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Abstract 
 

 

A Hybrid of Stochastic Programming Approaches with Economic and Operational 
Risk Management for Petroleum Refinery Planning under Uncertainty 

 

The current situation of fluctuating high petroleum crude oil prices is a manifestation that 

markets and industries everywhere are impacted by the uncertainty and volatility of the 

petroleum industry. As the activity of petroleum refining is at the heart of the downstream 

sector of the petroleum industry, it is increasingly important for refineries to operate at an 

optimal level in the present turbulent, dynamic nature of the world economic 

environment. Refineries must assess the potential impact of significant primary changes 

that are posed by market demands for final products and their associated specifications; 

costs of purchasing the raw material crude oils and prices of the commercially saleable 

intermediates and products; and crude oil compositions and their relations to product 

yields; in addition to even be capable of exploring and tapping immediate market 

opportunities. Hence, this calls for a greater need in the strategic planning, tactical 

planning, and operations control of refineries in order to execute operating decisions that 

satisfy conflicting multiobjective goals of maximizing expected profit while 

simultaneously minimizing risk, on top of sustaining long-term viability and 

competitiveness. These decisions have to take into account uncertainties and constraints 

in factors such as the source and availability of crude oils as the raw material; the 

processing and blending options of the desired refined products that in turn depend on the 

uncertainties of the components� properties; and economic data such as prices of 

feedstock, chemicals, and commodities; production costs; distribution costs; and future 

market demand for finished products. Thus, acknowledging the shortcomings of 

deterministic models, this work proposed a hybrid of stochastic programming 

formulations for the optimal midterm production planning of a refinery that addresses 

three major sources of uncertainties, namely prices of crude oil and saleable products, 

product demands, and product yields. A systematic and explicit stochastic optimization 

technique was employed by utilizing slack variables to account for violations of 

constraints in order to increase model tractability. Four different approaches were 
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considered to ensure model and solution robustness: (1) the Markowitz�s mean�variance 

(MV) model to handle randomness in the objective function coefficients of prices by 

minimizing the variance of the expected value or mean of the random coefficients, 

subject to a target profit constraint; (2): the two-stage stochastic programming with fixed 

recourse via scenario analysis approach to model randomness in the right-hand side and 

the left-hand side or technological coefficients by minimizing the expected recourse 

penalty costs due to constraints� violations; (3) incorporation of the Markowitz�s mean�

variance approach within the two-stage stochastic programming framework developed in 

(2) to minimize both the expectation and the variance of the recourse penalty costs; and 

(4) reformulation of the model developed in the third approach by utilizing the Mean�

Absolute Deviation (MAD) as the measure of risk imposed by the recourse penalty costs. 

In the two-stage modelling approach that provided the framework for the proposed 

stochastic models, the deterministic first-stage planning variable(s) determined the 

amount of resources for the refinery production operations, that is, the crude oil supply. 

Subsequently, once the value of the planning variable had been decided and the random 

events had been realized, the corrective action or the recourse were implemented by 

selecting the random second-stage variables associated with operating decisions for 

improvements. Therefore, the overall objective in the bilevel approach to decision-

making under uncertainty was to choose the planning variable of crude oil supply in such 

a way that the first-stage planning costs and the expected value of the random second-

stage recourse costs were minimized. A representative numerical study was then 

illustrated, with the solutions compared and contrasted by several metrics derived from 

established relevant concepts, as follows. We found that the resulting outcome of the 

stochastic models� solutions consistently proposed higher expected profits than the 

deterministic model and the fuzzy linear fractional programming approach of Ravi and 

Reddy (1998) who worked on the same problem. Additionally, the stochastic models 

demonstrated increased robustness and reliability (or certainty) as measured by the 

coefficients of variation in comparison with the deterministic model. 
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CHAPTER 1 

Introduction and Review of Current Modelling Practices and Related 

Literature 
 

 

Chemical process design, planning, and operations problems are usually treated as 

deterministic problems with defined models and known constant parameters. In the real 

world, however, the chemical process industry is typically ridden with uncertainties in a 

multitude of factors spanning a wide range. These include market demands for products; 

prices of raw materials and saleable products; lead times and availabilities in the supply 

of raw materials as well as lead times or rates in the processing, production and 

distribution of final products; product yields; product qualities; capital, technology, 

competition, equipment, and facilities parameters such as reliability, availability, and 

failures (Subrahmanyam et al., 1994; Applequist et al., 2000; Jung et al., 2004; Sahinidis 

et al., 1989). Uncertainties might even arise in aspects as fundamental as 

thermodynamics, kinetics, and other modelling parameters, as noted by Ahmed (1998). 

These uncertainties could be present in the form of incomplete information, data 

variability, randomness, and others (Shapiro and Homem-de-Mello, 1998). Thus, 

uncertainties are inevitable and prevalent in mathematical models, parameters, and also in 

enforcing the planning model itself to specifications. Consequently, this renders models 

based on deterministic consideration to not always be optimal or even operable. In fact, 

Ben-Tal and Nemirovski (2000) stress that optimal solution of deterministic linear 

programming problems may become severely infeasible even if the nominal data is only 

slightly perturbed. This is supported by Sen and Higle (1999) who affirmed that under 

uncertainty, the deterministic formulation in which uncertain random variables are 

mathematically and statistically replaced by their expected values may not provide a 

solution that is feasible with respect to the random variables. Hence, the need to model 

uncertainty in process design, planning, scheduling, and operations activities has long 

been recognized as essential in the realm of chemical process systems engineering (PSE). 

 As a consequence of operating in such a rapidly changing dynamic and risky 

environment, in making planning decisions, a firm must not only be restricted to 

consideration of short-term economic criteria but ought to also identify and assess the 
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impact of vital uncertainties aforementioned to its business in order to be able to develop 

coping strategies through implementation of contingency plans, to be effected as the 

uncertainties unfold. Since the selection of current decisions depends on decisions taken 

in previous time periods, it is essential to formulate planning decisions that not only 

maximize the expected profit, but also ensure future feasibility. This can be achieved by 

accounting for the minimization of economic risk involved in implementing a supposed 

optimal plan besides sustaining long-term viability and competitiveness (Cheng et al., 

2003; Applequist, 2002; Applequist et al., 2000). 

 In fact, virtually all decision-making processes involve uncertain information, 

particularly when future events are considered. Apart from production planning and the 

related activity of process scheduling, other common engineering examples include 

applications in optimal control, real-time optimization, and capacity planning with the 

objective of expansion. Production planning applications are of particular interest due to 

their inherently uncertain nature, high economic incentives, and strategic importance. 

Furthermore, realistic production planning applications can be developed with well-

established linear programming models, which can be extended to include uncertainties 

in parameters characterized by probability distribution functions, giving rise to the two-

stage stochastic linear program, which forms the underpinning framework in the models 

proposed in this work. 

 In the chemical process systems engineering (PSE) literature, problems associated 

with the design, planning, and operations of process systems under uncertainty have been 

attracting considerable attention especially during the period of 1990s (Jung et al., 2004). 

Over time, from early works in the chemical engineering field addressing issues of 

uncertainties (for examples, see Grossmann and Sargent, 1978 and Malik and Hughes, 

1979) to more recent works, numerous ideas have been proposed to formulate planning 

(and design) problems dealing with uncertain model parameters. In general, the solution 

approaches have proceeded along two main directions: (1) deterministic methods in 

which the emphasis is on ensuring the feasibility of the solutions over a given domain of 

the uncertain parameters, and (2) stochastic or probabilistic optimization techniques in 

which the objective is to optimize solutions that anticipate uncertainty of parameters that 

are described by probability distribution functions (Ierapetritou and Pistikopoulos, 1994b; 

Tarhan & Grossmann, 2005). 
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 In the deterministic approach, the description of uncertainty is provided either by 

specific bounds on variables or by a finite number of fixed parameter values in terms of 

scenarios or time periods, transforming the process model to a deterministic 

approximation. These methods include: 

(a) the �wait-and-see� approach, or sometimes referred to as scenario analysis or 

what-if analysis. It is characterized by discretization over the uncertain parameter 

space (for example, see Brauers and Weber, 1988); 

(b) the use of multiperiod models, which is characterized by discretization over the 

time horizon (for examples, see Grossmann and Sargent, 1979; Grossmann et al., 

1983; Sahinidis et al., 1989; Bok et al., 2000). 

The model approximation can often be coupled with flexibility test or flexibility index 

problems as employed by Pistikopoulos and Grossmann (1988, 1989a, 1989b). 

 On the other hand, the more sophisticated stochastic optimization techniques take into 

account the detailed statistical properties of the parameter variations. These methods have 

evolved around two traditional forms of approaches, namely: 

(a) the �here-and-now� approach of two-stage stochastic programming with recourse 

framework, originally proposed by Dantzig (1955) and Beale (1955) that is 

extendable to multiple stages. It is based on the postulation of general probability 

distribution functions describing process uncertainty with the objective of cost 

minimization or profit maximization due to violation of constraint(s) (examples of 

early work include Walkup and Wets, 1967; Wets, 1974; Grossmann and Sargent, 

1978; Pai and Hughes, 1987, to mention only a few); 

(b) the probabilistic modelling approach or also known as chance-constrained 

programming, originally introduced by Charnes and Cooper (1959), which 

includes in the constraints, the requirement that the probability of any constraint 

to be satisfied must be greater than the desired level (Gupta et al., 2000; Aseeri 

and Bagajewicz, 2004, again to mention only a few). 

