v. From (2.10), (2.11) and the definition of f(t), we now have

T +yat +yat?, o <t<t,,

+ Yot + 7a2t?, ity <t <ty
flE) = M2 T Y22t T V32 1S 2 . (212)

| N + 72t +73utz, if t,_1 <t<t,.

This shows that f,(t) is piece-wise quadratic on v adjacent intervals. This is illus-
trated in Figure 2.1(b) with v = 3,40 = .5, ¢, = .9, t; = 2., and {5 = c©o. The
simple nature of f(t) allows the determination of its local minima as summarized

in Table 2.2.
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Case 1 concerns points where the left derivative of f;(t) is negative and the right
derivative is positive. This possibility is illustrated in Figure 2.1(b) with ¢; = .9
and t; = 2. Case 2 corresponds to f,(£) being strictly convex on [t;_,,t;] and the
unconstrained minimum of that quadratic piece lying within the interval. Case 3
requires that £, be finite, f(t) be increasing at ¢; and that there be no feasible
solutions below £,. This is illustrated in Figure 2.1(b) for £, = .5. Note that the
relevant possibility will be given by Best’s parametric QP method. Also note that
if the QP algorithm determines that QP,(t) is unbounded from below for ¢t < 2,
then £y is not a local minimizer for f;(t). For the right-hand end of the interval,
Case 4 is analogous to Case 3. Case 5 occurs when f(t) is constant on the open
interval (¢;_;,%;), in which case any point in the interval is a local minimizer. The
end points of the interval may or may not be local minimizers. See the discussion

following Theorem 2.3.1.

The following result is an immediate consequence of Theorem 2.2.1

Theorem 2.3.1 Let t1,t3,/-,t) be obtained from (2.10), (2.11) and Table 2.2.
Let z7 € arg min{QP(¢;)} fori = 1, N. Then z},i = 1,-+-,N are all local
minimizers of QP,. Moreover, if QP, possesses a global minimizer, then it is
that zy which gives the smallest objective function value for QP, among all the
{z:li=1,---,N}.

The formulation of Theorem 2.3.1 does not explicitly allow for Case 5 of Table
2.2. because it deals with particular points rather than points and intervals. If
Case 5 does apply, then arg min{QP(t)} are all local minimizers of QP,. If the
left derivative of f(t) is negative at £;_; then ¢;_; is also a local minimizer of f(t)
and consequently all elements of arg min{QP(t;—,)} are local minimizers of QP,.
The analogous result holds for the right-hand end of the interval. The information
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Table 2.2: Determination of Local Minimizers for f(¢)

Case Range Conditions Local Min
of i of f(t)
1 1<:<v-1 Y2i + 273t: < 0, and, t;
T2,i+1 + 2735018 2 0
2 1<:<v Tsi > 0, and, —72:/(27s:)
tioy < —7/(2v3) < t;
3 tg > —00, Y20 + 27300 > 0 to
and R;(t) =0 fort < g
4 t, <00, v + 273t <0 t.,
and Ry(t)=0fort>t,
o 1<:<v Ti = Yai = 0 Lha<t<t;

concerning whether QP; possesses a global minimizer can be obtained from Best’s

algorithm, (2.10), (2.11) and Table 2.2. This can be summarized as follows. When

25

Best’s algorithm terminates with a finite £q, it also specifies that either QP,(¢) is

unbounded from below for ¢ < ¢, or, Ri(t) = ¢ for t < t;,. The analogous result
holds when ¢, is finite. Thus if R;(t) # ¢ for t < ¢, with ¢, being finite or Ry(t) # ¢

for t > ¢, with ¢, being finite, then QP; has no global minimizer. Otherwise both

min {73 +Tat +1at’ |t <t <t}

and

min {7111 + vyt + ’Yautz | -1 <t < tv}

have global minimizers if and only if QP, has global minimizer.
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We illustrate this procedure by applying it to an example from Floudas and
Pardalos. [14].

Example 2.3.1
minimize : 6.5z — 0.522 —y; —2y; —3ys — 2y — Ys

QP, subjectto: AX <), 0< X =(z,y), 5 <1,i=3,4,
ySSzazeElsyEEsa

where _ - - 1
16 1 2 8 1 3 5

-1 -8 -4 -2 2 4 -1

b=| 24| andA=| 2 05 02 -3 -1 —4

12 0.2 2 01 -4 2 2

i 3- i -0.1 -0.5 2 5 -5 3_

This problem has a known global minimizer (z*,y*) = (0, 6,0, 1, 1,0)’ with optimal
objective function value of —11.

An application of our algorithm to this problem confirms that the above solu-
tion is indeed the global optimum. In addition, it also determines that the global
minimizer is isolated and that (z,§) = (13.83,0,0,1,0.19,0.12)' is an isolated local
minimizer with the objective function value —9.26. That is, the problem not only
has an isolated global minimizer, but also a previously undiscovered isolated local

minimizer.

In order to further test our algorithm, we formulated some variations of this
problem. In all cases, the constraints remained the same and only the linear part of
the objective function was changed. The modified objective functions, g;(z,y), i =
1,...4 are shown in Table 2.3 along with their corresponding vectors d and gq.
The original Floudas and Pardalos problem corresponds to g;(z,y). Each of the



CHAPTER 2. GLOBAL AND LOCAL QUADRATIC MINIMIZATION

Table 2.3: Objective Functions for Test Problems

gu(z,y) = —052%+6.52 —y1 — 2y, — 3ys — Y4 — ys

g2(z,y) = —0.5z> + 6.5z — 2y, — 3y3 — ys + 2zy1 + 32y,
—Szy; — 4Ty + 6zYs

ga(z,y) = —0.5z% + 6.5z — 4y, — 4ys — ys + 2zy; + 3zy-
—dzy; — 4zys + 6zys

gs(z,y) = —0.52% + 6.5z + 2zy; + 3zy2 + Szys — 4zy, + 6zys

Table 2.4: Local and Global Minima for Four Test Problems

Objective Objective Solution Points Type of Minimum
Function Value

qi(z,y) -11 (0,6,0,1,1,0) global min, isolated

—9.2567 (13.83,0,0,1,0.19,0.12)’ local min, isolated

g2(z,y) —105 (12,0,0,1,1,0) global min, isolated

—5.6583  (0,0.92,1.33,1,0.84,0) local min, isolated

—5.0718 (0.52,0,1.44,1,1,0) local min, isolated

gs(z,vy) —106 (12,0,0,1,1,0) global min, isolated

—9.3166  (0,0.92,1.33,1,0.84,0)" local min, isolated

—8.9409 (0.5,0,1.45,1,0.97,0) local min, isolated

—8.9428 (0.52,0,1.44,1,1,0) local min, isolated

alz,y)  —46.875 (12.5,0,0,0,1,0  global min, isolated

1.3672 (0.625,0,0,0,1,0) local min, isolated

0 (0,1.25,0,0,1,0) local min, non-isolated

0 (0,7.6,0,0.8,0,0) local min, non-isolated

27
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four examples was solved with d = (1,0,0,0,0,0). The first example used ¢ =
(-0.5,0,0,0,0,0)’ and the remaining three used ¢ = (~0.5,2,3, —-5,—4,6). The
results of applying our method to these problems are summarized in Table 2.4.
Note that the results summarized in Table 2.4 show that our method located two
non-isolated local minimizers for the fourth test problem. This shows that although
we cannot guarantee that our method will find all non-isolated local minimizers, it

still may find some, or even all.

2.4 Conclusions

We have developed relationships between a given non-convex quadratic program-
ming problem QP and a derived unconstrained (but non-differentiable) quadratic
problem MQP. We have established that any local minimum of MQP gives a corre-
sponding local minimum of QP. Furthermore, the isolated local minimizers of both

QP and MQP are in a one to one correspondence.

For the case that the Hessian of QP has exactly one negative eigenvalue, we
have developed an algorithm to compute all isolated local minimizers and some
non-isolated local minimizers of QP. In addition, the algorithm will compute the
global minimizer of QP, provided it exists, and will provide the information that
QP is unbounded from below when that is the case. The algorithm is illustrated
by applying it to a problem from the literature and some variations of it.



Chapter 3

A Decomposition Procedure For

Non-Convex QP

3.1 Introduction

In Chapter 2, we have developed a theory to find all isolated local minimizers and

some non-isolated local minimizers for the non-convex QP
min{c'z + z'DQ’z | Az < b} (3.1)

by parametric quadratic programming, where D and Q are (n, k) matrices. The
model problem used in Chapter 2 includes a convex quadratic term in the objective
function for (3.1). However, it is not useful to include it here and we omit it. As

in Chapter 2, we proceed by formulating the parametric LP

min{c'z + ¢t'Q'z | Az <b, D'z =t}, (3.2)

29
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where ¢ is a parameter vector in E*. Letting R(¢) denote the set of feasible solutions

for (3.2), the derived problem for (3.1) is
min{f(¢) | ¢t € B*}, (3.3)

where

£ : { inf {dz +¢Q'z | z € R(t)}, if R(t) # &,
+o00, otherwise.
It is shown in Chapter 2 that the isolated local minimizers of (3.1) and (3.3) are in
one to one correspondence. In particular, if t* is a local minimizer for (3.3) then

any optimal solution for (3.2) with ¢ = ¢* is a local minimizer for (3.1).

Although the theory was developed for arbitrary k < n, the numerical proce-
dures developed in Chapter 2 were limited to the case of K = 1. In this chapter,
we address the problem of arbitrary k by using a decomposition approach. The
method proposed here will begin with the model problem

min{c'z + z'Cz|ajz < b;, i =1,...,m},

where C is (n,n) and symmetric. We then give a method which will either construct
matrices D and @Q satisfying 2’ DQ’z = z'Cz (so that the model problem is rewritten
in the model form (3.1)), or, determine that no such matrices D and @ exist. In
the former case, the decomposition method then generates m subproblems each
of dimension n — 1, where m is the number of constraints in (3.1). Solution of
all of these m subproblems gives a solution to the given problem. Each of these
smaller problems is in turn decomposed into m subproblems with their dimension
reduced by 1. The process continues by generating smaller and smaller dimensional
subproblems until the subproblem can be solved directly. One possibility is a 1
dimensional subproblem which can be solved directly. Other possibilities will be

mentioned.
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An obvious difficulty of this approach is that the number of subproblems can
grow exponentially in m and n. However, in Section 3.3 we will show that perform-
ing the decomposition in a particular way will result in the number of subproblems
being reduced. The matrices D and @ are not uniquely determined and by con-
structing them in a particular way, the subproblems may be reduced in number to

between 1 and m.

We will give numerical examples to illustrate both the decomposition method

and the subproblem reduction procedure.

3.2 A Decomposition Method

In this section we propose a method for solving
min{c’z + z'Cz |ai'z < b;,i=1,...,m}, (3.4)

where C is (r,n) and indefinite. Although C is not the Hessian matrix for the
objective function for (3.4) (the Hessian is 2C), we shall refer to it as such in
order to avoid introducing unnecessary terminology. The method decomposes the
n dimensional problem into m subproblems each having dimension (n —1). Each of
these (n — 1) dimensional subproblems is in turn decomposed into m subproblems
each of dimension (r—2). The process is continued until 1 dimensional problems are
reached. These can be solved directly and combined to provide all local minimizers
for the previous 2 dimensional problem and so on back up to the (n—1) dimensional
problem and finally, the n dimensional problem is solved. The structure of the
problem is that of a tree. The top node is the given problem from which emanate
m branches to the (n — 1) level. From each of these m nodes emanate m branches

leading to the (n — 2) level.
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The tree structure of the proposed method is similar to a method proposed
by Murty [21]. Murty’s method produces the global minima, whereas ours will
produce the global minima plus all isolated local minima and some non-isolated
local minima. The subproblems generated by the two methods are quite distinct.
Further, we will show that the number of subproblems at any level can be reduced
to a number between 1 and m and the number of reduced subproblems depends
on the problem data in a way which will be made explicit in Theorem 3.3.1. We

assume the feasible region for (3.4) is non-null.

In order to apply the theory developed in Chapter 2, we require a method which
will construct (n, k) matrices Q and D satisfying C = 1[QD’ + DQ’] or determine
that no such @ and D exist. If such Q and D are found, then the objective function
for (3.4) can be written as z’Cz = [{z'QD'z + z'DQ’'z] = z'DQ’z which is of the
same form as the objective function for (3.1). We next formulate such a method,
which we refer to as Procedure ¥(C).

Procedure ¥(C)

Given an (n,n) symmetric matrix C, Procedure ¥(C) determines whether or not
C is indefinite, positive semidefinite or negative semidefinite. If C is indefinite,
Procedure ¥(C') constructs two (n,n — 1) matrices D and @ with rank(D) =n —1,
and which satisfy C = 3[DQ’' + QD']. In this case, we write ¥(C) = (Q, D). The
details of procedure ¥(C) are as follows.

We first require an (r,n) nonsingular matrix M and an (n,n) diagonal matrix
A satisfying M'CM = A, where the diagonal elements of A are all either —~1, 0 or
+1. Such matrices may be found by either performing an eigenvalue decomposition
for C or by using a modified conjugate direction method described in [7]. The
latter method requires only O(n®) arithmetic operations. It is straightforward to
show that the diagonal elements of A are all nonnegative if and only if C is positive
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semidefinite, and are all non-positive if and only if C is negative semidefinite. In
either of these cases, Procedure ¥(C) terminates with the relevant information.
The remaining possibility is that A has two nonzero diagonal elements of opposite
sign and this is equivalent to C being indefinite. In this case, Procedure ¥(C)

continues as follows.

Suppose k and ! are such that A; and A; are both nonzero, have opposite signs,
and assume k < I. Then Az +A; = 0. Let e; denote the i-th unit vector of dimension
n—1. If{ < n, define D and Q according to

s, Ar 2V
D = [81,...,el_l,Ek,e{,CH.l,--.,en_.]_ ]1 and Q = D'A.

If ] = n, define
b’ = [81,...,87._1,8]‘], and Q' = bIA-

Note that D’ differs from the (n — 1,n — 1) identity matrix by the insertion of e
after column [ — 1. It is straightforward to show that ﬁQ" differs from A only in
the (k,!)-th and ([, k)-th elements which are

(DQV = N and (DQVu = A

But then A\x + A; = 0 implies
A= %[DQ' +0D'].
Thus
C = (MYIAM™ = (M) DM + (M) QDM

and thus

D = (M)'D and Q = (M)'Q
satisfy the conditions of Procedure ¥. The procedure is then complete with ¥(C) =
(@, D)
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The decomposition method for (3.4) proceeds as follows. Because C in (3.4) is
indefinite, we can successfully invoke Procedure ¥ to obtain ¥(C) = (@, D) with
rank(D) = n — 1 and the parametric LP (3.2) for (3.4) becomes

min{c'z + £Q'z |afz < by i=1,...,m, D'z = t}. (3.5)

—

For a fixed value of the parameter vector £, (3.5) is an LP. The two possibilities
for its’ solution are:
(a) an optimal solution which is an extreme point,
(b) an optimal solution which is not an extreme point, or, the problem is un-

bounded from below.

Each of these possibilities will be accounted for separately.

For the first possibility (a), an extreme point for (3.5) must have n active con-
straints having linearly independent gradients. These must include the (n — 1)
linearly independent rows of D’ plus at least one of a,,a,,...,an. There are thus

m possibilities. Let 1 < k < m. The k-th subproblem to be considered is
min{c'z + 'Q'z| D'z = t, ai'z = b }.. (3.6)

Assume first that a; and the columus of D are linearly independent. The associated

extreme point is the solution of the simultaneous linear equations

t
Bkz = )

where
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Partition B! as
B:l = [Hk ’ dl 3

35

where Hy is the (n,n — 1) matrix of the first (n — 1) columns of B;* and d is the

last column.

Note that By By' = I, ie,

DI
[ , [Hk d] - P— I’
Ak

D'H, D'd ]

a.’Hy ap'd

sO

D'Hk = [, D’d = 0, ag'Hk =0 and ak'd= 1.

The extreme point z is written as follows;
z = Hit + bid.
The remaining (m — 1) constraints of (3.5) must be satisfied;

G;’Hkt S b,' - bka,-'d, 1= 1, cee M, 1 =,£ k.

(3-8)

(3.9)

For z in (3.8) to be optimal, it must satisfy dual feasibility for (3.5). However,

(n — 1) of the constraints for (3.5) are equalities and their dual variables are not

constrained in sign. The dual variable for the sole active inequality constraint is

—(c + Q@t)'d and it must be nonnegative; ie,

d@t < -dd.

(3.10)

Note that (3.9) and (3.10) define exactly m inequality constraints on the (n — 1)

vector ¢.
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Using (3.8), the objective function for (3.5) is
Fi(t) = dz + ¢Q'z = bpdd + (H' + BQdyt + YQ Hat,

a quadratic function of the (r — 1) components of t. The Hessian term for Fi(t)
can be simplified as follows. Because 2C = QD' + DQ', it follows from (3.7)
that

2CH. = QD'H. + DQ'H,
= Q + D(Q'Hy)-

Multiplying on the left by H.' gives
(4 1 14 14
H.CH, = E[HkQ + Q'Hi,

which shows that the symmetrized Hessian for (3.11) can be written as H{C H.
Thus the objective function for (3.5) is

Fi(t) = bdd + (He' + bQ'd)'t + t'H/CHit. (3.11)

It remains to consider the case that a; and the columns of D are linearly depen-
dent. If rank(A, D') = n — 1, the (3.5) does not possess an extreme point. This is
considered in possibility (b). Otherwise, rank(A4, D’) = n and assuming the feasible
region for (3.5) is non null, this implies that the feasible region for (3.5) possesses
extreme points (Best and Ritter, 1985, page 69). Thus (3.5) possesses an optimal
solution which is an extreme point. But because (3.5) contains n — 1 equality con-
straints having linearly independent gradients, it follows that one of the constraints
ai'z < b;, 1 =1,...,m, i # k must be active. Suppose its index is j. But then
this optimal solution can be obtained from subproblem j and moreover, a; is not
linearly dependent on the columns of D. Consequently, subproblem k, namely (3.6)

need not be considered further. We summarize this as
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Proposition 3.2.1 Suppose a; and the columns of D are linearly dependent. Then

the k-th subproblem (3.6) may be omitted.

The second possibility (b) is that either (3.5) has optimal solutions which are
not extreme points, or, (3.5) is unbounded from below for certain values of . We

now account for this. Any solution for D'z = t can be written as
z = z(t) = Ht+os, (3-12)

where H is an (n,n — 1) matrix, s is a non zero n-vector with D's =0 and o is a
scalar variable. Moreover, it is straightforward to compute such H and s. Using

(3.12), the objective function for (3.5) can be written as
Fo(t) = o(c's + t'Q's) + JHt + t'Q'Ht.
The analysis can be continued further by solving the LP
min{s'Qt | AHt + cAs < b}, (3.13)

where both t and o are taken as variables. The possible conclusions are summarized

in

Proposition 3.2.2 Let H and s be as in (3.12).

(a) If As < 0, then both (8.5) and (3.4) are unbounded from below for allt satisfying
(ds+tQ's) <0, AHt +cAs<band o > 0.

(b) If As > 0, then both (3.5) and (S.4) are unbounded from below for all t satisfying
(ds+tQ's) >0, AHt +0cAs<band 0 <0.

(c) If As has at least two nonzero entries of opposite sign, then for all t such that
AHt + 0As < b for some o, z(t) is an alternate optimal solution for one of the m

eztreme point subproblems and thus need not be considered further.
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(d) If As = 0, then for all t with (ds +t'Q’'s) = 0 and AHt < b, z(t) is optimal
for (8.5) for all &, (3.5) has no eztreme points, each of the m subproblems (3.5) is

vacuous and (8.4) reduces to the single (n — 1)-dimensional problem

min{c'Ht +'Q'Ht | AHt < b, s'Qt = —'s}. (3.14)

In summary, the decomposition method proceeds as follows. For k= 1,...,m, we
minimize the quadratic function Fi(t) subject to the constraints (3.9) and (3.10),
omitting those which satisfy the hypothesis of Proposition 3.2.1. We then account
for the various possibilities of Proposition 3.2.2. If As < 0, (that is, Proposition
3.2.2(a) applies), it may or may not be true that there are ¢ with (c’s +#'Q’s) < 0,
AHt 4 cAs < b and o > 0. The relevant possibility may be determined by solving
the LP
min{s'Qt | AHt + cAs < b, ¢ > 0}.

A similar remark applies to Proposition 3.2.2(b). If Proposition 3.2.2(d) applies,
then (3.4) is reduced to the (n — 1) dimensional problem (3.14) and none of the
other m subproblems need be solved; i.e., the n dimensional problem (3.4) is simply
reduced to the n — 1 dimensional problem (3.14). Thus we have deco mposed (3.4),
having n variables and m constraints, into at most m subproblems, each having
n — 1 variables and m constraints. The process can be continued by decomposing
each of the n — 1 variable problems into at most m (n — 2) variable problems. The
decomposition process may be continued, generating subproblems of successively
smaller dimension. There are several possibilities concerning the subproblems. If
the Hessian of a subproblem has exactly one negative eigenvalue, then it may be
solved directly by the method described in Chapter 2. Alternatively, the decompo-
sition may be continued until 1 variable problems are generated and these may be

solved by inspection. If a subproblem is convex, it may be solved by any convex
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QP algorithm (e.g. {10]). However, if a subproblem is concave, it will be difficult
to find all isolated local minima and this is a major drawback of this method.

Let Ry denote the feasible region for the k-th subproblem; i.e., Rx consists of
those ¢ which satisfy (3.9) and (3.10). Suppose i is a local minimum for the k-
th subproblem. The corresponding point for (3.4) is given by(3.8); namely £ =
Hit + bed. This may or may not be a local minimum for (3.4). It will be a local
minimizer for (3.4) provided £ is a local minimizer for each subproblem i for which
{ € R;. In addition, if the conditions of Proposition 3.2.2 for unbounded from below
are satisfied and s'Q't = (’s, then £ is not a local minimizer for (3.4). Note that

these conditions are quite simple to check.
We illustrate these concepts with
Example 3.2.1

minimize : —z; — 2z3; —z3 + z'Cc

subjectto: 0 < z; < 1,1=1,2,3,

where
2. —5 45
C=|-5 -1 -1 | =[DQ + QD'/2,
45 —-1. 5.
and for simplicity we take
10 2 1
D=]|-11| and @ = |0 -1
3 2 1 1

For this problem, the parametric LP (3.5) becomes
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Table 3.1: Two Dimensional Subproblems for Example 3.2.1

Active 'x’ Objective Function Constraints

Constraint

0<t +¢; <5,
0 L(t + 41ty — 262 + 3t — Tty) 0< =2t +3t; <5,
9, + 2t, > 8.

I

1<+t L6,
ry = 1 %(tlz + 4tltz - 2t22 + 12t1 - 5t2 - 8) -2 S —'2t1 + 3tz S 3,
9, +2t, < 8.

0 S t2 S 2’
z; =0 2(48)2 — 3yt — 28,2 — 2ty + 21,) 0<2t;—3t, <2,
9t; + 2, > 8.

1 S t2 .<. 33
g = 1 %(4t12 - 3t1t2 - 2t22 + 7t1 + 4t2 d 8) -5 S 2t1 -_ 3tz S —3,
9t, +2t, < 8.

0<t,+¢, L1,
3 = 0 2t12 +3t1tz -t -3tz 0 S tz _<_ 1,
9t +2¢, < 8.

2$t2$3,
2t,2 + 3t,t, — 10t — 5t + 8 5<¢t +¢t; <6,
9t, + 2t > 8.

]
p—

T3
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0 Y | I — gt
~1 0 1 2 3 4

Figure 3.1: Two Dimensional Feasible Regions for Example 3.2.1

minimize : (2t1 + tz - 1):!21 +(—tz e 2)33 +(t1 + tz - 1):53
subject to : z, —z, +3zs = ¢4,
T2 +2z3 = {3,

0<% <1, i=1,2,3.

There are 6 constraints in the problem. Each generates a subproblem with two vari-
ables. The objective function and constraints for each subproblem are summarized
in Table 3.1. As well, the feasible regions for the subproblems are shown together
in Figure 3.1.

In this example, each of the six subproblems has exactly five constraints rather
than the six one might expect. This is because, for example, when z; = 0 is active,
its gradient is linearly dependent on that of z; < 1 and so produces a constraint
of the form 0 < 0. Each of the six 2-dimensional problems is non-convex and
can be decomposed into six 1-dimensional problems. Each set of six 1-dimensional
problems consists of minimizing a piece wise quadratic function over at most 5

intervals. By Table 3.2, we know that local minima can be computed efficiently for
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the 1-dimensional case.

Each of the six 2 dimensional subproblems is non-convex and each such Hessian
has exactly one negative eigenvalue. Each of these six subproblems could be solved
using the method of Section 2.3 of Chapter 2. For problems with large numbers of
constraints, this will be a computationally more attractive way to proceed. Local
minima for the 2-dimensional problem are indicated in Figure 3.1 with circles.
Those with a cross inside (@) are local minima for at least one, but not all the
regions in which they lie and are thus do not give local minima for the 3-dimensional
problem. Those with a dot inside ((©) are local minima for all the regions in which
they lie and thus give local minima for the original problem. The local and global
minimizers for Example 3;.2.1 are shown in Table 3.2. Also shown are the local and
global solutions for two variations of Example 3.2.1. These variations are obtained

by changing the linear part of the objective function for Example 3.2.1.

We complete this section with an example which illustrates some of the possi-

bilities for a problem having local minima but no global minima.

Example 3.2.2

min{z,z; | —z, < 0}

Here A = [0, —1] and we take Q = [0,1]' and D = [1,0]'. For this problem, the
parametric LP (3.5) is min{tz, | z, = ¢, —z; < 0}. We first check to see if there
is a region where the problem is unbounded from below. Take H = [1,0]' and
s = [0,1}. Because As < 0, z(t) = Ht + os is feasible for all ¢ > 0. Furthermore,
ds+t'Q's =t <0 for all £ < 0. Proposition 3.2.2(b) asserts that the example
problem is unbounded from below for all z; < 0 and all z; > 0.

The remaining possibility for this example is that the single inequality constraint
is active. In this case, the parametric LP (3.5) reduces to min{0 | z, = £, —z, = 0}.
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Table 3.2: Optimal Solutions for Example 3.2.1 and Some Variations

linear optimal objective point
term type value
-3z, -2z, —z3 global -3.5 (0.5,1,0)

local —345  (0,1,0.3)
—zy+2z, —z3  global —0.125  (0.25,0,0)

local  0.55 (0,1,0.3)
local 0.5 (0.5,1,0)’
—0.5z; + 2z, —z3 global -0.05 (0,0,0.1)
local  0.55 (0,1,0.3)

local —0.03125 (0.125,0,0)’
local 0.71875  (0.375,1,0)

Since the original problem has just one constraint, the only restriction on ¢ is (3.10),
namely, ¢ > 0. Thus f(t) = 0 for all ¢ > 0 and all ¢ > 0 are local minimizers of
f(t). However, ¢ = 0 does not give a local minimizer for the 2 dimensional problem

as it intersects the region {¢ [ ¢ < 0} where the problem is unbounded from below.

In summary, the decomposition procedure has determined that for all (z;, z,)
satisfying z; < 0 and z; > 0 the problem is unbounded from below, and, all points

(z1, z2) satisfying z; > 0 and z; = 0 are local minimizers.
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3.3 Reduction of the Number of Subproblems

In the previous section, we developed a decomposition method for locating all
isolated local minimizers and some local minimizers. The method depends on the

availability of two (n,n — 1) matrices D and Q satisfying
C= -;-(DQ’ +QD). (3.15)

If D and Q satisfy (3.15) and H is any (n — 1,n — 1) nonsingular matrix, then DH
together with Q(H '), respectively, also satisfy (3.15); i.e.,

C = S {(DH)(QH™Y)Y + (Q(H'Y)(DH).

N -

Thus, D and @Q are not uniquely determined and it is reasonable to consider whether
matrices D and @ can be constructed such that the number of subproblems will be
reduced. If, for example, the columns of D include the gradients of one or more of
the constraints of (3.4), i.e., @q,,-*,aq; are columns of D, then from Proposition
3.2.1, the j subproblems ay, ---, @; may be omitted. Before we establish the main

result of this section, we need a lemma as follows.

Lemma 3.3.1 Let M = [dy,---,d,]’ be any (n,n) nonsingular matriz. If( M) C
M™! contains a (k, k) indefinite principal submatriz, then there ezist two (n,n—1)

matrices D and Q with rank(D) = n — 1 such that
1
= (D@’ + QD) (3.16)

and at least n — k columns of D are identical to n — k columns of M'.

Proof. Without loss of generality, assume that the (k, k) indefinite principal subma-
trix B is that induced by the last k rows and columns of (M~!)’CM~!. Applying
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the decomposition procedure ¥ to B gives ¥(B) = (Dg, @), where the dimensions
of both D, and Qi are (k,k — 1), rank(D) =k — 1 and
1 14 Y4
B = E(DkQ" + QeDy)-

Let
R B

F, B

3

(MYYCM™ = [

and define

b

. In.ix O “ F, 0
0 D 2F; Q:

where I, denotes the identity matrix of dimension n — k. This implies

(M7YYCM™ = 2(DQ' +QD),

DN =

and thus

- %(M’DQ’M + MOD'M) = %(DQ’ +QD),
where D = M'D and Q = M'Q. Since rank(D;) = k—1, it follows that rank(D) =
n — 1. Therefore rank(D) = rank(D) = n — 1 which completes the verification
of (3.16). Since D = M’D, the first n — k columns of D are dy,---,d,_k. This

completes the proof of the lemma. m]

Theorem 3.3.1 Let M = [d1,---,dr,dpy1,---,d;]) be nonsingular (n,n) matriz
and [dy,-+-,d.]’ be a (r,n) submatriz of A, where r <n. If (M~')CM™" contains
a (k,k) tindefinite principal submatriz B induced by 4;,---, 7 rows and columns,
then there ezist two (n,n — 1) matrices D and Q with rank(D) = n — 1 such that
(8.16) holds and (3.4) can be decomposed into at most (m — r + l) subproblems
of dimension (n — 1) by using (8.16) and all the subproblems corresponding to the

following indices may be omitted

{11"':r}\{7ills7i <, i=1’”"k}’
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where | is the total number of elements of the set {v: |1 <y <r,i=1,---,k}.