 In addition, in a fairly more recent development, Ben-Tal and Nemirovski (2000) 

propose a robust optimization methodology for linear programming problems with 

uncertain data. In the realm of PSE, this approach has been adopted by Lin et al. (2004) 

to mixed-integer linear program (MILP) scheduling problems under bounded uncertainty 

in the coefficients of the objective function, the left-hand side parameters, and the right-
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hand side parameters of the inequalities considered via the introduction of a small number 

of auxiliary variables and constraints to determine the optimal schedule. 

 The two-stage stochastic programming approach has been proven to be most useful as 

a source of reliable design and planning information (Johns et al., 1978; Wellons and 

Reklaitis, 1989; Petkov and Maranas, 1998). As the name indicates, decisions are made in 

two stages in this modelling framework by loosely dividing time into �now� and �the 

future�. The decision maker makes the first stage decision(s)\ prior to the realization of 

the uncertainty now and then makes the second stage recourse decision(s) contingent on 

the revealed information upon resolution of the uncertainty in the future. The first-stage 

decision variables are fixed while the second-stage operating variables are adjusted based 

on the realization of the uncertain parameters. Note that the stages do not necessarily 

correspond to periods in time. Each stage represents a decision epoch where decision 

makers have an opportunity to revise decisions based on the additional available 

information. For example, one can formulate a two-stage stochastic program for a 

multiperiod problem in which the second stage represents a group of periods in the 

remaining future (Cheng et al., 2005). Despite differences in individual details, most of 

the representative works in production planning of processes (see, for example, Ahmed & 

Sahinidis, 1998; Liu & Sahinidis, 1996; Petkov & Maranas, 1998; Ierapetritou & 

Pistikopoulos, 1994c, 1996c), including recent works in refinery planning (see, for 

example, Pongsakdi et al., in press; Neiro and Pinto, 2005; Aseeri and Bagajewicz, 2004), 

have followed the general structure of the two-stage stochastic programming framework, 

which provides an effective formulation for chemical process planning under uncertainty 

problems as will be demonstrated in this work. 

It might be of interest to point out the differences between formulations of stochastic 

optimization problems that are derived from statistics and those that are motivated by 

decision-making under uncertainty. The analysis of �wait-and-see� solutions is mostly of 

interest in mathematical statistics in which information is collected and used during the 

decision process. Decision-making under uncertainty through stochastic programming is 

mostly concerned with problems that require a �here-and-now� decision, without making 

further observations of the quantities modelled as random variables. The solution must be 

found on the basis of the a priori information about these random quantities (Wets, 

1989). Thus, the emphasis of stochastic programming lies in the methods of solution and 
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the analytical solution properties whereas statistical decision theory stresses on 

procedures for constructing objectives and updating probabilities (Birge, 1997). 

 Additionally, two other notable approaches have also been proposed to deal with 

uncertainties in model parameters: 

1. fuzzy programming as originally conceived in the seminal paper by Bellmann and 

Zadeh (1970) and popularized by Zimmermann (1991) with examples of application 

in PSE by Liu and Sahinidis (1997) and Ravi and Reddy (1998); and 

2. the flexibility index analysis and optimization approach in design and operational 

planning problems. In the latter approach, flexibility is defined as the range of 

uncertain parameters that can be dealt with by a specific design or operational plan 

(Sahinidis, 2004). Flexibility thus refers to the ability of a system to readily adjust in 

order to meet the requirements of changing conditions. Some examples include the 

works of Pistikopoulos and Mazzuchi (1990); Straub and Grossmann (1993); and 

Ierapetritou and Pistikopoulos (1994a). This is a very much active major research area 

in PSE under the theme of integration of process design and control systems design 

and will not be addressed within the scope of this work. 

 

 

1.1 APPROACHES TO MODELLING AND DECISION MAKING UNDER 

UNCERTAINTY IN OPERATIONS−PRODUCTION PLANNING AND 

SCHEDULING ACTIVITIES IN CHEMICAL PROCESS SYSTEMS 

ENGINEERING (PSE) 

 

Operations and production planning activities in an industrial setting are crucial 

components of a supply chain. In fact, in his excellent review on single-site and multisite 

planning and scheduling, Shah (1998) considers medium-term or midterm planning as a 

special case of supply chain planning. In general, planning involves making optimal 

decisions about future events based on current information and available future 

projections. In the context of the chemical processing industry (CPI), typical decisions 

pertain to selection of new processes, expansion and/or shutdown policies of existing 

processes and facilities, and optimal operating patterns for production chains. These 

decisions have to be made in the face of the present inherently turbulent nature of 

business economic environments due to increasing competition, stringent production
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quality, fluctuating commodity prices and customer demands, and obsolescence in 

technology. In addition, companies ought to constantly recognize the potential benefits of 

new resources to be incorporated in conjunction with existing processes and facilities. 

The interaction of these situations provide incentives for companies in CPI to be 

concerned with the development of effective and efficient quantitative techniques and 

solutions for planning, as these are necessary tools in hedging against future 

contingencies for the eventual successful operation of even any modern-day enterprise, 

for that matter (Ierapetritou and Pistikopoulos, 1996; Sahinidis et al., 1989). 

 It is a well-recognized problem that production�manufacturing systems are subject to 

uncertainties presented by random events such as raw material variation, demand 

fluctuation, and equipment failures. The dynamic and random nature of product demands 

alone results in their forecasting being very difficult or sometimes even impossible. 

Despite the existence and availability of various planning models, managers often could 

not find one that is suitable for their needs. As a result, production is planned following 

an everyday practice without concern for achieving optimality. It is desirable to shift such 

experience-based decision making to an information-based data-driven decision-making 

model (Shapiro, 2004; 1999). This will require a systematic use of historical data and a 

theoretically sound mathematical model that is applicable to the real situation, with 

consideration for various possible operational and production uncertainties (Yin, K. K. et 

al., 2004). The present work is intended to contribute in these directions via the utilization 

of mathematical programming or optimization. 

 In the planning of chemical processes such as the vast array present in the operations 

of a petroleum refinery, we often have to deal with parameters that can vary during the 

operation and with parameters whose values are uncertain at the design stage. At this 

juncture, as stressed earlier, determining the right modeling tools is one of the most 

technologically challenging problems that operators and decision makers face today, as 

corroborated by Escudero et a. (1999). Probabilistic or stochastic methods and analyses 

have been demonstrated to be useful for screening the alternatives on the basis of the 

expected value of the economic criteria, typically the maximum expected profit or the 

minimum expected cost, and also the economic and financial risks involved. Several 

approaches have been reported in the literature addressing the problem of production 
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planning under uncertainty. Extensive reviews addressing various issues in this area are 

available, for example, by Applequist et al. (1997) and by Cheng et al. (2005). 

 According to Gupta and Maranas (1999, 2003) and Vidal and Goetschalckx (1997), 

models of planning systems (with the term �planning� used here reflecting a general 

broad sense) can be broadly categorized into three distinct temporal classifications based 

on the addressed time frames or time horizons, namely strategic, tactical, and operational. 

A discussion of their features and characteristics from a practical perspective is provided 

by Shobrys and White (2000). The following aims to condense these views. 

1. Long-range planning of capacity expansion and design models are termed as strategic 

or planning models (contrary to the aforementioned, the term �planning� is used here 

in a strict context to denote a long-term time horizon). They aim to identify the 

optimal timing, location, and extent of additional investments in processing networks 

over a relatively long time horizon ranging from the order of five to ten years. Thus, 

the decisions executed may affect access to raw materials, product slates, 

geographical markets, and obviously, production or distribution capacity. The 

strategic level requires approximate and aggregated data. For examples, see Sahinidis 

et al., (1989), Sahinidis and Grossmann (1991), and Norton and Grossmann (1994). 

2. On the other extreme of the spectrum of planning models are short-term models 

classified as scheduling or operational planning models. These models are 

characterized by short time frames and therefore involve short-term decisions, 

typically less than one hour or one day, but could also stretch to a few days to one-to-

two weeks to even two-to-three months. They address the exact full sequencing 

(timing) and volumes of the multifarious manufacturing tasks while accounting for 

the various resource and timing constraints, for instance, in the determination of the 

qualities of commodities to be produced by an oil refinery. Specifically, key decision 

variables involve the start time of an operation, and the duration and processing 

volume of the associated operating unit, under consideration for product demand, 

possible desire to keep major units operating continuously, and issues of containment. 

This operational level requires transactional data. For examples, see Shah et al. 