Proof. By Lemma 3.3.1 and its proof, there exist two (n,n — 1) matrices D and Q
with rank(D) = n — 1 such that (3.16) holds and the columns of D contains all d;

with j satisfying
je{l!"'ir}\{7ills7i$ra i‘-'lv"'ak}'

From the definition of !, we know that D contains r — I columns of [dy,---,d,].
From Proposition 3.2.1, these r — I subproblems may be omitted. Therefore (3.4)
can be decomposed into at most (m — r + ) subproblems of dimension (n — 1) by

using the decomposition (3.16). This completes the proof of the theorem. m]

From Theorem 3.3.1, we can see that the number of subproblems omitted will
be bigger if [ is smaller. So, the number of subproblems omitted will be big if B
is located in the bottom of the right hand side of (M')"'CM™! or close to the
bottom of the right hand side of (M')"!CM~!. If rank(A) = =, then we can take
M to be an (n,n) nonsingular submatrix of A. In this case, » and ! of Theorem
3.3.1 will be n and k, respectively. If rank(A4) = r < n, we can pick up r linearly
independent rows of A with any other n — r n-vectors to form nonsingular matrix
M. In this case, we have 0 < ! < k. From the above theorem, we can see that the
best case occurs when (M~')C M ™! contains a (2, 2) indefinite principal submatrix
for some submatrix M of A. In this case, (3.4) can be decomposed into (m —n + 2)
(n — 1)-dimensional subproblems, i.e., the biggest number of subproblems omitted
is n — 2. In fact, we can show that the biggest number of subproblems omitted can
be n — 1 provided (M~'YCM™! contains a zero diagonal entry for some submatrix
M of A. This can be explained as follows. Let (M~})CM~! = [f;;]. Without loss
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of generality, assume f, = 0. Let
n—-1}(n~ n(n— 1 n-1)(n—
g= | fove-n faen | and Q, = | o=
f(n—-l)n 0 0
It is easy to check that
1 14 Y
B= E(DZQz + @.D3).

By following the proof of Lemma 3.3.1, we have

- Iﬂ- 0 In—
D= 2 = .
0 D, 0

So, D = M’'D will have n — 1 columns same as columns of M. Hence the number

of subproblems omitted will be n — 1.

Based on the constructive proof of Lemma 3.3.1, we next give a detailed formu-
lation for the decomposition (3.16) if there exists an (r,n) nonsingular submatrix
M such that (M~1)C M ™! contains a (k, k) indefinite principal submatrix. We refer

to this as procedure ¥,.

Procedure ¥,(C, M, k)

Given an (n,n) symmetric matrix C and an (n,n) nonsingular matrix M such
that (M~'))CM~! contains an (k,k) indefinite principal submatrix, procedure
¥,(C, M, k) produces two (n,n—1) matrices D and Q such that C = }[{DQ’'+QD’],
rank(D) = n — 1 and at least n — k columns of D are formed by some n — k rows

of M. The details of procedure ¥,(C, M, k) are as follows.

Let (M~'YCM™! = (fi;) and B be an indefinite submatrix induced by 11, -+, 7
columns and rows of (f;;) with 71 < 72 < --+ < 9%.. By procedure ¥(B), we can
compute two (k, k — 1) matrices D and Q; such that

1 ' 2
B= §(Dka + Q& Dy).
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Let Di = (dw), Qe = (§w), D = (d;j) and Q = (). Let J = {m,---, 7} and
K ={1,--~,k}. The matrices D and Q are formulated as follows

(1 ifi=j igd i<m,
1 ifet=353+41 i>y, .

otherwise,

dy fj<m, i=4,, j=-=, forsome u,v € K,
0

and

fii fi,7€J, 7 <,
2fif ifjerieth<7kr
2fiG+ny H1E€J, 72>,

%5 =4 I
figry Hi1€J, J> 7,
Quv ifj <7, t =7, J =1, for some pu,v € K,
0 otherwise.

\

Finally, D and Q are obtained by setting D = M’D and Q = M'Q.
Now let us demonstrate the above idea with a quadratic programming problem
having box constraints; i.e., we assume (3.4) has the special form

min {¢z+2z'Cz|0<z;<1,i=1,-.- ,n}. (3.17)

Here, A = (I, ~1,), where I, is an (n,n) identity matrix. So, each nonsingular
(n,n) submatrix of A is a diagonal matrix with diagonal entries being 1 or —1.
Hence in order to check conditions of Theorem 3.3.1, we only need to check if C
has an indefinite principal submatrix. This gives the following corollary.

Corollary 3.3.1 In (3.17), if C has an (k, k) indefinite submatriz, then there ezist
two (n,n — 1) matrices D and Q with rank(D) =n — 1 such that

C= %(DQ’ +0QD) (3.18)
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and at least n — k columns of D are formed by some n — k rows of I,,. Furthermore,

(8.17) can be decomposed into at most 2k subproblems in n — 1 dimensional space
by using (S.18).

From Corollary 3.3.1, we can see that if C has a (2, 2) indefinite principal submatrix,
then (3.17) can be decomposed into at most 4 subproblems in » — 1 dimensional
space. In fact, it is easy to see that if C has a zero diagonal entry, then (3.17) can

be decomposed into at most 2 subproblems in n — 1 dimensional space.

Example 3.3.1. Consider (3.17) with n = 6 and

-

17 11 -5 21 -14 -5 |
11 12 -5 16 -11 -3
-5 -5 2 -7 5 1
21 16 -7 27 —18 —6
~14 —11 5 —18 12 4
5 -3 1 -6 4 2]

By the conjugate direction algorithm presented in the appendix, it can be checked
that C has exactly two negative eigenvalues. Also C has two (2,2) indefinite prin-

cipal submatrices as follows:

12 -5 2 5
and .
[ -5 2 ] [ 5 12 ]

For these two principal submatrices, it can be checked by the conjugate direction
algorithm that the first submatrix is the best choice to formulate D,Q and four
subproblems because the Hessian of each of the four subproblems has exactly one
negative eigenvalue. The method of Section 2.3 of Chapter 2 can be applied directly

to these subproblems.
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Remark 3.3.1. If the decomposition procedure in Section 3.2 is performed for
(3.17), the subproblems will not be quadratic programming problems with only
box constraints. But if we are only concerned about a global minimizer for (3.17),
we can guarantee that the subproblems have only box constraints and the number
of subproblems can be reduced by the above technique. For example, we can use
Murty’s method to generate subproblems and use our techniques to reduce the

number of subproblems.

Finally, let us return to the general QP and consider how to check the condi-
tions imposed in Theorem 3.3.1, that is, (M~!)'CM™! contains an (k, k) indefinite
principal submatrix for some (n,n) nonsingular matrix M. From Corollary 3.3.1,
we can see that even for the problem with box constraints, we need to check all
principal submatrices to find the smallest size of such a matrix. If C has a (k, k)
indefinite principal submatrix and k is a relatively small number (say, k = 2 or
3), then we can find the smallest size of indefinite principal submatrix by enumer-
ating all principal submatrices starting with (2,2) submatrices. If & is relatively
large, then this approach will consume a lot of time. If constraints are not box
constraints, the situation even worse. What we can do is enumerate some of the
(n,n) nonsingular submatrices such that each of them contain a maximal linearly
independent columns of A’ and check all (2,2) and (3,3) principal submatrices for
(M~1)CM™! for each enumerated M. Of course, this can not guarantee we can
find a (2,2) or (3,3) indefinite principal submatrix. The following proposition tells
us that we can guarantee to reduce certain number of subproblems although this

number may be quite small.

Proposition 3.3.1 Assume that C has k; positive eigenvalues and kg negative
eigenvalues, then for any nonsingular (n,n) submatriz M, each (n—I,n—!) principal

submatriz of (M~1)'C M~ will be indefinite or singular, where | = min {k;,k2}—1.
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Proof. Since C has k; positive eigenvalues and k; negative eigenvalues, so too does
(M~YYCM™. Let

F; B

where B is an (n—{,n—[) submatrix, F; is an (/,!) submatrix and F; is an (I,n—1)
submatrix. It is sufficient to show that B is indefinite or singular. If not, B will be
positive definite or negative definite. Consequently, B is invertible. Hence

I ~RB || A R I o| [{R-RB'F o
o B||F B||-B'F B 0 B |

Let us assume B is positive definite (the negative definite case can be treated
similarly). Then (M~')’CM~! has at most ! negative eigenvalues. But [ = min
{k1,k2} — 1 < k;, a contradiction. So B is indefinite or singular. This completes

(MYOM™ = [F1 Fz]’

the proof of the proposition. o

Remark 3.3.2. It can be shown that each (n — I,n — [) principal submatrix of
(M~')YCM™! in Proposition 3.3.1 is indefinite even if it is singular.

Since we can use a conjugate direction algorithm to check the number of positive
eigenvalues and negative eigenvalues, Proposition 3.2.1 and Theorem 3.3.1 tell us
that certain number of subproblems can always be reduced. Before concluding this
section, let us apply the techniques we have developed to Example 3.2.1.

Example 3.3.2. Consider Example 3.2.1.

Since the Hessian C in Example 3.2.1 contains a principal submatrix

2]
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we can decompose it as follows

-1 -1 1 1 -1
O L

So, Dy = (-1,v6 +1), @; =(-1,v6-1),

1 0 2 0
D=10 1| ad@=| -1 -1
0 1+v6 9 v6-1

Now by setting D'z = ¢, we can decompose the QP into four subproblems. It can
be checked that two of them are infeasible. In fact, for z; = 0, the subproblem has

the following constraints:

0<t <1,

0<t; <146,
-1 —2v/6 — (10 + vB)t, — 2v/6¢,
> 0.
1+v6 =

Obviously, it is infeasible. Similarly, we can show that the subproblem correspond-

ing to z3 = 1 is also infeasible. So, there are only two subproblems formulated for

this decomposition. Let us write down these two subproblems as follows.

From z; = 1, we have

a2, Mata  VB—1, 1142v6, 1+2v6, 2V6+1
min 2t} + ——— + ——t3 ~ ————t; — 2 — )
1+v6  v6+1 1+v6 1+v6 1+v6

subject to 0 <t <1, 1 <t, <V6+2.
From z3 = 0, we have

min 2t§ —tt; — t; -t — 2t3,

subject to 0<¢, <1, 0<¢, <1
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It can be checked that (0,0.3(v/6 + 1) + 1) and (0.5, 1) are two local minimizers for
the first subproblem, and (0.5, 1) is a local minimizer for the second subproblem.
So, (0.5,1) and (0,0.3(v6+1)+1) are two local minimizers. Since the corresponding
points of (0.5,1) and (0,0.3(v6 + 1) + 1) in the original space are (0.5,1,0) and
(0,1,0.3), respectively, (0.5,1,0) and (0,1,0.3) are two local minimizers for QP.

Example 3.3.3 Each of the final two problems in Table 3.2 were reduced from 6
to 3 2-dimensional subproblems.

3.4 Conclusion

We have developed a decomposition method to locate the global minimum, all iso-
lated local minima and some of the nonisolated local minima for a general indefinite
QP. We have shown that the number of subproblems can be reduced by construct-
ing a proper decomposition for the Hessian matrix and a corresponding algorithm
is also established. |

If the decomposition procedure terminates with the subproblem QP’s each one of
which has a Hessian matrix having exactly one negative eigenvalue, then the method
will compute all isolated local minimizers and some nonisolated local minimizers
of QP. In addition, the method will compute the global minimizer of QP, provided
it exists, and will provide the information that QP is unbounded from below when

that is the case.



Chapter 4

A Class of Copositivity Problems

4.1 Introduction

In this chapter, we will use the results developed in Chapter 2 and 3 to solve a

special class of copositivity problems.

For a given (n,n) real symmetric matrix C and a polyhedron cone F', C is called
copositive on F if 2’Cz > 0 for any =z € F. The problem we are concerned with is
to determine whether C is copositive on F whenever C and F are given. This is
an NP-hard problem even for F = E?, the positive orthant of E" (see [22]). There
are several applications for determining whether a given matrix is copositive. For
example, see [13] and [21]. Let ¢! € E® fori = 1,---,m, A = (a;,---,an)’ and
define

F={z €E*| Az < 0}. (4.1)

From the definition of C being copositive on F, it is easy to see that the problem

o4
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can be solved by solving the following quadratic programming problem:
QP a =min {'Cz |z € F}.

Obviously, @ = 0 ff C is copositive on F.

When F = E}, Valiaho [29] pointed out that the copositivity of C on F can be

solved by
min {'Cz |z; >0, i=1,---,n, i # k, z; = 1};
ie.,
min {cxe + 2¢(k) z(k) + z(k)'C(k)z(k) | z(k) > 0}, (4.2)
where z(k) = (21, ,Zk=1,Zk+1," ", Zn), C(k) is an (n — 1,n — 1) principal

submatrix of C obtained by deleting the k-th row and column from C, c(k) =
(Ck1y "=~y Chik—1y Ckk+1,°**+Ckn)’, and k is any fixed index with 1 < k < n. If C con-
tains a maximal (n — 1,n — 1) positive semidefinite principal submatrix, (4.2) is a
convex problem for some k. So it can be solved by standard quadratic programming
algorithms. If C' contains a maximal (r — 2,n — 2) positive semidefinite principal
submatrix, then for some k (4.2) can be solved efficiently by parametric quadratic
programming techniques. The reader may refer to [29] for details. Based on the
above analysis, we can see that the copositivity problem can be solved efficiently

for some special classes of C by quadratic programming techniques.

In this chapter we will also consider solving a special classes of copositivity
problems. We assume that C has exactly one or two negative eigenvalues and F
is a general polyhedral cone defined by (4.1). In Section 4.2, we will develop an
algorithm for a class of copositivity problems in which C is an integral diagonal

matrix. In Section 4.3, we will show how a general copositivity problem in which
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C has exactly one negative eigenvalue can be transformed into the formulation of

Section 4.2. In Section 4.4, we will report numerical results for the algorithm.
In what follows, we need the concept of a projected Hessian.

Definition 4.1.1 For any (n,n) symmetric matrix @, any A € E® \ {0} and any

real number v, we call Q5 the projected Hessian of Q on h'z = v if

Qn = (v1,-++, Y1) Q(v1, - - -, Vn1),
where rank(vy,--,vp—1) =n—landv; € {z€E" [A'z =0} fori=1,---,n — 1.
From this definition, we can see that the projected Hessian @ of Q on h'z = v
is independent of v and there are an infinite number of projected Hessians for given
@ and h. It can be shown that for given @ and 4 all projected Hessians have same

number of positive and negative eigenvalues. So, z'Cz is convex on A’z = 1 iff a

projected Hessian Cj, of C on A’z = 1 is positive semidefinite.