(1993), Xueya and Sargent (1996), and Karimi and McDonald (1997). 
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3. Medium-term or midterm or tactical planning models make up the third class of 

planning models. They are intermediate in nature and characteristically address 

planning horizons involving months, in a typical aggregation of two-to-six months, 

and up to one-to-two years. They execute the company-wide function of setting 

targets for operating performance, and coordinate activities across sales, materials 

management, manufacturing, and distribution. They consolidate features from both 

the strategic and operational models, including the amount and accuracy of data 

required. For instance, they account for the carryover of inventory over time and 

various key resource limitations, much like the short-term scheduling models; of 

which, an example within a petroleum refinery would be in deciding the type of crude 

oils to buy and the timing. On a contrasting note, similar to strategic planning models 

and unlike the operational models, they account for the presence of multiple 

production sites in the supply chain. In fact, refineries, with their typically large and 

complex manufacturing facilities, may also have a tactical planning process for each 

manufacturing site in order to coordinate activities across major units. The midterm 

planning models derive their value from this overlap and integration of modelling 

features. For examples, see McDonald and Karimi (1997) and Gupta and Maranas 

(2000). 

 A number of key decisions must be made during each of these time frames of days, 

months, and years in terms of the process operations. The crucial challenge is in 

providing the necessary theoretical, algorithmic, and computational support to aid 

optimal decision making accounting for future uncertainty primarily in product demands 

and other parameter variability. 

 As highlighted earlier, problems of design and planning of chemical processes and 

plants under uncertainty have been treated in the process systems engineering (PSE) 

literature using the well known decision problem model of two-stage stochastic 

programming with recourse. The two-stage programming strategy has been considered as 

an effective approach to the solution of process engineering problems such as production 

planning as it naturally differentiates between the following two sets (Acevedo and 

Pistikopoulos, 1998; Ruszczynski, 1997; Grossmann et al., 1983): 
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(i) the first-stage deterministic planning variables of resources representing the plan, 

that is, decisions that have to be made in advance and which remain fixed once 

selected, and 

(ii) the second-stage stochastic operating or production variables, which are flexible 

and can be adjusted to represent operational decisions to achieve feasibility, 

depending on the observed event. 

 Under this framework, we pose the decision problem as one of maximizing (or 

minimizing, accordingly) an objective function consisting of two terms. The first 

corresponds to a contribution by the global or planning variables whose values are chosen 

independent of the uncertain parameters. The second term represents and quantifies the 

expected value of the contribution due to local or production variables, whose values will 

be adjusted in response to realization of specific values of the uncertain parameters. 

Generally, the objective function is a net present value of the associated investment, 

operating cost, and revenue streams. Thus, the objective in the two-stage modelling 

approach to decision under uncertainty, as reflected and defined in the objective function, 

is to choose the planning variables in such a way that the sum of the first-stage design 

costs and the expected value of the random second-stage recourse costs is minimized. 

Approaches differ primarily in how the expected value term is computed. 

 Moreover, the classification of the variables and constraints of a production planning 

problem (such as that addressed in this work) into two distinct categories, resulting in a 

two-stage hierarchical decision-making framework, can be effectively utilized for 

incorporating uncertainty in the dominant random parameter of product demands as 

dictated by market requirements, in addition to other parameters such as prices and 

yields, on a simultaneous basis, as will be demonstrated in this work. In this bilevel 

decision-making framework, the planning decisions are made �here-and-now� prior to the 

resolution of uncertainty, while the production decisions are postponed to a �wait-and-

see� mode (Gupta and Maranas, 2000). 
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1.2 CLASSIFICATIONS OF UNCERTAINTY 

 

According to Li (2004), uncertainty can be categorized based on different criteria. From 

the time horizon point-of-view, uncertainty can be present in short term, mid term, and 

long term. Short-term uncertainty typically involves day-to-day or week-to-week 

processing variations, for example in flow rates and temperatures; cancelled or rushed 

orders; and equipment failure; which requires the plant to respond within a short period 

of time (Subrahmanyam et al., 1994). Midterm uncertainty addresses time horizons 

spanning one to two years and incorporates features from both short-term and long-term 

uncertainties (Gupta and Maranas, 2003). Long-term uncertainty includes raw material or 

final product related issues of unit price fluctuations, seasonal demand variations, and 

production rate changes, occurring over longer time frames ranging from five to ten years 

(Sahinidis et al., 1989) 

 Li (2004) and Wendt et al. (2002) also classified uncertainties from the point-of-view 

of process operations, into two categories: external uncertainties and internal 

uncertainties. As indicated by its name, external uncertainties are exerted by outside 

factors but impacts on the process. Examples include feedstock condition such as feed 

composition and feed flowrate (for a petroleum refinery, this would be dictated by the 

type of crude oil intake for processing from the upstream exploration and production 

activities) and recycle flowrates as well as flows of utilities, the temperature and pressure 

of coupled operating units, and market conditions. Internal uncertainties arise from 

deficiency in the complete knowledge of the process. Some examples include yields of 

reactions, especially in processes with multiple reactions such as in a petroleum refinery; 

the kinetic parameters of reactions in units such as the fluidized-bed catalytic cracker 

(FCC); and the transfer rate of units such as the crude distillation unit (CDU). According 

to Goel and Grossmann (2004), Jonsbraten (1998) termed this class of uncertainty for 

planning problems as project exogenous uncertainty and project endogenous uncertainty 

to refer to external and internal uncertainties, respectively. As an aside, it is further noted 

that the scenario tree employed in modeling project exogenous uncertainty is independent 

of decisions made at preceding stages whereas the converse is true for its counterpart, that 

is, the scenario tree is dependent on prior decisions in modeling project endogenous 

uncertainty. 
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 Uncertainties due to unknown input parameters are identified as (1) uncertain model 

parameters and (2) variable process parameters from the observability point-of-view 

(Rooney and Biegler, 2003). The exact values of uncertain model parameters are never 

known exactly for the design or planning problem although the expected values and 

confidence regions may be known. These include model parameters determined from 

(offline) experimental studies such as kinetic parameters of reactions as well as 

unmeasured and unobservable disturbances such as the influence of wind and sunshine. 

On the other hand, variable process parameters, although unknown at the design or 

planning stage, can be specified deterministically or measured accurately at later 

operating stages. Examples of these are (i) internal unmeasured disturbances such as feed 

flow rates, product demands, and process conditions and inputs (for example 

temperatures and pressures) and (2) external unmeasured uncertainty such as ambient 

conditions where an operation-of-interest takes place. 

 Table 1.1 summarizes the salient points on the three different categories to classify 

uncertainties and some associated examples. 

 

 

1.3 MANAGEMENT OF PETROLEUM REFINERIES 

 

1.3.1 Introduction to Petroleum Refinery and Refining Processes 

 

Petroleum refining is a central key component and crucial link in the oil supply chain. It 

is where crude petroleum is transformed into products that can be used as transportation 

and industrial fuels, and for the manufacture of plastics, fibres, synthetic rubbers and 

many other useful commercial products. In general, a refinery is made up of several 

distinct parts as outlined in the following (Favennec and Pigeyre, 2001): 

• the various processing units that separate crude oil into different fractions or cuts, 

upgrade and purify some of these cuts, and convert heavy fractions to light, more 

useful, fractions; 

• utilities that refer to the systems and processes providing the refinery with fuel, 

flaring capability, electricity, steam, cooling water, effluent treatment, fire water, 

sweet water, compressed air, nitrogen, etc., all of which are necessary for the 

refinery�s safe operation; 
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• the tankage area or tank farm where all crudes, finished products, and 

intermediates are stored prior to usage or disposal; and 

• facilities for receipt of crude oil and for blending and despatch of finished 

products. 

A simplified process flow diagram for a typical refinery is shown in Figure 1.1 while 

Table 1.2 provides a summary of the general processes that make up crude oil refining 

activities. 
 
Table 1.1. Classification of Uncertainties (Li, 2004; Subrahmanyam et al., 1994; Rooney and Biegler, 

2003; Dantus and High (1999)) 
Time-Horizon 
Short Term 
• Process variations, e.g., flow rates and temperatures 
• Cancelled/Rushed orders 
• Equipment failure 
Mid Term (intermediate between short-term and long-term planning horizon) 
LongTerm 
• Unit price fluctuations 
• Seasonal demand variations 
• Production rate change 
• Capital cost fluctuation 
 
Process Operations 
External (Exogenous) 
• Sales uncertainty, e.g., unpredictable changes in prices and levels of demand of products 
• Raw material purchase uncertainty, e.g., unpredictable changes in prices and levels of availability of 

raw materials (or feed stream), including raw material composition (i.e., feed composition) 
• Economic factors, e.g., capital costs, manufacturing costs, direct costs, liability costs, and other less 

tangible costs 
• Equipment purchase uncertainty, e.g., difficulties in predicting the cost and availability of equipment 

items 
• Discrete uncertainty involving equipment reliability, e.g., uncertainty associated with the availability of 

an equipment item for normal operation, including other discrete random events 
• Environmental impact, e.g., release factors and hazardous levels/values 
• Regulatory uncertainty concerning laws, regulations, and standards, e.g., modification in emissions 

standards and new environmentally-motivated regulations 
• Technology obsolescence 
• Time uncertainty, e.g., delays in investment (perhaps due to projection that a project might hold 

promise of a better return/profit in the future in consideration of the current economic, political, and 
social situations) 

Internal (Endogenous) 
Manufacturing uncertainty, i.e., variations in processing parameters, e.g., yields and processing times 
 
Observability (Rooney and Biegler, 2003) 
Uncertain (process) model parameters 
• From (offline) experimental studies, e.g., kinetic parameters (constants) of reactions, physical 

properties, and transfer coefficients 
• Unmeasured and unobservable disturbances, e.g., influence of wind and sunshine 
Variable process parameters 
• Internal unmeasured disturbances, e.g., feed flow rates, stream quality, and process conditions and 

inputs (e.g., variations in temperatures and pressures) 
• External unmeasured uncertainty, e.g., ambient conditions of operation 
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 Petroleum refining is undoubtedly, one of the most complex chemical industries, 

comprising many different and complicated processes with various possible 

configurations and structures, as evidenced from Table 1.2. The critical objective of a 

refinery operation, as in any other business-oriented ventures, is to generate maximum 

profit by converting crude oils into valuable products such as gasoline, jet fuel, and 

diesel. Expectedly, there are many decisions to be considered to achieve optimal 

operation for a refinery. At the planning level, managers and executives need to decide 

the types of crude oil(s) to process, the types of products to produce, the operating route 

to use, the best operation mode for each process, the type of catalyst to select for each 

process, and others. At the process level, engineers and operators have to determine 

detailed operating conditions for each piece of equipment, namely temperatures, 

pressures, detailed process flow, and other values of processing parameters. All these 

decisions interact with one another; for example, temperature change in a reactor would 

result in different product yields and distribution as well as different utility consumption, 

hence different process performance would result. These are bound to implicate and 

affect the decisions made at the planning level to select raw material feeds for the 

processes involved and even possibly influence the overall operating scheme. 