4.2 An Algorithm

In this section, we will present an algorithm for the class of copositivity problems
in which A is a rational matrix, rank(4) = n and C =diag (—d;, d;, --~,d,) with
d; being a positive integer for i = 1,---,n. Later on, the case that C =diag
(—dy, —d,,ds, ~- ~,d,) with d; being a positive integer for i = 1, ---,n will also be
discussed. The first result we will give is quite simple, but it will give us a useful
idea for the construction of the algorithm.

Proposition 4.2.1 The optimal value a =0 iff forany h € E*, if{z € F | W'z =
1} is nonempty and bounded, then

a= min{z'Cz|z€ Fh'z=1} >0.
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Proof. The necessary condition is obvious. We need only show the sufficient condi-
tion. Since {z € F | h'z = 1} is nonempty and bounded, {z € F | h'z = 0}= {0}.
Now we claim that A’z > 0 for any z € F \ {0}. Assume on the contrary that the
claim is not true, then there is an z! € F \ {0} such that A'z! S 0. If 'z =0,
then z' € {z € F | h'z = 0}; ie,, {z € F | 'z = 0} # {0}, a contradiction.
So, h'z! < 0. Since {z € F | h'z = 1} is nonempty, let z* be any element of
this set. Let A = ~h'z!, then A > 0, z! + Az? € F and A'(z! + Az?) = 0. So,
{z € F | 'z = 0} = {0} implies z* + Az? = 0; i.e., z* = —Az?. Since z!',z? € F,
alz! < 0 and aiz! = —Aaiz? > 0fori =1,---,m. So, alz! =0fori =1,---,m.
Since z! # 0, rank(A) < n — 1, a contradiction. Therefore the claim is true. Hence
for any z € F \ {0}, 2/k's €{z € F | k'z = 1} and (Z/h'Z)'C(Z/R'E) > 0; ie,
Z'CZ > 0. So, a = 0. The proof of the proposition is thus complete. )
Example 4.2.1 Let n = 2, C = diag(—1,1) and F = {z € E* | —2z; + z; < 0,
z; —z, < 0}

For this example, it is easy to see that z € F implies z; > 0, z; > 0 and z, > z;.
So, 2'Cz = z3 —~ 2 > 0 for any z € F; i.e., C is copositive on F. In the following
we will give a different approach for this example and hope this approach to be
generalized to high dimensional problems. In doing so, consider z; = 1. Obviously
{zeF|lzy=1}={z€E®|z,=11<2z;<2}and zCz = -1 +zZ on
{z € F | z, = 1} is convex. By solving

a=min {-1+42z3|1<z,<2},

we have a = 0. So by Proposition 4.2.1, C is copositive on F.

This is a simple example but it helps to make the following point. If a hy-
perplane k’'z = 1 can be constructed such that {z € F | A’z = 1} is nonempty,
bounded and z'Cz is convex on {z € F | h'z = 1}, then the copositivity of C
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on F can be solved by solving a convex quadratic programming problem. So it is
necessary to investigate the conditions such that the proper hyperplane exists. The
following characterization gives us a direct information concerning how to construct
a hyperplane such that the projected Hessian of C on the hypel;plane is positive
semidefinite.

Proposition 4.2.2 If Q = diag(B,-*+,B,) and 1 < k < n with f; = —1 for
t=1,---,kand B; =1 forj=k+1,---,n, then for any given vector h € E*\ {0},
Qn has ezactly k — 1 negative eigenvalues iff

k
2hi- D hix0. (4.3)
=1

i=k+1

Proof. First of all, let us consider two special cases for h as follows.
(i) There exists a j with 1 < j < ksuch that h; #0and h; =0fori =k+1,---,n.
(1) There exists a { with k+1 <! < n such that b #0and h; =0fori=1,.-. k.
Let us consider case (i) first. Since (4.3) always holds in this case, we only need

to show that Qx has exactly k — 1 negative eigenvalues. Without loss of generality,

let j = 1; i.e., Ay # 0. From h'z = 0, we can write
k -

)y = — Z ESl:i.
=1 h

So, on h'z = 0, we have
k h.' k : n
£Qz=-) —=)*-Y =i+ Y =},
i=2 hy =2 i=k+1
which implies that @, has exactly k — 1 negative eigenvalues. So the proposition

is true for case (i).
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Now let us consider case (ii). Since (4.3) does not hold in this case, we only need
to show that Q4 has exactly k negative eigenvalues. Without loss of generality, let
l = n so that h, # 0. From A’z = 0, we can write

n-1
- X
which implies
n—1 n-1
'Qzr = — Za: + Z z5 +(2: -—--z:‘)2
i=k+1 |_k+1

Thus @y has exactly k negative exgenvalues. Hence the proposition is also true for
this case.

In the following, we assume that there exist a j and an [ with 1 < j < k and
k +1 <1 < n such that h; # 0 and h; # 0. Let us treat case k = 1 first. In this
case, we can write

31——2 '-"Z,

from h'z = 0. So, on A’z =0, we have

z'Qz = -(Z :1:.) +Zz

If (4.3) holds, then Cauchy’s inequality implies

C il <GS <Tad

=2 =2
So, £'Qz > 0 for any z satisfying A’z = 0. This implies that Q) is positive
semidefinite. Conversely, if Q5 is positive semidefinite, then z'Qz > 0 for any z
satisfying A’z = 0. This implies
n n h‘_
2} > () =)’
for any (z3,---,z,) € E*"'. By taking z; = h;/h; for i = 2,---,n, we have

hz
B STl
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ie.,
K>} K
=2
Therefore, the proposition holds for £ = 1. Now let us assume k > 2. Without loss
of generality, assume that h; # 0 and hy, # 0. From “

we know that @y can be written as

e 0y
0 In—l:

where b = (—=hy/hy,---,~hn/hy). Since h, # 0, bp—1 # 0. By mathematical

induction, it is not hard to prove that

det(M — Q1) =
n-1 k-1 n-—1

A+ 2A=1)" 2+ (A —1 -3 87 + )bl
=1 =1 =k

So, @k has exactly £ — 1 negative eigenvalues iff

n—1 k-1 n—1
NE(CEA-1-S B+ 8 =0
i=1 =1 i=k
has exactly one negative solution which is equivalent to
k-1 n—1
i=1 =k
that is,
k n
PICEIDIN
i=1 i=k+1
This completes the proof of the proposition. a

From Proposition 4.2.2, it is easy to get the following corollary.
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Corollary 4.2.1 For a given vector h € E*\ {0}, a projected Hessian Cj, of C on

h'z = 1 is positive semidefinite iff

h2 h: B
< 4B —
dy d, — dy

From Corollary 4.2.1 we can see that there are a lot of choices for the vector A
such that C} is positive semidefinite. Among all these h such that Cj is positive
semidefinite we need to choose one such that {z € F | k’z = 1} is nonempty and
bounded. The following example illustrates how to construct such A to solve the
copositivity problem.
Example 4.2.2 Let n = 2, C = diag(—1,1) and F = {z € E* | z; — z, < 0,
~zy — 2z, < 0}.

Let us try the approach used in Example 4.2.1. For any «,8 € E* if {z € F |
az; + Bz, = 1} is nonempty and bounded, then 8 # 0. So, in order to make

1 2 _ A2
z'C':z:=———-22z1 il z?

Bz B2 + B2 1
on {z € F | az;, + Bz, = 1} convex, we must have o® > 8?%; ie, |a| > |B]|. Now
consider a point (—83/a,1)’. Since |a| > |8, |8/a| < 1. This implies (~8/a,1)' €
F. Because a(—8/a) + § =0, we have

(-B/a,1) € {z € F | az, + Bz, = 0}.

Therefore {z € F | az, + Bz, = 1} is unbounded, a contradiction. Hence the

approach does not work. However if we divide F into two pieces
Fi={ze€F|z;>20}={z€E* |z, >0, z;, —z; <0},

Fz={$€FIZ1SO}={£€E’I21S0, —21—232_<_0}
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and consider the copositivity of C on F; and F;, respectively, then the approach
will work. Obviously, C is copositive on F iff C is copositive on both of F; and F,.
Note that {z € F; | 2z, + z; = 1} and {z € F, | =2z, + z, = 1} are nonempty,

bounded and z’Cz is convex on both of them. So from

a; = min {z'Cz |z, <0, —z; — 22, <0, -2z, + 2z, =1}
3
= min{1+4zl+3z§|-§§x1$0}=—§g<0,

we know that C is not copositive on F.

Now let us return to the general problem formulated at the beginning of this
section. From Example 4.2.2, we can see that it is necessary to consider consider

the following two quadratic programming problems:

QP, a; = min {'Cz |z € F, z; > 0}
and
QP, a; = min {z'Cz |z € F, z; < 0}.

Obviously, a; = a; = 0 iff @ = 0. The reason we transform QP into QP; and QP,
is that a projected Hessian of C on z, = 0 is positive definite. Qur purpose is to
perturb z, = 0 a little bit to form vectors A and k such that {z e F|lz >0,
(R)Yz =1} and {z € F | z; <0, (k)'z = 1} are nonempty and bounded and, Cj, and
C;, are positive semidefinite. In the following, we only consider how to construct h

(as h can be constructed in same way).

We will proceed as follows. We state a complete algorithm for checking if C
is copositive on {z € F | z; > 0} first. Then we will show that the algorithm is
correct step by step.

Algorithm 4.2.1
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Step 1. Letr = e— Y2, a;and F3 = {z € F | z; = 0, vz = 1}, where
e=(1,0,---,0) € E". If F5 # ¢, go to Step 2. Otherwise let h = e and go to Step
3.

Step 2. Let

€ =min { 1 1
Ire] + 1 dy %, Iri]

}, hi=1and h; = er;

for1=2,---,n. Go to Step 3.

Step 3. Solve
a3 =min {'Cz|z€F, £, >0, h'z =1}. (4.4)

If a3 > 0 or (4.4) is infeasible, C is copositive on {z € F | z; > 0}. Otherwise, C
is not copositive on {z € F | z, > 0}.
The fact that Algorithm 4.2.1 works for checking the copositivity of C on {z €

F | z; > 0} is shown by the following 5 lemmas. First we assume {z € F | z; >

0} # {0}. Later on we will discuss the case {z € F | z, > 0} = {0}.

Lemma 4.2.1 If F; = ¢ in Step 1, then by settingh = e, the set {z € F |z, > 0,
h'z = 1} is nonempty and bounded and, a projected Hessian Cj, of C on h'z =1 is

positive semidefinite.

Proof. Since {z € F |z, =0,z =1} = ¢, {z € F | z, = 0} = {0}. Since
{fzeFla20#{0},{z€F [z 20,Nz=1}={z€F|z1=1}is
nonempty and bounded. The fact that a projected Hessian Cj, of C on h'z =1 is
positive semidefinite is trivial. This completes the proof of the lemma. a

In the following, we consider the case F; # ¢ and assume s* € {z € E" | z, = 0,

'z =0} for i = 1,---,n — 2 such that s!,--.,s"? are linearly independent.
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Lemma 4.2.2 For any z* € F3, —ce+z*, —ece+ z* + s*, ~~-, —€e +z" + s"2 are

linearly independent.

Proof. By adding €e to each of these vectors, we can see it is sufficient to show
that z*, z* + s!,---,2" + s" 2 are linearly independent. For any real numbers

A1, - =+, An—1 such that
Az + Ag(z" + 8Y) + -+ + A (2" +577%) =0,

we have

n—1
PMz” + A2+ 8Y) 4 A (2T + 8] = DN =0.
=1
Thus,
Agst 4 oo+ Apmy ™2 = 0.

Since s!,---,s™2 are linearly independent, A\; = --~ = A,_; = 0 which implies
A, = 0. Hence z*,z" + s*,~--, 2" + s"~2 are linearly independent. This completes

the proof of the lemma. a

Lemma 4.2.3 For any z* € F3, h is a solution to the following system

3

hK(—ee+2z") =0

hl_ = 1 =0
W(zeets’+s) » (4.5)

W(~ee+z" +s"2) =0

Proof. Since k; = er; for ¢ = 2,---,n and z] = 0, we have h'z* = er'z* = €.

Similarly, since s{ =0 fori =1,---,n — 2, we have
h's*=er's* =0 fori=1,---,n—2.

Since hy; = 1, k(ee) = €. Hence h is a solution to (4.5) and the proof of the lemma

is complete. (]
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Lemma 4.2.4 The set {z € F | z; > 0, 'z = 1} is nonempty and bounded.

Proof. Let z* € F3 be any point. Since kh'z* = € > 0, we have

1
h'z*

This implies {z € F | z; > 0, h'z = 1} is nonempty. In order to show {z € F |

R'(

z") = 1.

z; > 0, i’z = 1} is bounded, it suffices to show
{z€ F|z, >0, 'z =0} = {0}. (4.6)
Since {z € F|lz; >0, "z=0}={0},foranyz€ {z € F|z; >0} withz #0
we have 'z > 0. Hence
F(oz8) = 1.
In order to establish (4.6), it is sufficient to show
{z€F|z:>0,Pz=1}{z € E" | 'z =0} = ¢. (4.7)
If (4.7) does not hold, then there exists a vector y with
ye{z€F|z 20, Pz =1} {z €E" | 'z =0}

Since h is a solution to (4.5) and —ee +z*, —ee + z° + 81, ~-, —ee + 2" + s""% are

linearly independent, there exist real numbers A;, -~~, A,_; such that

n—2

y=(—ee+2°) + Y Aipi(~ee+ 2"+ 5°). (4.8)
=1

There are two cases to consider: y; =0 and y; # 0. If y; = 0, then from

n—1

¥1 = Ai(~€) + -+ + Anma(—€) = (—€) I A,
i=1

we have 75! A; = 0. In this case,

n~l
y=3 Az + A8t +oor+ A8V = gt e AR

=1
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This implies 'y = 0. This contradicts 'y = 1. Hence we must have y; # 0. Since
ye{zeF|z >0, F'z =1}, (4.9)

we have y; > 0. Since y; = (—€) T2 A, T2 A < 0. From (4;8) and (4.9), we

have .
n— n-1
=ry=—en T A+ Tk
=1
This implies
n-1 n—1
-—erIZz\;+zz\;-—l=O. (4-10)
i=1 i=1
Since € < 1/([r1] + 1),
—er "z-fx. Il (<
PR A ES AP S
So
n—l n—1
—61‘12/\‘-{-21\. 1< -1
=1

This contradicts (4.10). Hence the validity of (4.7) is established and the proof of

the lemma is complete. .
Lemma 4.2.5 A projected Hessian Cy of C on h'z = 1 is positive semidefinite.