Consequently, integration of refinery planning, scheduling, and operations optimization, 

or integrated (total) refinery optimization for short, is considered one of the most difficult 

and challenging applications of large-scale optimization but the expected outcome would 

be commensurable with the effort, time, and resources invested (Zhang and Zhu, 2000). 

 

 

1.3.2 Production Planning and Scheduling 

 

Production planning is the discipline related to the high level decision-making of macro-

level problems for allocation of production capacity (or production levels) and production 

time (with less emphasis on the latter); raw materials, intermediate products, and final 

products inventories; labour and energy resources; as well as investment in new facilities. 

A coarse aggregation approach is typically employed, thus resulting in a loss of 

manufacturing detail such as the sequence or the order in which specific manufacturing 
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steps are executed (Pekny and Reklaitis, 1998). If follows then that the primary objective 

of planning is to determine a feasible operating plan consisting of production goals that 

optimizes a suitable economic criterion, namely of maximizing total profit (or 

equivalently, of minimizing total costs), over a specific extended period of time into the 

future, typically in the order of a few months to a few years; given marketing forecasts 

for prices, market demands for products, and considerations of equipment availability and 

inventories (Reklaitis, 1982; Birewar and Grossmann, 1995; Grossmann et al., 2001; 

Bitran and Hax, 1977). In essence, its fundamental function is to develop a good set of 

operating goals for the future period. In the context of the hydrocarbon industry, planning 

requirements have become increasingly difficult and demanding arising from the need to 

produce more varied, higher-quality products while simultaneously meeting increasingly 

tighter environmental legislations and policies (Fisher and Zellhart, 1995). 

 On the other hand, production scheduling, in the context of the chemical processing 

industry, deals with lower level decision-making of micro-level problems embedded in 

the production planning problem that involves deciding on the methodology that 

determines the feasible sequence or order and timing in which various products are to be 

produced in each piece of equipment, so as to meet the production goals that are laid out 

by the planning model. Its major objective is to efficiently utilize the available equipment 

among the multiple types of products to be manufactured, to an extent necessary to 

satisfy the production goals by optimizing a suitable economic or systems performance 

criterion; typically over a short-term time horizon ranging from several shifts to several 

weeks. Scheduling functions specify the task(s) of each stage of production and this 

includes defining and projecting the inputs to and outputs from each production 

operation. It is particularly required whenever a processing system is used to produce 

multiple products by allocating the available production time between products. A key 

characteristic is the dynamic and extensive information required in scheduling activities 

to describe the manufacturing operations, the resource requirements, and the product 

demands. The sources of information are diverse and extend outside of the boundaries of 

the manufacturing organization itself since the information spans the technical, financial, 

and commercial domains. Furthermore, the data changes rapidly over time as customer 

orders, resource availability, and the manufacturing processes themselves undergo 
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changes. Therefore, the resulting data complexity compels efficient management of 

information resources a necessary prerequisite for effective scheduling (Reklaitis, 1982; 

Birewar and Grossmann, 1995; Shobrys, 1995; Pekny and Reklaitis, 1998). 

 Hartmann (1998) and Grossmann et al. (2001) stresses the differences between a 

planning model and a scheduling model. In general, process manufacturing planning 

models consider economics of profit maximization of the operations by handling the 

issues of what to do and how to do it within longer time horizons. Process manufacturing 

scheduling models, on the other hand, consider feasibility of the operations for 

accomplishing a given number of orders or on completing required tasks within the 

shortest possible time, by addressing the question of when to do it. In particular, planning 

models ignore changeovers and treat products grouped into aggregated families. 

Conversely, scheduling models explicitly consider changeovers and consider products in 

greater detail, including the shipment of specific orders for specific products to specific 

customers. 

 Fisher and Zellhart (1995) also emphasizes that a planning model differs from a daily 

scheduling model or an operational process controller. For example, they point out that 

the product or process yields predicted or estimated in the planning model should not be 

expected to be used exactly in executing operating conditions. This is because planning 

models are almost always an average over time and not an accurate prediction of process 

conditions at any particular instant. As opposed to planning models, operations are not 

averaged over the scheduling period as time and operations move continuously from the 

beginning of the particular period to the end. The schedule is revised as needed so that it 

always starts from what is actually happening with revisions typically occur on each day 

or on each shift. 

 Scheduling can be viewed as a reality check on the planning process. The objective of 

scheduling is the implementation of the plan, subject to the variability that occurs in the 

real world. This variability could be present in the form of feedstock supplies and quality, 

the production process, customer requirements, or transportation. Schedulers assess how 

production upsets and other changes will force deviations from the plan, and they 

determine the actions to be taken in making corrections that would meet the plan 

objectives  
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 Thus, scheduling appears to be the most active juncture of business and manufacturing 

systems. Schedulers are continually assessing how the capabilities of the production 

process compare to the needs of the business. On a daily basis, a scheduler has to react to 

process variability as well as business variability that can impact feedstock arrivals and 

product movements. Scheduling involves dynamic interactions with the business 

(marketing and customer service) as well as the manufacturing process and distribution. 

Additionally, human factors add unpredictability to these interactions. On the other hand, 

planning activities consider both business and manufacturing but the plans are updated 

less frequently and consider less detail. In addition to planning and scheduling functions, 

the third dimension in process plant management concerns operations control, in which 

applications focus on the manufacturing process with the deployment of distributed 

control systems (DCS) providing control capabilities for specific parts of the overall 

process (Shobrys, 1995). 

 Nevertheless, despite the differences, it is obvious that production planning, 

scheduling, and operations control are all closely-related activities. Decisions made at the 

production planning level have a great impact at the scheduling level, while the 

scheduling in itself determines the feasibility of executing the production plans with the 

resulting decisions dictating operations control. Ideally, all three activities should be 

analyzed and optimized simultaneously, thus calling for the need of the integration 

between planning, scheduling, and operational activities, with the expectation that this 

would greatly enhance the overall performance of not just the refinery or process plant 

concerned, but the parent governing organization as well. However, this is in general a 

difficult task given that for instance, even optimizing the scheduling problem in isolation 

for fixed production demands is a nontrivial problem, as highlighted by Birewar and 

Grossmann (1990) and emphasized in general by Bodington (19950. However, the recent 

survey by Grossmann et al. (2001) pointed out that the distinction between planning and 

scheduling functions is becoming increasingly blurred as evidenced by recent advances in 

the capability of the simultaneous optimization of planning and scheduling decisions, 

especially in the context of supply chain optimization problems. This has certainly 

promises greater hope for addressing the issue of integrated planning, scheduling, and 

operations, which provides the motivation for the following section. 
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1.3.3 The Need for Integration of Planning, Scheduling, and Operations Functions 

in Petroleum Refineries 

 

For the process industry in general, Bassett et al. (1996) define the term process 

operations as tasks that must be addressed in managing a process plant so as to safely and 

efficiently manufacture a desired slate of products. As mentioned earlier, these tasks are 

principally composed of planning, scheduling, and operations, with the latter consisting 

of supervisory control, fault diagnosis, monitoring, regulatory control, and data 

acquisition and analysis. The tasks are conventionally viewed to be related in a 

hierarchical fashion with long-term strategic planning decisions imposing goals, targets, 

and constraints on midterm tactical decisions, which are in turn, implemented and 

supported via a number of operational execution functions. All these decision-making 

activities draw upon the enterprise information systems base, which forms the necessary 

foundation upon which other levels are grounded, as depicted in Figure 1.2, which is 

tailored for a petroleum refinery, but is in fact, sufficiently generic across all 

manufacturing entities. In addition, it is desirable to extend the scope of this hierarchy to 

include the highest level of strategic decision making, that is, the planning and design of 

production capacities required for future operation. While these levels can be viewed to 

constitute a hierarchy, the requirements of hierarchy dictate that these levels 

communicate bidirectionally, that is, in a two-way interactive dynamics between the 

different levels, with the lower levels communicating suitably aggregated performance 

limits and capacities to the upper levels. This is essentially the challenge of integrating 

the planning, scheduling, and operations functions of a process plant, primarily the flow 

of information between the various levels, in which petroleum refineries stand out as a 

prime example for the multifarious tasks involved that typically span several business and 

operation departments, handling large amount of data (Julka et al., 2002) in dealing with 

activities such as crude oil procurement, logistics of transportation, and scheduling of 

processes (for example, storage tanks and distillation units). 
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Figure 1.2. Typical functional hierarchies of corporate planning activities (McDonald, 1998) 
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Figure 1.3. Structure of management activities in an enterprise, typically for a petroleum refinery (adapted 

from Li (2004) and Bassett et al. (1996)) 
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 Additionally, over the past decade or so, many companies have become aware that 

improvement in the performance of the supply chain from customer order to product 

delivery is essential to their continued success and sustainability, or even their mere 

survival as a business entity. In the petroleum industry, traditionally known for its 

sceptical view and slow response towards shifts in contemporary business practices 