Proof. From the construction of A and ¢, we have

L L. g 1 &2
-+ < =V g ==l <o <L
.Z; &~ gz ;z (T Inl)? ~ 4 T d
By Corollary 4.2.1, C}, is positive semidefinite, as required. o

In the above, we assumed that {z € F |z, >0} # {0}. f{z € F |z, >
0} = {0}, then from Step 1, we have F5 = ¢. So h = e and in Step 3, (4.4) will be
infeasible. The algorithm will then tell us that C is copositive on {z € F | z; >
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0} and the algorithm does indeed give the correct information. In fact, (4.4) is
infeasible iff {z € F | z, > 0} = {0}.

In order to use Algorithm 4.2.1 to check if C is copositive on {z € E* | Az <0,
z; € 0}, we only need to do the following. Let

@;; = —a;; and @;; = a;5
fort =1,---,m and j = 2,---,n. Then checking if C is copositive on {z € E" |
Az < 0, z, < 0} is equivalent to checking if C is copositive on {z € E* | Az < 0,
z, > 0}, where A = [a;;]. The later can be solved by using Algorithm 4.2.1 directly.

From Algorithm 4.2.1, we can see that h is computed by solving one feasibility
problem. So hk can be computed in polynomial time and the size of h can be
bounded by a polynomial fanction of !, where ! is the size for A, C and e. Since
(4.4) is a convex quadratic programming problem, it can be solved in polynomial

time and we have the following.

Theorem 4.2.1 The copositivity problem formulated in this section can be solved

in polynomial time.

The following example is taken from [11] with a slight modification. The original

problem is considered in Example 4.2.4.

Example 4.2.3 Let n =3, m = 5, and consider

-100 2 0 -5 0 2
C=| 010 and A=] 1 5 0 =5 -1
001 -2 —4 -3 —4 -2

Let us use Algorithm 4.2.1 to determine if C is copositive on {z € E* | Az < 0,
T 2 0} first.
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Step 1: r = e— Y2 a; = (2,0,15) and (0,0,1/15) is a feasible solution to
{z €E*| Az <0, z; =0, 'z = 1}. Go to Step 2.

Step 2: € = min{1/3,1/15} = 1/15, h; =1, h, = 0 and hs = 1. Go to Step 3.
Step 3: By setting z3 =1 —z;,
a3 =min {z'Cz | Az <0, z, >0, h'z =1}

becomes

a3=min{1——2z1+:c§|z&(zl)$5}, (4.11)

T2

where

'
A=ttt 2 4 21 ] and b = (2,4,3,4,2,0).
15 0 -5 -1 0

By solving (4.11), we have a3 = 0. So, C is copositive on {z € E* | Az < 0,
z; > 0}. Now let us determine if C is copositive on {z € E* | Az <0, z; < 0}.
By setting a@;; = —a;; and @;; = a;; fori = 1,.--,5 and 7 = 2,3, it is sufficient to
determine if C is copositive on {z € E* | Az <0, z, > 0}, where A = [a;;]. Similar
as the above, Algorithm 4.2.1 tells us that C is copositive on {z € E® | Az < 0,
z, > 0}; i.e., C is copositive on {z € E® | Az <0, z; < 0}. Hence C is copositive

on {z € E" | Az < 0}.

In what follows, we consider the case that C has two negative eigenvalues; i.e.,
C = diag(—d,, —d3,ds, -- -, d;), where d; is positive integer for ¢ = 1,---,n. From
Proposition 4.2.2, we get the following corollary.

Corollary 4.2.2 For a given vector h € E"\ {0}, a projected Hessian C), of C on

h'z =1 has ezactly one negative eigenvalue iff

hz hl hz
A +d,,‘d1 e
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From Corollaries 4.2.1 and 4.2.2, we can see that we can still use Algorithm 4.2.1

to solve this copositivity problem. But now (4.4) is a non-convex quadratic pro-

gramming problem with Hessian having exactly one negative eigenvalue. So, it can

be solved by the method of Section 2.3 of Chapter 2. By the generalized conju-

gate direction algorithm developed in Section 3.5 of Chapter 3, we can write down

the parametric formulation for (4.4). However since (4.4) has a special structure,

we can write down the parametric formulation for (4.4) directly as follows. From

K’z =1, we have

p= LS b
1 hl ~ hl t 34
So,
—dy2? ~ dyz3 + Y iz}
i=3
= —-dl(l - i é—';z;)z —dpz2 + f_:d‘-zf
hy i=2 hy i=3
= ¢(z2) + (S + 229)'2 + ECE,
where

= (.'83, et ,Zn)',

s Zhhs | 2k

hl ? ’ h]_ b
_ —2dihshs  —2dihsha,,
q= (T,...,T)’

d, 2d\h d,h3
¥(z2) = —h—% + hlf 2z, —( Ilzfz + dy)=3,

(d‘h3 d"'")'(ﬁ o n
h1 ] ’ h1 hl, ? hl

C'=d538(d3,"'-dn)—

From Az < 0, we have

).

213 °** Gin a1

Gm3 *°° Cmn Gm1
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—ay1 aubs gy,
< |tz
—Gm1 e";,‘lh — Gm2

From z; > 0 and h; > 0, we have

hs hn - 1 h?
—_ee | —— < —<% —_—],
(hl T b hl )z — hl 22( h]_

So, (4.4) can be written as

min %(zz) + (E+ 229)'2 + ZCz
sk, Az <b+ z,p,

where N
a3 — g’;ﬁ:“‘ G1n — 2 hy
A — amih a
A= | Gps—mmits ... g, — b |,
hy hy
L hy h |
b= (—a —1-)'
= 11, y —@&mnml, h
and
- (Guhz . Gm1h2 ﬁ ’
hl 127 b h 2) hl
From Algorithm 4.2.1, we know
B2 K2 K2
4 2L,
d; d, — dy
So,
2 2 2
ﬁ:’. + -4 h" S ﬁl.

70
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Therefore, C is positive semidefinite. This implies that the above problem is a
convex parametric quadratic programming problem if we take z; as a parameter.

Hence it can be solved efficiently by the method of Section 2.3 of Chapter 2.

Now let us see one more example to illustrate the above ideas. This example is

taken from [11].

Example 4.2.4 Let n =3, m = 5, and consider

’

-1 00 2 0 -5 0 2
C=| 0 -10| and A= 1 5 0 -5 -1
0 01 -2 —4 -3 —4 -2

This example is almost the same as Example 4.2.3 except c;2 = —1 here, the
element in the second row and column of C. As in Example 4.2.3, let us determine
if C is copositive on {z € E* | Az < 0, z; > 0} first. In Example 4.2.3, we know
kh = (1,0,1). By the above discussion, we know that this k can be used to obtain
a parametric formulation for (4.4). In fact, by setting z; = 1 — z3, (4.4) can be

transformed to
min -1 + 223 - Zg

st. z2—4z3 < -2, Bz — 423 <0,

2z3 <5, —5z; —4z3 <0,

—z3—4z3< -2, z3< 1.
By taking z, as a parameter, the problem becomes a parametric linear programming
problem. The optimal value of the problem is zero. So, C is copositive on {z €
E?| Az <0, z; > 0}. Now let us determine if C is copositive on {z € E* | Az < 0,
z; < 0}. By setting @i; = —a;; and &;; = a;j for ¢ = 1,---,5and j = 2,3, it is
sufficient to determine if C is copositive on {z € E* | Az < 0, z;, > 0}, where
A = [a;]. Similar as the above, Algorithm 4.2.1 tells us that C is copositive on
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{z € E* | Az < 0, z; > 0}; i.e., C is copositive on {zx €E*| Az <0, z; < 0}.
Hence C is copositive on {z € E* | Az < 0}.

So far, we have established an algorithm for a class of copositivity problems in
which C is a diagonal integral matrix with exactly one or two negative eigenvalues.
Therefore, in order to solve a class of copositivity problems in which C is an (n,n)
symmetric matrix with exactly one or two negative eigenvalues, it is sufficient to
transform the problem into the formulation of this section. This will be discussed

in the next section.

4.3 A Polynomial Transformation

In this section, we assume that both A and C are integral matrices, rank(A) =
rank(C) = n and C has exactly one negative eigenvalue. Here C need not be a
diagonal matrix. The purpose of this section is to explain how to transform the

copositivity problem into the formulation of Section 4.2 in polynomial time.

If a symmetric matrix is positive definite matrix, we know that it can be factored
into LDL', where D is a diagonal matrix and L is a unit lower triangular matrix.
However when the matrix is not positive definite, the factorization may not work
as the determinant of some principal minor of the matrix may equal to zero. In
what follows, we will give an algorithm to diagonalize C first. The algorithm is
developed baded on some modifications of LDL’ factorization. Now let us start the

algorithm. First of all, let us introduce the concept of the unit triangular matrix.
Definition 4.3.1 An (n,n) matrix L = [l;;] is called a unit lower triangular matrix
if

[ {0 fOl'.‘j)i,i:l,--—,nandj_-,z...,n,
5 =

1l fori=j t=1,---,n.
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We attempt to factor C into LDL', where D = diag(dy1,---,dns) and L is
a unit lower triangular matrix. Let C; denote the j-th principal minor of C for
j=1,---,n. Ifdet(C;) # 0 for all j with 1 < j < n, the process of factoring
of C into LDL' can be accomplished. In this case, L and D can be computed in
polynomial time and, the size of L and D are bounded by a polynomial function of
the size of C. The reader may refer Chapter 2 of [31] for details. In the following,
let us consider how to deal with the case that there is a j with 1 < j < n such that
det(C;) = 0.

Let k be the smallest number such that det(Ci) = 0. Then the factorization of
C into LDL' can not be continued after k — 1 iterations. In this case, we partition

C as follows

[ C.. B
C = k—~1
B E
Let )
s I, 0 Crs B Iy —C,:_}IB
| -BCE Lwn [ B B0 Lin

|G 0
0 E-BC;\B

where I; is an (i, i) identity matrixfori = 1,---,n. Let € = [é;;]- Since det(Cr) = 0,
we have & = 0. Since C is nonsingular, Cis nonsingular. So, there exists a

Jj> k + 1 such that ékj # 0. Define
—Lille, +¢; if &; #0,
z= 1
—Le+ e; otherwise,
Exj

where e; € E" is a unit vector with i-th entry being equal to one fort = 1,---,n.
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It is easy to check that z’Cz < 0. By setting

Z,

- [Ik—-l - :_113
y=

0 In—k-i-l

we have 'Cy < 0. Since § # 0, it must have at least one nonzero component. For
simplicity, suppose ¢; # 0. Set

e:Cy

i = € — Y

g‘;Tgﬂ fori=2,---,n

and P = (§,pz2,+-+,Pn)- Then P is nonsingular and

7Ci 0
P’CP:[” y }

0 F

where F is an (n—1,n—1) symmetric matrix. Since rank(C) = n and C has exactly
one negative eigenvalue, F is positive definite. So F can be factored into LDL’,
where L is an (n — 1,n — 1) unit triangular matrix and D = diag(dys, - -, dnn) with
di; >0fort=1,---,n. Thus,

10 ;’'Cy 0 10
pep=|" _[|¥7Y " .
0 L 0 D 0o L
Let
al gy a Al k2 At.-l-l .
Cg=——,ds= fort=1,---,n -1,
y-y B Biv1

where A; and g; are positive integers for ¢ = 1,---,n. Then by setting

-1

1
dia'g(ﬂh tet 1ﬂn)

M=P
0

and d; = \;f; fort =1,-.-,n, we have

M'CM = diag(~dy, d, -+, d,).



CHAPTER 4. A CLASS OF COPOSITIVITY PROBLEMS 75

Now, by putting z = My, it follows that
C is copositive on {z € E" | Az < 0} (4.12)
if and only if
diag(~d;,ds,---,d,) is copositive on {z € E" | (AM)y < 0}. (4-13)

Note (4.13) is precisely the formulation of the copositivity problem discussed in
Section 4.2. Since M is computed by matrix inverse with matrix multiplications
and LDL’ factorizations, M can be computed in polynomial time and the size of M
is bounded by a polynomial function of the size of C. Therefore the size of (4.13)
is bounded by a polynomial function of the size of (4.12). Now by combining this
with Theorem 4.2.1, we have the following result.

Theorem 4.3.1 Assume that rank(A) = rank(C) = n. If C has ezactly one neg-
ative eigenvalue, then determining if C is copositive on {z € E* | Az < 0} can be

done in polynomial time.

If C has exactly two negative eigenvalues, it can also be diagonalized by the
algorithm similar to the above. It can also be diagonalized by the general conjugate
direction algorithm developed in Section 3.5 of Chapter 3. So the problem can be
transformed into the formulation of Section 4.2. Hence this type of problem can be
efficiently solved by parametric quadratic programming techniques.

We conclude this section with two more examples to illustrate the above trans-
formation process.
Example 4.3.1 Let
1 21
C=[211
112
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and diagonalize C by the above transformation process.

By putting
121 1 00||dy 0 o0f]1 ly ta
C= 21 1|= 121 10 0 dzz 0 0 1 laz
112 Iy 32 1 0 0 dss 0 0 1

we have du = 1, [21 = 2, 131 = 1, dzz = —3, 132 = 1/3, dsa = 4/3. SO, d]_ = 1,
d2=3, d3=12aﬂl=1vﬂ2=17ﬁ3=3a

1 -2 -1
M = (L) diag(B1,$2,0)=|0 1 -1
0 0 3
and
1 oofl121|]1 -2 -1 1 0 0
MCM=]_-2 10]|]l211[]l0 1 -1{={0 =3 o
-1 -1 3(|l112]|l0o o 3 0 0 12

Example 4.3.2 Let
112

C=]113
2 3 2

and diagonalize C by the above transformation process.

By the process of factoring C into LDL', we obtain det(C2) = 0. So, we have
k=2 C =[1], B=(1,2) and

13
E= :
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Now, let us summarize our computations as follows:

10 0 - 0 1
C'= 0 0 1 132—@62‘*‘83: -3 7!;: =3 |,
C23
01 -3 1 1
1 1/9 -2/3
10/9 7/3 - 10
P=] -3 2/3 2|, F= , L= ,
7/3 5 -21/10 1
1 1/9 1/3
d1=9, dz=90, d3=10, ﬂ]_:l, /Bz=9, ,33=10,
-1 11 -9
10 )
M=P _ diag(B1,062,03) = | -3 6 )
0 L
11
1 =31 112 11 -9 -9 0 0
M'CM = 1 61 113 -36 6{=| 09 0
-9 61 231 11 1 0 10

4.4 Numerical Results

7

We obtained numerical results by taking C = diag(-1,1,---,1), and A4, an (m,n)

matrix with randomly generated elements. The code was executed on a 486-66

PC and the computation time is measured in seconds. The results of applying our

method to such data are summarized in Table 4.1. The quadratic programming

algorithm used is that of Best and Ritter [10] as implemented in [9].
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Table 4.1: Numerical Experiments for Algorithm 4.2.1

m 30 | 70 | 110 | 150 | 190 | 250 | 300 | 350 | 400

n 15 | 35 [ 55 | 75 | 95 | 125 | 150 | 175 | 200

time | 0.05 | 0.09 | 0.10 { 0.12 | 0.16 | 0.22 | 0.39 | 0.43 | 0.57

4.5 Conclusion

We have established a polynomial algorithm for a class of copositivity problem in
which C has one negative eigenvalue and n — 1 positive eigenvalues. The algorithm
is extended to solve a class of copositivity problems in which C has two negative
eigenvalues and n —2 positive eigenvalues. The algorithm is illustrated by numerical

examples and randomly generated data.