(partly attributable to the high risk associated with its capital-intensive nature), there 

exists an increasingly widening organizational and operational gap in the supply chain 

between the activities of planning for the business (corporate planning) on one end and 

the scheduling and control of processes (operational planning) to meet commitments on 

the other end (Bodington, 1995). Julka et al. (2002) highlight one of the primary reasons 

as the incapability of currently available refinery decisions support systems (DSSs) in 

effectively performing the following functions of: (i) integrating all the decision-making 

activities within a refinery; (ii) interfacing with other co-existing DSSs; (iii) 

incorporating dynamic-state data from various sources within and outside of the refinery 

(for instance, from suppliers and vendors); and (iv) assisting functions of other 

departments concurrently. 

 In the wake of the onslaught of political and economic (and even social) globalization, 

coupled with the inherent complexities in the management of petroleum refineries as 

stressed earlier, there is immensely increased emphasis on integrated refinery 

optimization. This is typically declared in the overall objective of both corporate planning 

and operations planning activities to align production activities with business objectives 

in realizing a single ultimate goal of profit maximization. In simple terms, this basically 

trickles down to operating process units in such a way so as to generate maximum profit. 

On the one hand, rapid development of computing, information and communications 

technology (ICT (or just IT)), and its decreasing cost of deployment have tremendously 

aided and improved the manner in which refineries are operated. But on the other hand, 

they have triggered intense competition among refineries located both within the local 

geographic region and abroad, in executing the core activities of purchasing of crude oils 

and marketing of refined saleable commercial products. Moreover, refining activities are 

subjected to increasingly stringent environmental regulations such as allowable limits of 

sulphur content in gasoline and diesel. These regulations inevitably impose significant 
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impacts on the profitability and the ensuing competitiveness of a refinery. These 

challenges are prompting refineries to continuously seek, demand, and implement various 

effective and efficient tools and technologies with the ultimate aim of total refinery 

optimization through integrated planning, scheduling, and operations functions (Li, 2004; 

Bodington, 1995). Of late, the current drive towards enterprise-wide optimization 

(Grossmann, 2005; McDonald, 1998, with the latter apparently appearing to be 

overlooked in related literature) offers an indication of renewed concerted effort towards 

this end, aided especially with the explosive improvement (which is still revolving) in 

scientific computing and information technology in recent years. 

 

 

1.3.4 Planning, Scheduling, and Operations Practices in the Past 

 

In the past, (strategic) planning in most non-integrated situations is performed by one 

entity close to the marketing and supply functions, but not part of them. Planning 

activities serve to consolidate feedstock purchases, commitments, and sales opportunities 

by attempting to set achievable targets for the plant. Scheduling is undertaken by another 

entity that stands between planning and operations. It attempts to produce a schedule that 

is feasible, if not optimal, to meet commitments. Process operations are handled by yet 

another entity, usually compartmentalized by processes, that operates the processes to the 

best capability, given the information available from planning and scheduling activities. 

The three entities have different objectives and possibly have different reward 

motivations and reward structures, which lead to different philosophies of what 

constitutes a job well done (Bodington, 1995) 

 On the whole, the petroleum industry has invested considerable effort in developing 

sophisticated mathematical programming models to help planners provide overall 

strategy and direction for refinery operations, crude oil evaluation, and other related 

tasks. Likewise, there has been substantial and extensive development and 

implementation of tools for scheduling. In addition, considerable efforts have been 

assumed in advanced process control for process plants to enable plants to run close to 

their optimal operating conditions. Unfortunately, a gap has existed between the three 
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activities, with inadequate attention and effort invested to providing tools that aid the 

planner, the scheduler, and the operator in an integrated environment, as reported by 

Fisher and Zellhart (1995). 

 Typically, the refinery scheduler attempts to use the monthly linear programming (LP) 

model strategic plan to develop a detailed day-to-day schedule for refinery operations 

based on scheduled crude and feedstock arrivals, product liftings, and process plant 

availabilities and constraints. The schedule usually includes details of the operation of 

each process units, the transfer of intermediates to and from the tank farm, and product 

blending schedules. However, the scheduling is performed for each tank instead of for a 

pool. Moreover, most refinery schedulers have few extensive computing tools to 

accomplish this task. Many use spreadsheets that contain individual operating modes for 

the primary processes and for the main feedstocks, based on the same data employed in 

the LP model. The scheduler utilizes the spreadsheet to generate manufacturing plans on 

a daily or weekly basis. It has been reported that some even use just plain paper, pencil, 

and calculators as the their only aids in daily scheduling (Fisher and Zellhart, 1995). 

Compounding the problem is the fact that deficiencies in planning or operations often 

create problems that appear in the scheduling process. Operating deficiencies or inferior 

data on the status of the production process could potentially lead to customer service 

problems. These problems may also occur due to either a planning activity with an overly 

optimistic estimate of available capacity or a poor understanding of the production 

capabilities. Additionally, operations staff may not be effective or well-trained enough in 

executing activities as scheduled (Shobrys, 1995). 

 

 

1.3.5 Mathematical Programming and Optimization Approach for Integration of 

Planning, Scheduling, and Operations Functions in Petroleum Refineries 

 

The chemical process industry, as pointed out earlier, has been increasingly pursuing the 

use of computing technology to gather, organize, disseminate, and exploit enterprise 

information and to closely coordinate the decisions made at the various levels of the 

process operational hierarchy so as to optimize overall corporate objectives. In refinery 



 

 28

management, computer software is commonly deployed nowadays to assist in terms of 

planning, scheduling, and control functions by executing effective decisions chiefly 

pertaining to crude oil selection, production planning, inventory control, and logistics of 

transport and despatch management. Continuous research and development in these 

aspects have gained important practical significance, as observed by Li (2004). In this 

respect, we support the notion advanced by Li (2004), Zhang and Zhu (2000), Bassett et 

al. (1996), and Bodington (1995), just to cite a few among many others, that the preferred 

approach for achieving integration of planning, scheduling, and operations functions is 

through the formulation and solution of suitably structured mathematical programming 

models as they have been proven to offer the most effective tools. Indeed, it is the 

governing theme of this work that mathematical optimization constructs offer the most 

effective framework for integration at the strategic, tactical, and operational levels of 

refineries. This shall provide the thrust for undertaking the current work in this thesis 

research with the ultimate objective of developing better management tools for decision-

makers. In particular, we consider the mathematical programming approaches for 

modelling under uncertainty in the problem parameters of the midterm planning of a 

refinery. 

 As emphasized throughout the preceding discussion, the structure of the main 

management activities of an integrated refinery consists of three layers: (1) planning at 

the strategic level; (2) scheduling at the tactical level; and (3) unit operations at the 

operational level, as illustrated previously in Figure 1.3. First, the planning office, 

typically the head office, issues plans that are sent to the scheduling office as guidelines. 

The scheduling office then decides on the detailed daily or weekly schedules for each unit 

and subsequently sends these schedules to the unit operation office as operating 

guidelines (Li, 2004). 

 The head office produces plantwide high-level strategic plans and tactical plans for the 

refinery by considering plantwide factors in the form of market conditions, raw materials 

availability, and operating capacities. These plans deal with business decisions such as 

which units to run, which raw material(s) to process, and which products to produce. The 

high-level strategic plans, in general, relate to a period of several years. On the other 

hand, the tactical plans for local refinery management control are based on a refinery�s 
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strategic business plan and are executed on a monthly, quarterly, and annual budget. 

Further, according to Favennec (2001), the tactical plans include the use of management 

monitoring processes and the regular calculation of the commercial results that are often 

aligned with monthly accounting procedures. 

 On the whole, plantwide planning activities, with the underlying objective of seeking 

optimal operating strategy than can maximize total profit, are obviously crucial to the 

economics of a company (Li, 2004). In this work, several framework of midterm to long-

term strategic planning models are developed for a typical medium-sized refinery with 

basic configuration. 

 The plantwide plans of the head office are then delivered to the scheduling office to 

act as a guideline. The scheduling office then determines the detailed timing of actions 

that are to be carried out in a plant within the specified ranges of the plantwide plans. 