Chapter 5

(Global and Local Non-convex

Minimization

5.1 Introduction

In this chapter, we generalize l;he results established in Chapter 2 to a large class
of non-convex minimization problems. Here we consider the following nonlinear
programming model

NP min{g(zvt)l(z’t)69$ gj(zat)SO, j=1,---,m},

where g(-,-), gj(-,-) : E"** = E'U {~00}U{+o0} for j = 1, ---,m and Q C E***.
Let B = {(z,¢t) € @ | gi(z’t) <0,j= 11"':7"'} and R(t) = {z € E" | (z,t) €
Q, g;j(z,t) <0, j = 1,~~~, m} for each ¢t € E*.

This model is quite similar to the model used by Geoffrion [16].

If g(-,t) is quasi-convex or convex, then, we may solve NP by solving the fol-

lowing main nonlinear programming problem

79
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MNP min {f(¢) | t € E*},

where

+o0, otherwise.

f) = { iuf {g(z,1) | 2 € RO, HRE) £,

This approach was used in Chapters 2 and 3 for solving non-convex quadratic
programming problems. Also see Best and Ding [6] and [7]. Related approaches
were also used by Geoffrion [16], Kough [18] and Benders [2]. We will discuss these

later.

In order to find all isolated local minima, some non-isolated local minima and
the global minimum for NP, we must evaluate f(t) and then solve MNP. We refer

to this as our parametric local optimization procedure.

From the definition of f, we can see that the connection between NP and MNP
is the following parametric nonlinear programming problem
NP(t) min {g(z,t) | z € R(t)} for t € E~.

Let arg min{NP(t)} denote the set of all optimal solutions for NP(t). Since we
want to solve NP by solving MNP, it is necessary to study the relationships between
NP and MNP. For example, can MNP represent NP or how much information can
MNP retain from NP? We will answer these questions partly in this paper. First,

let us see some examples.
Example 5.1.1 Consider the indefinite quadratic problem
min {z'z —y'y | Az + By < b},

where z € E*, y € Ef, A ¢ E™*", B € E™** and b€ E™.

This problem was studied by Kough [18]. By setting t = y, g(z,t) = z'z—t't and
R(t) = {z € E* | Az + Bt < b}, MNP and NP(¢) can be formulated accordingly.
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NP(t) and f(t) can be written as follows .

NP(t) min {z'z |z € R(t)} forte E*;
O <4 { inf('z | 2 € RO}, if BE) # 6,
+00, otherwise.

In this example, NP(¢) is a multi-parametric convex quadratic programming prob-

lem.
Example 5.1.2 Consider the nonlinear programming problem
min {¢'z + ¥(y) | ajz + gi(y) +b; <0, j=1,---,m, 20, y € 5},
where c € E*, ¥(-) : EF -+ E!, a; € E*, g;(-) : E* 5 E', bj€E' forj=1,---,m
and § is a subset of E*.

This model was studied by Benders [2]. Obviously, for each fixed y, the problem
is a linear programming. So, we may put £ = y, g(z,t) = 'z + ¥(t) and R(?) =
{zcE"|ajz+gi(y) +5;L0,i=1,.--,m,z > 0} for each t € S, and formulate
NP(t) and MNP accordingly. NP(¢) and f(t) can be written as follows:

NP(t) min {c'z | z € R(t)} fort € EF,

inf {¢z |z € R(Y)}, if R(E) # &,

+o0, otherwise.

f&) =4(t) + {

The problem is a nonlinear programming problem, but NP(¢) is a linear program-

ming. Hence it makes the problem much easier to solve in some sense.

Example 5.1.3 Consider the nonlinear programming problem
min {§(z) + g(y) l g.i(z) + gi(y) S 0 for j = 1a cre,Mm, (zay) € Q}’

where Q is a subset of E"** §(-), g;(:) : E® = E', §(-), §;(:) : E* = E*, 7 and §;

are convex on E" for j =1,..-,m.



CHAPTER 5. GLOBAL AND LOCAL NON-CONVEX MINIMIZATION 82

Obviously, for each fixed y, the problem is a convex programming problem. So,
we may set t =y, g(z,t) = g(z) + §(t) and R(t) = {z € E" | g;(z) + 3;(v) < 0,
j=1,---,m, (z,t) € Q}, and formulate NP(¢) and MNP accordingly. NP(t) and

f(t) can be written as follows
NP(¢) min{j(z) | z € R(t)} for t € E¥;

. inf {3(z) | z € R(8)}, if R(t) # ¢,
f(¢) =4(t) + { :
+o00, otherwise.
Note that Example 5.1.3 is a general formulation of Examples 5.1.1 and 5.1.2.

We will organize this paper as follows. In Section 5.2, we will develop the
relationships between NP, NP(¢) and MNP. In particular, we will establish a one to
one correspondence between isolated local minimizers of NP and MNP for a large
class of non-convex programming problems. In Section 5.3, we will discuss how
to apply the results established in Section 5.2 to some special class of non-convex

problems.

5.2 The Relationships Between NP and MNP

In this section, we will discuss some relationships between NP and MNP. We will
generalize some results of Chapter 2 and also present some new results. First of all

we will give a result concerning convexity.

Proposition 5.2.1 If Q is a convez subset of E***, g; (j = 1,---,m) is a convez
vector function on E***, then (i) g convezity on E™* implies f convezity on E*

and (ii) g quasi-convezity on E*** implies f quasi-convezity on E*.
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Proof. The proofs of (i) and (ii) are quite similar, so we only prove (i) here. Let
(t',7") and (t?,72) be any two points in {(£,7) € E¥*' | f(t) <, t € E%, v € E'}.
We need to show f(at! + (1 —a)t? < ay'+ (1 —a)y? for all @ with 0 < « < 1. For
any € > (), since .
f(t') <7' +eand f(£*) <7’ +¢
there exist two points z! € R(t!) and z2 € R(¢?) such that
g(z*,t') < 4' + e and g(2%,#%) < v* + <
Since g; ( = 1,---,m) is convex and Q is also convex, it is easy to check az' +
(1 - a)z? € R(at*+ (1 — a)t?). So,
flat' + (1-a)t?) < g(az' + (1 - a)z? at’ + (1 — a)t?)
< og(zh, )+ (1 —a)g(z*,t}) < ay* + (1 — a)y? +e.
Since € is any positive number, we have
flat! + (1 - a)t?) < af(t) + (1 — @) ().
The proof of the proposition is thus complete. =]

The following result is concerned about one to one correspondence between the

global minimizer of NP and MNP.

Theorem 5.2.1 If a point t* € E* with f(t*) > —oo is a global minimizer of
MNP, then for any z* € arg min{NP(t*)}, (z",t") is a global minimizer for NP.
Conversely, if (z*,t*) is ¢ global minimizer for NP, then t* is a global minimizer

for MNP.

In the following, we will establish one to one correspondence results between
isolated local minima of NP and MNP for several classes of non-convex program-
ming problems. The results will be formulated in Theorems 5.2.2—5.2.5 and will

be the consequences of Propositions 5.2.2—5.2.8, following.
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Proposition 5.2.2 If t* i3 a local minimizer for MNP, then for any z° € arg
min{ NP(t*)}, (z*,t") is a local minimizer for NP.

Proof. Since ¢* is a local minimizer for MNP, there exists an € > 0 such that
f(t) = f(t") for each t € B.(t"), (5.1)

where B,ft') = {t € E¥ | ||t — t*]] < €}. Assume to the contrary, that (z*,¢")
is not a local minimizer for NP. Then there exists a sequence {(z*,t")} C R with
(zf,t') = (z*,t*) and (2%, t) # (z*,t*) for all ¢ satisfying

9(z",t') < g(z",£%) = f(t"). (5.2)

Since (z¢,t') € R for each ¢, z* € R(t'). Since t* — ¢, there is a M > 0 such that
t' € B.(t*) when i > M. Now from (z%,#) € R and (5.2), we have f(t') < f(t)
for each 1, this contradicts (5.1) for ¢ > M. The proof of the proposition is thus

complete. . o

Proposition 5.2.3 Assume that t* is an isolated local minimizer for MNP. For
each z* € arg min{ NP(t*)}, if there is a § > 0 such that {z € Bs(z*)NR(t") |
g(z,t™) = f(t7)}= {z"}, then (2°,t7) is an isolated local minimizer for NP, where
By(z") = {z € B*| |}z — ="|| < 6}.

Proof. From Proposition 5.2.2, (z*,t*) is a local minimizer for NP. Assume to
the contrary, that (z*,¢*) is not an isolated local minimizer. Then there exists
a sequence {(z',t)} C R with (z*,¢) — (z*,t*) and (z',¢) # (z*,¢t*) for all ¢
satisfying

9(=*,t') = g(z", t°). (5.3)
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If{i|t#¢t, t=1,2,.--} is finite, then there is a M > 0 such that &' = ¢~ for all
i > M. From z* — z*, there exists a N > 0 such that z°* € Bs(z*) for all ¢ > N.
Since {z € Bs(z")NR(t") | g(z*,t") = f(t*)}= {z"}, (56.3) implies z* = z* for all
i > max {M, N}, a contradiction. So {i | ¢ #t*, i =1,2,---} is infinite. Without
loss of generality, let £ # ¢t for all i. Again from (5.3), we have

f() < g(z', ') = g(z",t") = f(¢*) for all i. (5.4)

But t* — ¢*, and thus (5.4) is in contradiction to ¢* being an isolated local mini-
mizer. Hence (z*,¢*) must be an isolated local minimizer for NP. The proof of the

proposition is thus complete. i

Lemma 5.2.1 Assume that R(t) is convez for each t € E* and g(-,t) is quasi-
convez on R(t) for each t € EF. If (z=,t) is an isolated local minimizer for NP,
then there ezists a § > 0 such that

9(z",£") < g(z,t) for each (z,t) € R() Bs(z",t") \ {z",t"} (5.5)
and
9(z*,t°) < g(z,t) for each z € R(t")\ {z*}; (5.6)
i.e., arg min{NP(t")} = {z"}.

Proof. (5.5) is exactly the definition of an isolated local minimizer for NP. From
(5.5), we have

g(z",t") < g(z,t") for each (z,t") € R[) Bs(z",¢") \ {z",£"}.
This implies

g(z",t*) < g(z,t") for each z € R(t*)() Bs(z") \ {z*}-
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Since g is quasi-convex on R(t") and R(t*) is convex, we have
g(z°,t*) < g(z,t") for each z € R(¢") \ {z"};

i.e., (5.6) holds and arg min{NP(¢*)} = {z*}. This completes the proof of the

lemnma. a

Proposition 5.2.4 Assume that g and g; (7 = 1,~-,m) are continuous on §Q,
X={zeE|(zt) €, gi(z,t) £0,j =1,--~,m} is bounded, Q is closed, R(t)
is convez for each t € EF and g(-,t) is quasi-convez on R(t) for each t € E-. If
(z=,t*) is an isolated local minimizer for NP, then t* is an isolated local minimizer

for MNP and arg min{NP(t")} = {z"}.

Proof. By Lemma 5.2.1, there exists a § > 0 such that (5.5) and (5.6) hold. Now
assume that on the contrary, t* is not an isolated local minimizer for MNP. Then

there exists a sequence {t'} C EF with £* # ¢* for all ¢ and ¢ — t* such that
f(£) < f(). (5.7)

From (5.7) and the definition of f, we have R(t’) # ¢ for all i. Since Q is closed
and g; ( = 1,---,m) is continuous on Q, R(t*) is a closed subset for all :. From
R(t') C X and the boundedness of X, we know that R(t') is compact for all 1.
Since g is continuous on {2, a global minimizer of NP(¢') is attained for all ¢. So

there is a sequence {z'} C X with z* € R(t*) such that
g9(=*, &) = f(t') < f(t7) = g(z,¢7) foralli. (5.8)

Since X is bounded and {z‘} C X, {z'} has a convergent subsequence. Without
loss of generality, let z° — z°. Because t* — ¢*, there exist an M > 0 such that

ll&8 —¢=|| < £ for all i > M. So (5.5) and (5.8) imply [|z° —z*|| > f foralli > M.
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Therefore z° # z*. Since {2 is closed and g; is continuouws on Q (j = 1,-.-,m),
(z°,¢*) € R; i.e., z° € R(t"). Again from (5.8) and the continuity of g on , we have
g(z°,t*) < g(z*,t"). This contradicts (5.6). Hence t* is an isolated local minimizer
for MNP. The proof of the proposition is complete. ' (m]

Now by combining Proposition 5.2.3 and Proposition 5.2.4, we can get the fol-

lowing one to one correspondence on isolated local minimizers for NP and MNP.

Theorem 5.2.2 Assume that g and g; (j = 1,---,m) are continuous on , {z €
E* | (z,t) € Q, gi(z,t) < 0,7 = 1,---,m} is bounded, Q is closed, R(t) is con-
vez and g(-,t) is quasi-convez on R(t) for each t € E*. Then (z*,t*) is an iso-
lated local minimizer for NP iff t* is an isolated local minimizer for MNP and arg

min{ NP(t*)} = {z*}.

In Proposition 5.2.4, the assumption that X is bounded is quite strong. In the
following we are going to establish several results which are same type as Proposition

5.2.4 without the boundedness assumption of X. To this end, let T = {t € E* |
R(t) # ¢}

Proposition 5.2.5 Assume that the set-valued map R(-) is lower semi-continuous
on T relative to T', g and g; are continuous onQ (j = 1,---,m), Q s closed, R(t) s
convez and g(-,t) is quasi-convez on R(t) for each t € E*. If (z*,t*) is an isolated
local minimizer for NP, then t* is an isolated local minimizer for MNP and arg

min{ NP(t*)} = {z*}.