Generally, the scheduling time horizons stretch from one week to ten days. The objective 

of scheduling is to seek feasible operating strategies that satisfy the planning 

requirements while simultaneously minimize the operating cost. Li (2004) highlighted 

that refinery scheduling pose one of the most challenging refinery management activities 

simply because the currently available technology and knowledge-base is still immature 

relative to the complexity that is demanded from it. 

 Refinery scheduling is further divided into three components as follows (Li, 2004): 

• crude oil tankage area or tank farm scheduling that handles crude oil storing, 

transporting, and charging activities; 

• refining area scheduling that establishes the various unit operations� operating 

conditions and flow rates of stream flows; and 

• blending area scheduling that decides blending recipe for intermediate streams to 

produce products that meet quality specifications while maintaining appropriate 

product inventory levels. 

 Subsequently, the detailed scheduling results are sent to the unit operations office 

(which is typically housed in the plant�s main control room, often dubbed as the heart of 

the plant) to enable the operators to run the units in such a way so as to realize the 

outlined scheduling objective. Various tools and performance criteria of the operational 

and logistical system for purposes of monitoring, diagnosis, control, and online 
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optimization (or also known as real time optimization, RTO) of systems and processes 

are utilized to optimize the performance of the unit operations. 

 

 

1.3.6 Current Persistent Issues in the Planning, Scheduling, and Operations 

Functions of Petroleum Refineries 

 

According to Fisher and Zellhart (1995), planning and scheduling for a refinery typically 

encompass three areas: (1) crude oil management, (2) process unit optimization, and (3) 

product scheduling and blending. 

 Crude management entails crude segregation and crude unit operation. Process unit 

optimization deals with downstream (of the crude distillation unit (CDU)) process unit 

operations that handle crude unit intermediates. Product scheduling and blending handles 

the development of a product shipment schedule and an optimum blend recipe based on 

information from process unit optimization and current operating data. 

 A major problem in refinery planning is prevalent even at the very foundation: 

optimization of the CDU and its associated product yields. In addition to uncertainty 

surrounding the future price of crude oils, the actual composition of crude oils (or crudes, 

for short) is often only an educated guess. Crudes vary from shipment to shipment 

because of the mixture of sources actually shipped. It is expected that the quality of 

crudes does not significantly change over a short period of time, although this assumption 

could also render a plan to be inaccurate or worse, infeasible. If the actual crude 

composition does not closely agree with that modelled, then an error is committed that 

often propagates through the rest of a refinery planning model. 

 A second, equally common source of error in optimizing the submodel for the CDU is 

the assumption that the fractions from the distillation curve for the crude unit, or simply 

referred to as the crude cuts or the swing cuts of distillates, are produced as modelled. 

Frequently in practice, models are not even adjusted to show cut overlaps, all just because 

of wishing to take the easy way out in developing crude cut yields and distillates. One of 

the typical crude cutting procedures assigns distillation temperatures directly from the 

true boiling point crude analysis, in which no adjustment is made for the actual refinery 
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degree of fractionation. This is a particular bad procedure for certain types of gasoline 

that have tight 90 percent point limits. The fractionation efficiency of gasoline and 

distillate components from all processes would have a significant effect in controlling 

aromatics and other types of hydrocarbons. Therefore, planners and decision makers 

ought to be more diligent by constantly reviewing the supposed optimized plans and 

comparing to actual situations in an effort to improve the prediction accuracy of their 

models. 

 The third component of the refinery planning and scheduling functions involve 

product scheduling and blending where this is usually handled by preparing both a short-

range and a long-range plan, using the same model for the blending process. The long-

range plan, typically covering 30 days, provides aggregate pools of products for a 

production schedule. The short-range plan, typically spanning seven days, fixes the blend 

schedule and creates recipes for the blender. Desired output from the long-range model 

includes (i) detailed product blend schedule; (ii) optimal blend recipes; (iii) predicted 

properties of blend recipes; (iv) product and component inventories; (v) component 

qualities, rundown rates, and costs; (vi) product prices; and (vii) equipment limits. For the 

short-range model, the desired output are: (i) a detailed product blend schedule; (ii) 

optimal blend recipes; (iii) predicted properties of blend recipes; and (iv) product and 

component inventories as a function of time (Fisher and Zellhart, 1995). 

 

 

1.3.7 Petroleum Refinery Production and Operations Planning under Uncertainty 

 

In the discussion in preceding sections, we emphasize our conviction in mathematical 

programming techniques under uncertainty, specifically stochastic programming 

methods, towards improvement in tools and methodologies for integrating the planning, 

scheduling, and operations functions of a refinery. This stems from the fact that it has 

long been recognized that traditional deterministic refinery planning models are not 

suitable for capturing the dynamic behaviour of the highly volatile oil and gas industry 

due to the presence of data uncertainties, in which exact information that will be needed 

in subsequent decision stages is not usually available to the decision maker when a 
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decision must be made. Although majority of the works on optimization of refinery 

planning models are still based on deterministic programming, there has actually been 

quite a substantial body of work that addresses the issue of uncertainty in market 

conditions, mainly concerning product demands and prices (or costs) of crude oil and the 

saleable refined products. Table 1 attempts to provide a brief survey of recent works in 

the petroleum industry supply chain planning and optimization under uncertainty with 

focus on works purely addressing refinery production�operations planning. 

 
Table 1.3. Recent works (in chronological order of descending recency) on petroleum industry supply 

chain planning and optimization under uncertainty with focus on refinery production−operations 
planning 

 
Author (Year) Application Uncertainty Factor Stochastic Modeling Approach 

    
Pongsakdi et al. 
(in press) 

Refinery production planning with 
emphasis on financial risk 
management 

Product demands 
and prices 

Two-stage SP with scenario 
analysis�a full deterministic 
model is run for parameters of each 
scenario and the results are used to 
fix the first-stage variables; then, 
the same model is rerun for the rest 
of the scenarios to obtain second-
stage values 

    
Neiro & Pinto 
(2005) 

Multiperiod refinery production 
planning for selection of different 
crude oil types under uncertainty and 
crude oil handling constraints 

Prices and 
demands of crude 
oil and products 

Two-stage SP with scenario 
analysis for MINLP model 

    
Aseeri & 
Bagajewicz 
(2004) 

Measures and procedures for 
financial risk management in the 
planning of natural gas 
commercialization (in the Asia 
region) 

Demand and prices Two-stage SP with scenario 
analysis for MILP model (by 
varying transport process selection, 
expansion capacities, and 
production rates) 

    
Aseeri et al. 
(2004) 

Financial risk management of 
offshore oil (petroleum) 
infrastructure planning and 
scheduling to determine the sequence 
of oil platforms to build and the wells 
to drill as well as how to produce 
these wells over a period of time 
(with introduction of budgeting 
constraints that follow cash flow of 
the project, take care of the 
distribution of proceeds, and consider 
the possibility of taking loans against 
some built equity) 

Oil prices and oil 
production 
(modelled via a 
productivity index) 

Two-stage SP with sampling 
average algorithm (SAA) for MILP 
model 
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Table 1.3. Recent works (in chronological order of descending recency) on petroleum industry supply 
chain planning and optimization under uncertainty with focus on refinery production−operations 

planning (continued) 
 

Author (Year) Application Uncertainty Factor Stochastic Modeling Approach 
    
Goel & 
Grossmann 
(2004) 

Optimal investment and operational 
planning of offshore gas field 
developments under uncertainty in 
gas reserves 

Size and initial 
deliverability of 
gas fields 

Multistage SP as a sequence of 
two-stage SP using conditional 
non-anticipativity constraints 
incorporating decision-dependence 
of the scenario tree via hybrid 
mixed-integer/disjunctive 
programming 

    
Lababidi et al. 
(2004) 

Supply chain of a petrochemical 
company 

Market demand, 
market prices, raw 
material costs, and 
production yields 

Two-stage SP with scenario 
analysis for MINLP model 

    
Li et al. (2005); 
Li (2004), Li et 
al. (2004) 

Planning, scheduling, and economic 
analysis of refinery management with 
the integration of production and 
energy systems 

Raw material costs, 
product demands, 
and other changing 
market conditions 

Two-stage SP with penalty 
functions replaced by decision 
maker�s service objectives of 
confidence level (probability of 
satisfying customer demands) and 
fill rate (proportion of demands 
met by plant) evaluated by loss 
functions 

    
Jia & 
Ierapetritou 
(2003) 

Mixed-integer linear programming 
model for gasoline blending and 
distribution scheduling 

  

    
Hsieh & Chiang 
(2001) 

Manufacturing-to-sale planning 
system for refinery fuel oil 
production 

Demand and cost Fuzzy possibilities linear 
programming 

    
Dempster et al. 
(2000) 

Multiperiod supply, transformation, 
and distribution (STD) scheduling 
problem for strategic or tactical level 
planning of overall logistics 
operations in the petroleum industry 

Product demands 
and spot supply 
costs/prices 

Dynamic SP with scenario analysis 

    
Escudero et al. 
(1999) 

Multiperiod supply, transformation, 
and distribution (STD) scheduling 
problem 

Product demand; 
product spot 
market supplying 
cost; product spot 
market selling 
price 

Two-stage SP with scenario 
analysis based on partial recourse 
approach 

    
Guldmann & 
Wong (1999) 

Optimal selection of natural gas 
supply contracts by local gas 
distribution utilities 

Weather variability Simulation and response surface 
estimation via regression analysis 
of a large MILP and a much 
smaller NLP approximation of the 
MILP 

    
Bok et al. 
(1998) 

Investment planning in the South 
Korean petrochemical industry 

Product demand Two-stage SP for a multiperiod 
MINLP model 
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Table 1.3. Recent works (in chronological order of descending recency) on petroleum industry supply 
chain planning and optimization under uncertainty with focus on refinery production−operations 

planning (continued) 
 

Author (Year) Application Uncertainty Factor Stochastic Modeling Approach 
    
Liu & Sahinidis 
(1997) 

Process planning with example for a 
petrochemical complex 

Material 
availabilities, 
product demands, 
material costs, 
product prices, 
process yields 

Fuzzy programming for MILP or 
MINLP (depending on type of 
uncertainty) 

    
Liu & Sahinidis 
(1996) 

Process planning Prices, demands, 
availabilities 

Two-stage SP 

    
Bopp et al. 
(1996) 

Managing natural gas purchases Demands, frequent 
price change 

Scenario analysis 

    
Clay and 
Grossmann 
(1994) 

Stochastic planning with example on 
refinery planning (based on Edgar et 
al., 2001) 

Market demands Two-stage SP with fixed recourse 

Nomenclature: 
SP:  stochastic programming 
MILP: mixed-integer linear programming 
NLP: nonlinear programming 
MINLP: mixed-integer nonlinear programming 
 

 

1.3.8 Factors of Uncertainty in Petroleum Refinery Production and Operations 

Planning 

 

In the spirit of the recent work by Goel and Grossmann (2004), we classify possible 

factors of uncertainty in the planning of the production and operations of a petroleum 

refinery into two classes, namely the exogenous or external factors and the endogenous or 

internal factors, as shown in Table 1.4. 

 

 

1.3.9 Production Capacity Planning of Petroleum Refineries 

 

The planning and utilization of production capacity is one of the most important 

managerial responsibilities for managers in the manufacturing industry, including 

petroleum refineries. Such decisions have to be made in the face of uncertainty in several 
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Table 1.4. Possible factors of uncertainty in a petroleum refinery planning problem (Maiti et al., 
2001; Liu and Sahinidis, 1997) 

Exogenous (external) factors 
• Availabilities of sources of crude oil (raw material) supply 
• Economic data on feedstock, intermediates, finished products, utilities, and others 
! Prices of crude oil and chemicals 
! Production costs 
! Distribution costs 
! Market demands 

• Production demands: final product volumes & specifications 
• Location 
• Budgets on capital investments for capacity expansion and new equipment purchases or replacements 
• Investment costs of processes (for example, licence fees to be paid to process licensors providing use of 

a certain refining process technology such as UOP (Universal Oil Products) 
 
Endogenous (internal) factors 
• Properties of components 
• Product/process yields 
• Processing and blending options 
• Machine availabilities 
 

important parameters, with the most important of these uncertainties being market 

demand for the products being manufactured. Hence, manufacturing capacity planning 

has long attracted the attention of economists as well as researchers in the practice of its 

traditional domain, namely operations research and management science. 

 According to Escudero et al. (1993), there are two types of capacity planning 

problems. The more commonly discussed problem of deciding how much capacity to 

acquire and how to plan its utilization is a strategic problem that deserves careful 

analysis. On the other hand, in the tactical time horizon, the second-type of capacity 

problems are normally resolved through inventory buffers, additional workloads, or 

through alternate sourcing. Although new capacity cannot be acquired in this time 

horizon, it is often possible to develop alliances with other manufacturers or vendors to 

manage the production of uneven or unanticipated production volumes. 

 Sahinidis and Grossmann (1989) state that a considerable number of works has been 

reported, particularly in the operations research literature, concerning capacity expansion 

problems in several areas of application. A classic review on this subject can be found in 

Luss (1982). In the chemical engineering literature, a variety of methods has been applied 

to expansions of chemical plants, for example, (i) dynamic programming by Roberts 

(1964); (ii) branch-and-bound procedure combined with generalized reduced gradient of 

constrained nonlinear programming (NLP) algorithm by Himmelblau and Bickel (1980); 
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(iii) multiperiod mixed-integer linear programming (MILP) formulation by Grossmann 

and Santibanez (1980); (iv) goal programming by Shimizu and Takamatsu (1985) via a 

procedure of stepwise and subjective judgement process by the decision-maker by 

relaxation of flexible constraints and sensitivity analysis of linear programming, and (v) 

recursive MILP by Jimenez and Rudd (1987) to achieve an optimum integration sequence 

for a petrochemical industry. However, they are often ineffective for large-scale problems 

and are thus limited in the size of problems that can be handled. In addition to that, of 

particular interest is the problem of capacity expansion under uncertainty via the scenario 

analysis approach, of which Eppen et al. (1989) is a frequently-cited work that treats a 

real-world problem in the automobile industry by accounting for the expected downside 

risk. 

 However, capacity expansion will not be considered in this work since the primary 

objective is to focus on developing methodologies and tools for planning under 

uncertainty. It will therefore be left to future work. 

 

 

1.3.10 Other Applications of Stochastic Programming Models in the Hydrocarbon 

Industry 

 

Wallace and Fleten (2003) briefly discuss the applications of stochastic optimization 

models in the oil and gas (and petrochemicals) industry, in addition to the problem of 

refinery planning addressed in this work. They include the following: 

• optimum oil field development to determine platform capacity for well drilling 

and production operations; number of wells including their placement and timing; 

and the production profile of wells, with stochasticity in random future oil prices 

(Jonsbraten (1998) described using scenarios; 

• scheduling arrivals of tankers at a refinery for loading of gasoline for export; 

• scheduling of gas fields production to decide on the location and timing of fields 

that should be developed and the ensuing pipelines that should be constructed; 

• planning of gas storage facilities for contracted delivery, participation in 

potentially profitable spot markets, and others; 

• portfolio management of natural gas contracts. 
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1.4 STOCHASTIC PROGRAMMING (SP) FOR OPTIMIZATION UNDER 

UNCERTAINTY 

 

Stochastic programming (SP), as indicated by the section heading, is the subfield of 

mathematical programming that considers optimization in the presence of uncertainty 

(Dyer and Stougie, 2006). Within the context of modelling , it is the optimization branch 

explicitly concerned with models with random parameters (Birge and Louveaux, 1997). It 

is referred to as the study of practical procedures for decision making under the presence 

of uncertainties and risks (Uryasev and Pardalos, 2001). Further, according to Roger J.-B 

Wets (1996), arguably one of the most prominent theorists of the field, the motivation for 

modelling decision problems as stochastic programs is derived mostly from the search for 

a �robust� first-stage decision, that is, �a decision that will put the decision maker in a 

rather good position in whatever, or almost whatever, be the outcome of future events.� 

Even though 50 years have eclipsed since the pioneering seminal works of Dantzig 

(1955) and Beale (1955), George B. Dantzig still considers planning under uncertainty as 

the definitive open problem of utmost importance in the field of optimization (Horner, 

1999). Thus, this augurs well for the consideration of uncertainty in the refinery 

production planning problem addressed in this work. 

 Stochastic programming deals with optimization problems that are characterized by 

two essential features: the uncertainty in the problem data and the sequence of decisions, 

in which some of the model parameters are considered random variables that take values 

from given or assumed discrete or continuous probability distributions. The decision must 

be made before the actual values of these random parameters are realized. The need for 

including uncertainty in complex decision models arose early in the history of 

mathematical programming. The first forms of model, involving an action followed by 

observation and reaction, that is, the two-stage stochastic programming with recourse, 

appeared independently in Dantzig (1955) and Beale (1955) (as also referred to in the 

preceding paragraph). (Dantzig uses the term �linear programs under uncertainty� while 

Beale refers to it as �linear programs with random coefficients�. The identical year of 

publication is a mere coincidence.) An alternative method, called chance- or 

probabilistic-constrained programming, was also developed quite early, principally by 
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Charnes and Cooper (1959). Both forms have their origin in statistical decision theory, 

but in contrast to decision theory, stochastic programming has emphasized methods of 

solution and analytical solution properties over procedures for constructing objectives 

and updating probabilities (Dupacova, 2002). 

 Stochastic programming with recourse is often used to model uncertainty, giving rise 

to large-scale mathematical programs that require the use of decomposition methods and 

approximation schemes for their solution. Surveys of developments and applications of 

stochastic programming can be found in Ermoliev and Wets (1988), Wets (1989), Birge 

and Wets (1991), Kall and Wallace (1994), and Ruszczynski and Shapiro (2003). There 

has been tremendous progress in stochastic optimization problems from both theoretical 

and practical perspectives, especially in stochastic linear programming, matching almost 

in parallel, its deterministic counterpart (Wets, 1996). This is illustrated by the successful 

use of stochastic programming approaches in a number of areas such as energy 

(particularly electricity generation) and production planning, telecommunications, forest 

and fishery harvest management, engineering, and transportation. Uryasev and Pardalos 

(2001) mention also that it was recently realized that the practical experience gained in 

stochastic programming can be expanded to a much larger spectrum of applications 

including financial modeling, asset-liability management, bond portfolio management, 

currency modelling, risk control, and probabilistic risk analysis. 