Proof. By Lemma 5.2.1, there exists a § > 0 such that (5.5) and (5.6) hold. Assume
that on the contrary, ¢* is not an isolated local minimizer for MNP. Then there exists
a sequence {t'} C E* with t* — ¢* and ¢ # ¢* for all ¢ satisfying

f(E) < £(&). (5.9)
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From the definition of f and (5.9), we know R(t') # ¢ for all i. So, from the lower
semi-continuity of R(-) on T relative to T', there exists a sequence {y’} C E® with
y* € R(t') for all i such that y* — z*. We claim that NP(¢) has an optimal solution
for sufficiently large ¢. If this is not the case, then without loss of generality, we
may assume that NP(¢') has no optimal solutions for all <. So for each i, there is a
sequence {z"} C R(t') with ||z®]] = +oco such that g(z",¢') = f(t’). Hence there

is a sequence {z'} with z* € R(t%) for all 7 and ||z*|| = +oo such that
FE) +1 I F(£) is finite,
f(&) otherwise.

g(ziv ti) < {

Since {z'/||z’||} is bounded, it has a convergent subsequence. Without loss of

generality, let z*/||z'|| — z°. So, for sufficiently large ¢ we have

1 . 1 . .
_z' + (1 — ——)y* € R(#
TS
and
1 1, .. . . -
94—z + (1 ~ —=)¢¥", t') < max{g(z*,t*),9(v", t*)}-
By the continuity of g on 2, we have
9(z° + 27, t7) < g(z", t7) = f(t°). (5.10)

Since Q is closed and g; is continuous on @ (j = 1,---,m), z° + z* € R(t7).
Obviously, % + z* # z*. So, (5.10) contradicts (5.6). Hence NP(#*) has an optimal
solution for sufficiently large i. Without loss of genmerality, let z* be an optimal
solution for NP(#) for all . From (5.9), we have

g(z*, t') < f(t*) for all . ' (5.11)

Similar to the above we can prove that {z'} is bounded. So {z*'} has a convergent

subsequence. Without loss of generality, let z* — #. Because t* — t*, there exist
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an M > 0 such that [|tf — || < £ for all i > M. So (5.5) and (5.11) imply
[zt —z7| > % for all { > M. Therefore £ # z*. Since (2 is closed and g; is
continuous on Q (j = 1,---,m), (£,£") € R; i.e., £ € R(t*). Again from (5.11) and
the continuity of g on 2, we have g(z,t*) < g(z*,t*). This contradicts (5.6). Hence
t* is an isolated local minimizer for MNP. The proof of the proposition is complete.

O

By combining Propositions 5.2.3 and 5.2.5, we have the following one to one

correspondence result on isolated local minimizers between NP and MNP.

Theorem 5.2.3 Let the set-valued map R(-) be lower semi-continuous on T rel-
ative to T, g and g; are continuous on @ (j = 1,---,m), Q is closed, R(t) is
convez and g(-,t) is quasi-convez on R(t) for each t € E*. Then (z*,t%) is an
isolated local minimizer for NP iff t= is an isolated local minimizer for MNP and

arg min{ NP(t*)} = {z"}.

In the following, we are going to consider the assumption of lower semi-continuity
of R(-) in Proposition 5.2.5; i.e., we will consider some sufficient conditions which
make R(-) a lower semi-continuous set-valued map on T relative to T'. In doing so,

let
bae(t) = { inf {lz — z”|| | = € R()}, if R(t) .¢ é)
+oo, otherwise,

where [ly|| = (£, ¥?)F and z* is any fixed point in E".

Lemma 5.2.2 Assume that Q is a closed subset of E***, R is a convez subset of
E™*k | g; is a continuous function on @ (j = 1,-+-,m) and T # ¢. Then ¢, is a
properly closed convez function on E* with dom(y..) = T.

Proof. From the definitions of T and .., we have dom(y,+) = T. Since each g; is
continuous on Q and § is closed, R(t) is closed subset of E* for each ¢t € E*. So,
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for any *,¢? € T with £* # ¢3, there are two points z' € R(t') and z? € R(¢?) such
that

$ur () = 12" — 2% a0d $ue(t?) = 12" = 7).
Since a(z!,t') + (1 — a)(z?,¢t*) € R for any @ with 0 < a < 1, az! + (1 — a)z?
€ R(at' + (1 — a)t?). So T is convex and

Yoo (ot + (1 — a)t?) < |laz' + (1 — a)z® — 27|
= |la(z! —2°) + (1 — a)(z® — z°)||
< allzt —z7| + (1 - a)||z® — =7

= agee(th) + (1 — aQgur ().

Hence v,. is a properly convex function on Ef. Now let us prove that .- is closed.
For any r € R and any sequence {t'} with t..(£') < r for all i and ' — ¢, we
need to show ¥..(t) < r. Since ..(t') < r for all 7, there is a point z* € R(t!)
such that 9,.(t*) = ||z* — z*|| < r for all i. So {z'} is bounded. Without loss
of generality, let z* — z° Since Q is closed, (z*,#) — (z°,t°) € Q. From the
continuity of g;, we have g;(z*, ) — g;(z°,¢°) <0 for j =1,---,m. So z° € R(t)
and ||z* — || = ||z= — 2% < r;ie., Y2+ (¢*) < 7. Hence 9. is closed. The proof of

the lemma is complete. . O

Lemma 5.2.3 Under assumptions of Lemma 5.2.2, R(-) is lower semi-continuous
on ri(T) relative to T. Furthermore, if T is locally simplicial at t* € T, then R(-)

is lower semi-continuous at t* relative to T.

Proof. For any t* € ri(T), any z* € R(t*) and any sequence {t‘} C T with
t' — t*, we need to show that there exists a sequence {z‘} with z* € R(t‘) for

each ¢ such that z' —+ z*. By Lemma 5.2.2, .+ is convex and dom(%..) = T.
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By Theorem 5.2.2 of Rockafellar {27}, 4.+ is continuous on ri(T') relative to T. So,
Pze () = 9P+(t") = 0; ie., there is a sequence {z*} with z* € R(#*) for all i satisfying
Ve« (t') = ||z° — z°|| = 0. Therefore z* € R(#) for all ¢ and z° — z*. Hence R(-) is
lower semi-continuous on ri(T') relative to T'. Similarly, if T is Ioéally simplicial at
t* € T, then by Theorem 10.2 of Rockafellar [27], we know that 1. is continuous
at t* relative to T for any z* € R(t*). Hence R(-) is lower semi-continuous at ¢*

relative to T'. The proof of the lemma is complete. a

Proposition 5.2.6 Assume that Q is a closed subset of E**, g; and g are con-
tinuous on Q (j = 1,---,m), R i3 a convezr subset of E***, g(-,t) is quasi-convez
on R(t) for each t € E*. If (z*,t") is an isolated local minimizer for NP, then arg
min{ NP(t*)} = {z"} and t* is an isolated local minimizer for MNP if t* € ri(T) or

T 1s locally simplicial at t*.

Proof. By Lemma 5.2.1, we have arg min{NP(t*)} = {z*}. From Lemma 5.2.3, we
know that t* € ri(T) (or T is locally simplicial at ¢*) implies R(-) is lower semi-
continuous at t* relative to T'. So, all conditions of Proposition 5.2.5 are satisfied.
Hence t* is an isolated local minimizer for MNP. This completes the proof of the

proposition. a

Remember that k is the dimension of parameter t. If £ = 1, we have the
following corollary from Proposition 5.2.6.

Corollary 5.2.1 Assume that k = 1, Q is a closed subset of E***, g; and g are
continuous on  (j = 1,+-+,m), R is a convez subset of E***, g(+,t) is quasi-convez
on R(t) for each t € EF. If (z*,t*) is an isolated local minimizer for NP, then t* is
an isolated local minimizer for MNP and arg min{ NP(t*)} = {z"}.

Proof. By Lemma 5.2.1, we have arg min{NP(¢*)} = {z*}. Since k =1, T is an
interval in E'. So, T is locally simplicial at ¢ for any ¢ € T. By Proposition 5.2.6, ¢*
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is an isolated local minimizer for MNP. The proof of the corollary is thus complete.
a

Similar to Corollary 5.2.1, the following corollary also follows from Proposition
5.2.6.

Corollary 5.2.2 Assume that Q is a polyhedron in E***, gi(z,t) = a;z + byt +c;,
a; € E*, b; € EF, ¢; € E* (j =1,---,m), g is continuos on @ and g(-,t) is quasi-
conver on R(t) for each t € E*. If (z*,t*) is an isolated local minimizer for NP,
then t* is an isolated local minimizer for MNP and arg min{NP(t*)} = {z"}.

In the following, we will consider the convex case; i.e., g(-,¢) is convex on E" for

each t € EF. We need some assumptions as follows.

Assumption A Let Q be a closed subset of E***, g and g; (j = 1,---,m) are
continuous on 2, R(t) is a convex subset of E" for each ¢ € E*, g(-,t) is convex
on E™ and for each t* € T there are € = ¢(t*) > 0 and M = M(t*) > 0 such that
Bpu(0)N R(t) # ¢ for each t € B.(t*) T, where By(0) = {z € E" | || z ||< M}.

Remark 5.2.1 The assumption that By (0) N\ R(t) # ¢ for each t € B.(t")NT is
much weaker than the lower semi-continuity of R(-) on T relative to T'. Also, this

condition is much easier to check than lower semi-continuity.

Proposition 5.2.7 Under Assumption A, if (z*,t°) is an isolated locel minimizer

for NP, then t* is an isolated local minimizer for MNP and arg min{NP(t*)} =
{z*}.

Proof. By Lemma 5.2.1, there exists a § > 0 such that (5.5) and (5.6) hold. Assume

that on the contrary, t* is not an isolated local minimizer for MNP. Then there exists
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a sequence {t'} C B,(t*)NT with t* — ¢t* and ¢* # ¢* for i satisfying
F(E) < F&°)- (5.12)
Without loss of generality, we may take 0 < e < ;4. From (5.5), we have
9(z*,t") < g(z,t) for each z € R(t')() B.(z")-

Since g(-,t') is continuous on R(t*) B.(z*) and R(t*) N B.(z") is compact, there is
an € > 0 such that

g(z",t) + € < g(z,t*) for each z € R(t')() B(z"). (5.13)

Take a sequence {7'} C E* with 0 < 4° < € for all i and 4* — 0. Then from (5.12)
there is a sequence {z'} C E" with z* € R(t*) for all i satisfying

(=", &) < f(£7) +". (5.14)

From (5.13), (5.14) and g(z*,t*) = f(t"), we have || z* — z* ||> € for each i. From
(5.6), we know {z € R(t*) | g(=,t*) < g(z",t*)} = {z°}. So, by Corollary 8.7.1
of Rockafellar (27], {z € R(t*) | g(=,t*) < A} is bounded for any A € E'. Since
Bu(0) N R() # ¢ for each t € B.(t*) N T, there exists a sequence {y‘} C R(t*) such
that || y* ||< M for all i. Without loss of generality, let y* — y°. Now we claim
that {z‘} is bounded. If this is not true, we may assume that || z* |- +oo and
z'/ || ¢ ||[= z°. So for any a > 0, we have
a a .. X
——z'+ (1 - ——)y' € R(¢*
[T R P L
and
a a .. .-
g(—z'+ (1 - 7—=)", ¢
T P L
a - a .
S'—.g :B'-,t‘ + 1—-—urr ‘,t‘
T2 (=% 2) +( ":B,I)g(y )

< m(f(t') +7)+(1- m)y(y‘, t
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for sufficiently large . Therefore the continuity of g on { implies

g(az® +¢°,¢%) < g(¥°,t7). (5.15)
The continuity of g; (j = 1, -, m) on  and the closedness of Q imply az® +y° €
R(t*). Since a is any positive number, (5.15) implies {z € R(t*) | g(=,t*) <
g(y°,¢")} is unbounded, a contradiction. Hence {z'} is bounded. Without loss of
generality, let z* — Z. From || z* — z” ||> € for all ¢ and (5.14), we have

9(5,t") < gz, t") and & # z°.
This contradicts (5.6). Hence ¢* is an isolated local minimizer for MNP and the
proof of the proposition is complete. a

The following example shows that the condition By (0)(\ R(t) # ¢ for each
t € B,(t")NT is necessary in Proposition 5.2.7.

Example 5.2.1 Let @ = {(0,0)}U{(z,¢t) € E* | z > 0,t > 0,tz = 1}, m = 0,
k=n =1 and g(z,t) =1 for each (z,t) € E%.

Obviously, Q is closed, g is continuous on , g is convex on R(t) for each t € E',
R(0) = {0} and R(t) = {1/¢} for each ¢t > 0. From Figure 5.1 (a), we can see that
(0,0) is an isolated feasible solution. So, (0,0)’ is an isolated local minimizer for
NP. But f(t) = 1 for t > 0 implies that t* = 0 is not an isolated local minimizer for

MNP. It is easy to check that Bxs(0) (N R(t) # ¢ for each t € B.(t*) (T does not
hold. So this condition is necessary in Proposition 5.2.7.

Now by combining Proposition 5.2.3 and 5.2.7, we have the following one to one

correspondence theorem for the convex case.

Theorem 5.2.4 Let Assumption A be satisfied. Then (z*,t") is an isolated local
minimizer for NP iff t* is an isolated local minimizer for MNP and arg min{ NP(t*)} =

{="}.
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¢ f(¢)

1\ A
2 — 2 —
1 1
] zt=1 o
0 & T T I >z 0 T I T >

0 .9 1 2 0 5 1 2

Figure 5.1: (a) Example 5.2.1 (b) f(t) for Example 5.2.1

In the following, we will consider a special class of problems, namely those for which
g(+,t) is a quadratic convex function on E" for each fixed t. In doing so, we need

the following assumptions.

Assumption B Let g(z,t) = c(t)'z + 12'C(t)z + ¥(t), gi(z.t) = a;(t)'z + bj(t),
j=1,---,m,Q = E*** where C(): EF 5 E™~", ¢(:): EF = BE", %(-): E* = E,
a;(-) : E* -+ E" and b;(-) : E* = E! ( = 1.--,m) are all continuous on E* and,

C(t) is is a symmetric positive semidefinite matrix for each t € T'.

Proposition 5.2.8 Under the Assumption B, if (z*,t*) is an isolated local mini-

mizer for NP, then t* is an isolated local minimizer for MNP and arg min{ NP(t*)} =

{z*}.
Proof. Since (z*,t*) is an isolated minimizer for NP, there exists a 4 > 0 such that

c(t™) =™ + %(m‘)’C(t')z' +9(t°) < c(t)'z + %z'C (t)z + ¥(t) (5-16)
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for each (z,t) € Bs(z=,t")N R\ {(z*,¢*)}. So,

c(t*)z" + %(z')’C )z +9(£) < c(t)z + %:B'C (t)z +¥(¢t7) (5.17)
for each z € Bs(z") N R(t*) \ {z*}. Since c(t*)'z + }2z'C(t")z + ¥(¢") is convex on
R(t%), (5.17) also holds for any z € R(t*) \ {z"}. So, arg min{NP(¢*)} = {z°}. Let

All) = inf {¢(t)z + L2'C(t)z | = € R(t)}, if R(t) # ¢,
! +00, otherwise,
and consider
QP(t) min {¢(t)z + }2'C(t)z | = € R(t)}.
Since {z"*} is the solution set of QP(¢*), there is no nonzero solution for the following
system

ay(t")s <0 (j=1,---,m), C(t7)s =0, £(t7)s < 0. (5-18)

By Theorem 1.2.1, f, is lower semi-continuous at ¢*. Therefore f = f; + 9 is lower
semi-continuous at £*. So, for any v > 0, there exists an € > 0 with € < % such that
f(t) 2 f(t*) —« for each t € B,(t*). Now assume that on the contrary, ¢* is not an
isolated local minimizer for MNP, then there exists a sequence {t'} C B.(t") with
t' # ¢ for all 1 and ¢* — ¢* such that

f&7) =7 < f(F) < (). (5.19)

Therefore R(t') # ¢ for each i. Thus, QP(¢‘) has an optimal solution z* for all 1;

FE) = o(t) 2 + %(z‘)'o(t‘)rf + () for all 4. (5.20)

We claim that {z'} is bounded. If this is not true, we may assume

i
mem—— O 1 i p—
Sl and lim || z° ||= +oo.
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So, the continuity of ¥ and £ — ¢* imply

———— —————

o [z || e 2 2

From (5.19) and (5.20), we have

2sc)s = im T8

oo [ 282

and ) o )
s GYCEE L E) )
R Y P P Y e

. (zi)lC(ti)zn’
om 2|

From a;(t')'z* + b;(t') < 0 for j = 1,-**,m, we have g;(t")'s <Ofor j =1,-*-,m.

C(t*)s =0 and ¢(t")'s = — <o0.

So, (5.18) has a nonzero solution, a contradiction. Hence {z*} is bounded and has
a convergent subsequence. Without loss of generality, let z° — z°. Since t* € B{t’)
and € < ”5, (5.16), (5.19) and (5.20) imply z* & B%(z'). So, z° # z*. It is easy to
show z° € R(t"). Hence (5.19) and (5.20) imply

1
lt")2° + 5 (Y C(E) + $(E) < elt™)'s” + 3=V C(E)a” +$(£°).
This contradicts (5.17). Hence t* is an isolated local minimizer for MNP. The proof

of the proposition is complete. 0

Example 5.2.2. Consider the following nonlinear programming problem

min — z + z%(2 — sin(t)),
subject to 1/4 < z < 1/(1 + cos?(t)),
0<t<2n.

Obviously, the problem is nom-convex, but when ¢ is fixed, it is a convex

quadratic programming problem. So, we can take ¢t as a parameter. Therefore,
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we have
2??5.‘1;(7))’ forOStSwwithz:-ﬂzT‘l‘W,
fe)=1 -1 - =0 fornr <t <2rwithz=1,
+o0 otherwise.
Example 5.2.2 is illustrated in Figures 5.2(a) and (b). Figure 5.2(a) shows the feasi-
ble region of the example. Figure 5.2(b) shows f(t), a piece-wise nonlinear function
which by inspection, has two isolated local minimizers 7/2 and 27. So, by Propo-
sition 5.2.2, the problem also has two local minimizers (7/2,1/2) and (27,1/4).
By Proposition 5.2.3, we can see that (x/2,1/2) and (27,1/4) are two isolated lo-

cal minimizers. By Proposition 5.2.8, the problem has exactly two isolated local

minimizers.
z f(?)
A A
—0.125
0 1 1 T >t 0BT >t
0 ¥ =~ = 2 0 ¥ =« ¥ 2x
Figure 5.2: (a) Example 5.2.2 (b) f(t) for Example 5.2.2

Now by combining Proposition 5.2.3 and 5.2.8, we have the following one to one

correspondence result on isolated local minimizers between NP and MNP.

Theorem 5.2.5 Let Assumption B be satisfied. Then (z*,t*) is an isolated local
minimizer for NP iff t* is an isolated local minimizer for MNP and arg min{ NP(¢*)} =

{z*}.



CHAPTER 5. GLOBAL AND LOCAL NON-CONVEX MINIMIZATION 99

From Theorem 5.2.2 to 5.2.5, we can see that for a large class of functions g,
isolated local minimizers for NP and MNP always has one to one correspondence.
In the following section, we are going to consider some applications of the results

established in this section.

5.3 Applications

In this section, we will discuss some applications of the results established in Section
2. First of all, we will discuss how to formulate MNP and f. Then we will give
several concrete examples. Usually, a nonlinear programming problem is given as

follows
min {j(z) | =z € X}, (5.21)

where §(-) : E* — E! and X C E". It is possible that g has no any special properties
(for example, convex or quasi-convex) on R(t) for any z; = t, where I C {1,---,n}
and z; represents a vector induced by all components corresponding to the indices
of I. However § may have some useful properties on R(t) if R(2) is induced by some
k-dimensional vector function h, that is, R(t) = {z € X | h(z) = t}. So, MNP may
be formulated as

min {f(t) |t € E*}, (5.22)

where
fo) { inf {3(z) | = € R} i R()# 9

+00 otherwise

In Section 5.2, parameter ¢ is the part of components of variable (z,£) in NP.
But in (5.21) and (5.22), parameter ¢ may not be any part of components of z.
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However if we define g(z) as g(z,t); ie., g(z,t) = g(z), all results established in
Section 5.2 hold for (5.21) and (5.22). Let us state one of them for (5.21) and (5.22)
to illustrate this, for example, Proposition 5.2.4.

Proposition 5.3.1 Assume that § and h are continuous on X, X is a compact
subset of E*, R(t) is convez and § is quasi-convez on R(t) for each t € E*. Ifz" is

an isolated local minimizer for (5.21), then t* = h(z") is an isolated local minimizer

for (5.22) and {z € R(t*) | §(z) = f(t")}= {z"}-

Proof. Define g(z,t) = g(z), @ = X x E*, g;j(z,t) = hj(z) — t; and gjsi(z,t) =
t; — hj(z) for j = 1,--- ,k and m = 2k. Since z* is an isolated local minimizer
for (5.21), (z*,t*) is an isolated local minimizer for NP. Also it is straightforward
to check that all other conditions of Proposition 5.2.4 hold. So, t* is an isolated
local minimizer for (5.22) and {z € R(t") | g(z) = f(t*)}= {z*}. The proof of the

proposition is thus complete. 0

In the following, we are going to give several examples. For all these examples,
the function f can be computed efficiently by parametric linear programming or
parametric quadratic programming technique. So, by the results of Section 5.2 and
the parametric local optimization procedure, we know that a global minimizer (if
it exists), all isolated local minimizers and some local minimizers of these examples

can be computed efficiently.

Example 5.3.1 Consider

z+a
dz+p

where ¢,d,q € E*, a,8,7y € E}'; b € E™, A € E™" and d'z + 8 > 0 for any
z € {z € E"| Az < b}.

min {¢'z+7+ | Az < b}, (5.23)
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For this problem, a suitable choice for A is &'z + 8. So,

_f(t):{ 2?+':'inf{d3+tq'z[ze}{(t)} if R(t) # ¢

+00 othetwltse

where R(t) = {z € E" | Az < b, &'z =t — 8}. Therefore, f(t) can be formulated

by solving the following parametric programming problem
min {c'z +tg'z | Az < b, 'z =t— B}

This is a parametric linear programming problem. So, it can be solved efficiently
for all t. The reader may refer to Best and Ritter [3] or [12] for more details. Hence
a global minimizer, all isolated local minimizers and some local minimizers of (5.23)

can be computed efficiently by the parametric local optimization procedure.

Now let us illustrate Example 5.3.1 by takingy =2, a=-2,8=1,¢c=(1,-1Y),
q= (—110),! d= (11 1),3

[ 1 0] [0 ]

1 0 1
A= and b = ;

0 -1 0

| 0 1] 1]

1e.,
—zy—2
min {2z, 4+ 2 — 2" 210<z <1, 0< 2z, < 1} (5.24)

oy +z2+1"°
Then min {¢'z + tg'z | z € R(t)} have the following solution

o o

z(t) = +t for 1<t<2,
-1 1
(1] [o

z(t) = +t for 2<t<3
-2 1
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and

R(t)=¢ fort<lort>3.

This implies

= 1<t<?2
=11 #F2<t<s,
400, otherwise
It is straightforward to check that ¢ =1 and ¢ = 3 are two local minima for f and

= 3 is a global minimum. So,

[ e

are local and global minima for (5.24), respectively.

Example 5.3.2 Consider

gz +7 + a+dz+z'Cz
(d'z +B)! (dz + B)

where C € E™*" is a symmetric positive semidefinite matrix, A € E™**, ¢,d,q € E*,
b€ E™, a,8,7 € E', ¢(:) : E' = E!is a continuous real valued function, d'z+8 > 0
for each z € {z € E" | Az < b} and [ is a positive integer.

min { + ¥(d'z + B) | Az < b}, (5.25)

As in Example 5.3.1, a suitable choice for function hk is d'z + 3, that is, R(t) =
{z €E*| Az < b, d'z =t - 3}. So,

ft) = P(t)+ 22 + Yinf {dz+i¢z+2'Cz |z € R(t)} fR(t)# ¢
+00 otherwise

So, f may be formulated by solving the following parametric programming problem

min {¢'z +tq'z +z'Cz | Az < b, dz =t - B}.
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This is a parametric quadratic programming problem and can be solved efficiently.
The reader may refer to Best [3] for more details. For some class of functions 1,
min {f(¢) | t € E'} can be solved efficiently; i.e., (5.25) can be solved efficiently for
a global minimizer, all isolated local minimizers and some local minimizers by the
parametric local optimization procedure.
Remark 5.3.1 Obviously, (5.25) will reduce to (5.23) if [=1,C =0and ¥ =0.
So (5.25) is a generalized formulation of (5.23).

When [ = 1 in Example 5.3.2, the model was used for a portfolio optimization
problem in finance by Speakman (28].

Example 5.3.3 Consider the indefinite quadratic programming problem
min {c'z + %z’Cz +2'DQ'z | Az < b}, (5.26)
where C € E™*" is a symmetric positive semidefinite matrix, D,@ € E™**, A €
E™*" c€ E" and b € E™.
This problem was studied in Chapter 2 by setting k(z) = D'z, that is, R(t) =
{z €e E" | Az < b, D'z =t}. The reader may refer to Chapter 2 for details.

Finally, let us analyze a class of cubic minimization problems with linear con-

straints.
Example 5.3.4 Consider the following cubic minimization problem

min {¢ ( : ) +52(C +9C)z | A ( * ) <}, (5.27)
Yy y

where ¢ € E**, C and C are (n,n) symmetric matrices, A € E™***)) p ¢ E™,
z € E® and y € E! are variables. We assume that C + yC is positive semidefinite
for each y such that {z € E" | A(z',y’)’ < b} # ¢.
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Obviously, we should take y as the parameter ¢, that is, R(t) = {z € E* |
A(z',t)’ < b}. So, we have

f(t) - { inf {C,(z’,t)’+ %z’(c-ﬁ'té)z [ zE R(t)}’ ifR(t) # ¢,

+o00, otherwise.

So, f may be formulated by solving the following parametric programming problem
T 1 .
min {c’ ( ) + Ez'(C +tC)z | z € R(t)}.
t

This is a parametric quadratic programming problem with a parameterized Hessian.
Some special cases of the problem can be solved efficiently, for example, rank(é' )=1
or 2. The reader may refer to Best and Caron [4] for more details. Hence some
special cases of (5.27) can be solved efficiently for a global minimizer, all isolated
local minimizers and some local minimizers by the parametric local optimization

procedure.

5.4 Conclusion

We have investigated the relationships between the original nonlinear programming
problem NP and its main problem MNP. In particular, we have established a one to
one correspondence between isolated local minimizers for NP and those for MNP
for a large class of nonlinear programming problems. These provide some ideas
and a theoretical background concerning the computation of a global minimizer,
all isolated local minimizers and some local minimizers for this class of nonlinear

programming problems.

We have shown that for linear fractional programming problems, some quadratic

fractional programming problems, some indefinite quadratic programming problems
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and some cubic programming problems, a global minimizer (if it exists), all isolated

local minimizers and some local minimizers can be computed efficiently.



Chapter 6

Conclusion

6.1 Introduction

In this chapter we summarize the contributions of this thesis and also outline future

research projects.

6.2 Contribution of Thesis

The main contributions of the thesis are listed below.

(1) We have developed relationships between a given non-convex quadratic pro-
gramming problem QP and a derived unconstrained (but non-differentiable) quadra-
tic problem MQP. We established that any local minimum of MQP gives a corre-
sponding local minimum of QP. Also we established that the isolated local minima
(including the global minimum) of both QP and MQP are in one to one correspon-
dence. For the case that the Hessian of QP has exactly one negative eigenvalue,

we have developed an algorithm to compute all isolated local minima and some

106
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non-isolated local minima of QP by parametric quadratic programming techniques.
The algorithm will compute the global minimizer of QP, provided it exists, and will
provide the information that QP is unbounded from below when that is the case.

(2) Based on the results stated in (1) and parametric linear programming tech-
nique we established a decomposition procedure which when applied to indefinite
quadratic programming problem will locate all isolated local minima and some
non-isolated local minima. The decomposition procedure will also locate the global
minimum of the indefinite quadratic programming problem if it exists, and will
provide the information that the problem is unbounded from below when that is

the case.

(3) We established a polynomial algorithm for a class of coposotivity problems in
which the matrix has exactly one negative eigenvalue. A slight modification of the
algorithm provides an efficient method for a class of copositivity problems in which

the matrix has exactly two negative eigenvalues.

(4) We generalized the results established for non-convex quadratic programming
problems to general non-convex minimization problems, that is, the objective func-

tion is not quadratic and constraints are not linear.

6.3 Further Research Directions

In this section we outline some research topics and open questions related to this

thesis.
(1) In Chapter 2 we have developed an efficient numerical procedure for the non-

convex quadratic programming problem in which the Hessian has exactly one neg-

ative eigenvalue. The procedure is designed to locate all isolated local minima,
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some non-isolated local minima and the global minimum. For the same purpose,
we have developed a decomposition procedure for indefinite quadratic program-
ming problems. However the decomposition procedure may not be efficient from
the computational point of view. Even the indefinite QP with a Hessian having
exactly two negative eigenvalues is quite different from the non-convex QP with a
Hessian having exactly one negative eigenvalue. Does there exist an efficient algo-
rithm which when applied to the indefinite QP with a Hessian having exactly two
negative eigenvalues can locate all isolated local minima, some non-isolated local
minima and the global minimum? This appears to be an interesting and challenging

open question.

(2) In Section 3 of Chapter 3, we have shown that the number of subproblems
can be reduced if (M’)"*CM ™! contains an indefinite principal submatrix. So we
need an efficient algorithm to find the smallest indefinite principal submatrix of
(M')"1CM~'. Does there exist such an efficient algorithm?

(3) In Chapter 3 we have developed a decomposition procedure based on the para-
metric LP technique and a decomposition for indefinite symmetric matrices for
indefinite quadratic programming problems. Do there exist other decomposition

procedures for this type of problem?

(4) In Chapter 5 we have extended the one to one correspondence result for non-
convex QP to a large classes of non-convex programming problems. In Section 3
of Chapter 5 we have investigated several applications of the one to one correspon-
dence result to several classes of non-convex programming problems. However in
these applications the parametric programming problem NP(%) is still a paramet-
ric quadratic programming problem; i.e., we still use the parametric QP technique
to compute f(£). Therefore, are there other techniques other than parametric QP

which we can use to compute f(¢) so that we can solve a large classes of non-convex
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programming problems for all isolated local minima, some non-isolated local min-

ima and the global minimum?

(5) In Chapter 4 we have shown that the copositivity problem with a Hessian having
exactly one negative eigenvalue can be solved in polynomial time if rank(C) = n.
Can the problem be solved in polynomial time if rank(C) < n?
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