 Figure 1.3 depicts some of the more well-established optimization techniques under 

uncertainty with emphasis on chemical engineering applications, based on the recent 

review article by Sahinidis (2004). Interested readers are referred to Kall and Wallace 

(1994), Birge and Louveaux (1997), and Prekopa (1995) as standard basic references for 

the theory and application of multistage stochastic programs, in particular the two-stage 

program with fixed recourse that is widely adopted in model developments pertaining to 

this work. 
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Figure 1.4. Established optimization techniques under uncertainty (with emphasis on chemical engineering 
applications as based on Sahinidis (2004)) 

 

 

1.4.1 Assessing the Need for Stochastic Programming Models: Advantages and 

Disadvantages 

 

The starting point for many stochastic programming models is a deterministic linear 

programming (LP) model (or simply, a linear program). If some of the parameters in an 

LP are uncertain and the LP appears to be fairly sensitive to changes in the parameters, 

then it may be appropriate to consider an SP model (Sen and Higle, 1999). For example, 

consider a blending model for the production planning of a petroleum refinery that uses 

LP to recommend recipes to produce a crude oil blend with specific characteristics in the 

mixing tank preceding the crude distillation unit (CDU), by combining different types of 

crudes. In some instances, the content of these mixtures of crude oil may, or are even 

bound to, vary. If the optimal blend remains relatively unaffected within the range of 

variation, then we can justify the certainty assumption of LP. On the other hand, if the 

variations cause the optimal blend to vary substantially (which should be justifiably 

anticipated), then it may be worth pursuing the comparatively more complex and more 

computationally demanding stochastic programming model. In such a case, we can use 

LP sensitivity analysis for diagnostic purposes and stochastic programming to obtain an 

optimal blend. In a more general context, the distinction between deterministic models 

and stochastic programming models lies in the sense that in considering possible 

scenarios of a certain problem or a phenomenon, multiple scenarios with their associated 

data are optimized one at a time in deterministic models, as if they will occur with 

certainty. In contrast, a stochastic model considers the ensemble of all scenarios 
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simultaneously, each with an associated probability of occurrence, as a probabilistic 

description of the future (Shapiro, 2004). 

 In many instances, we need stochastic programming models due to scant information 

pertinent to executing decisions. Such a situation is likely to arise, for example, with the 

introduction of new products or services. Consider the corporate planning or marketing 

arm of an integrated oil and gas company that wishes to introduce a new lubricant 

product from its refining activities. They may try to obtain information on the need for 

this product in multiple ways. They may inspect usage data of an existing similar 

product(s) in the market within their region and from a similar demographic region in a 

different part of the country. They could also obtain surrogate data from a computer 

simulation model. Finally, they could execute a market survey or perform a test within a 

small segment of the region. All of these approaches provide estimates of market demand 

for the new lubricant product, and these data estimates are likely to be different. With a 

stochastic programming model, the company can include all these alternative forecasts 

within one decision-making model to produce a more robust plan (Sen and Higle, 1999). 

 Moreover, stochastic programming has the additional benefit of allowing decision-

makers to impose constraints reflecting their judgement of the risks associated with the 

firm�s performance under various possible business and even non-business (for example, 

a socially-influenced event) scenarios. To illustrate this point, consider the set of 

constraints that state that losses by a firm in year n cannot exceed US$M million under 

any circumstance (or scenario). These constraints may alternatively be expressed as a 

single probabilistic constraint requiring that the probability associated with losses 

suffered by the firm surpassing US$M million in year n may not exceed a certain value p, 

say 0.05 (for convenience sake). Decision-makers may of course view such targets as 

being somewhat arbitrary, implying the need to apply methods of multiobjective 

optimization to systematically explore the tradeoff of maximum expected net revenues 

against risk targets. Therefore, by employing stochastic programming models, risk 

management is translated into systematic procedures for identifying efficient frontiers 

that describe the tradeoffs of expected return profit against explicit descriptions of risk 

exposure faced by the firm and/or the decision-maker (Shapiro, 2004). 
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 From a computational point-of-view, stochastic programming provides a general 

framework to model path dependence of the stochastic process within an optimization 

model. Furthermore, it permits uncountably many states and actions, together with 

constraints, time-lags, and others. One of the important distinctions that should be 

highlighted is that unlike dynamic programming, stochastic programming separates the 

model formulation activity from the solution algorithm. One advantage of this separation 

is that it is not necessary for stochastic optimization models to all obey the same 

mathematical assumptions. This leads to a rich class of models for which a variety of 

algorithms can be developed. However, on the downside of the ledger, stochastic 

programming formulations can lead to large scale problems, thus methods based on 

approximation and decomposition becomes paramount for as measures of circumvention 

(Sen, 2001). 

 

 

1.4.2 General Formulation of Optimization Model for Operating Chemical 

Processes under Uncertainty 

 

Pintaric and Kravanja (2000) present a general formulation of the mathematical model for 

optimization of chemical processes under uncertainty, presented here in the following in 

a slightly revised form for a production planning problem: 
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 (1.1) 

 

where P is an objective function that usually represents the economic potential, for 

example, profit; x represents the vector of operating variables (for example, flowrates, 

compositions, temperatures, pressures); d is the vector of design or planning (size) 

variables (for example, area, volume, diameter, height, power); θ is the vector of 

uncertain parameters; and h and g are the vectors of process equality and inequality 
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constraints, respectively. X, D, and TH are continuous feasible regions of operating 

variables, design variables, and uncertain parameters, respectively, defined by the lower 

and upper bounds. The most common approach in addressing the optimization problem in 

equation (1.1) is the two-stage stochastic programming formulation and this is addressed 

and elaborated later. 
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where Eθ is the mathematical operator for the calculation of the expected value of the 

objective function EP over θ. The objective of the design stage is to select an optimal 

vector of design or planning variables, while the objective of the operating stage is to 

determine an optimal vector of operating variables at fixed design or planning decisions. 

 

 

1.4.3 Overview of the Concept and Philosophy of Two-Stage Stochastic 

Programming with Recourse from the Perspective of Applications in Chemical 

Engineering 

 

Under the standard two-stage stochastic programming paradigm, the decision variables of 

an optimization problem under uncertainty are partitioned into two sets according to 

whether they are decided (or implemented) before or after an outcome of the random 

variable(s) is observed. The first-stage variables are those that have to be decided before 

the actual realization of the uncertain parameters. They can be regarded as proactive and 

are often associated with planning issues such as capacity expansion decisions or in 

aggregate production planning. Subsequently, once the random events have presented 

themselves, further design, planning or operational policy improvements can be made by 

selecting, at a certain cost, the values of the second-stage or recourse variables. 
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Traditionally, the second-stage variables are interpreted as corrective measures against 

any infeasibility arising due to a particular realization of uncertainty, hence the term 

recourse. They allow the decision-maker to model a response to the observed outcome 

that constitutes his or her desired (and appropriate) recourse. The second-stage problem 

may also be operational-level decisions following a first-stage plan and realization of the 

uncertainty; hence they can be regarded as reactive. The corresponding second-stage cost 

is a random variable due to uncertainty. Thus, the overall objective is to choose the first-

stage variables in a way that the sum of the first-stage costs and the expected value of the 

random second-stage recourse costs is minimized. This concept of recourse has been 

applied to linear, integer, and nonlinear programming problems (Sahinidis, 2004; Cheng 

et al., 2005). 

 For the two-stage stochastic recourse models, the expected value of the cost resulting 

from optimally adapting the plan according to the realizations of uncertain parameters is 

referred to as the recourse function. A problem is said to have complete recourse if the 

recourse cost for every possible uncertainty realization remains finite, independent of the 

nature of the first-stage decisions. In turn, if this statement is true only for the set of 

feasible first-stage decisions (that is, they satisfy the first-stage constraints, or in other 

words, the first-stage constraints are not violated), then the problem is said to have the 

slightly less restrictive property of relatively complete recourse. To ensure complete 

recourse in any problem, penalty functions (of costs) for deviations from constraint 

satisfaction of prescribed limits are used (Sen and Higle, 1999). 

 For example, in recourse planning, we model a response for each outcome of the 

random elements that might be observed. In actuality, this response will also depend 

upon the first-stage decisions. This type of planning in practice involves setting up 

policies that will help the organization adapt to the revealed outcomes. Specific to 

production and inventory systems, the first-stage decision might correspond to resource 

quantities, and demand might be modelled using random variables. When demand 

exceeds the amount available in stock, policy may dictate that customer demand be 

backlogged at the expense of some shortage costs. This policy constitutes a recourse 

response; to be precise, it is a simple recourse policy as according to the explanation in 

the preceding paragraph. The exact level of this response (that is, the amount backlogged) 
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depends on the amounts produced and demanded. Under uncertainty, it is essential to 

adopt initial policies that will accommodate alternative outcomes. Consequently, this 

provides the conviction that modeling under uncertainty requires the incorporation of a 

recourse policy model (Cheng et al., 2005). 

 Typically, a two-stage stochastic planning problem is derived from a deterministic 

problem by identifying the decision variables that can be manipulated after the design, 

planning, and construction stage, and deferring the decision with respect to those 

variables until the operating stage. Since the manipulable variables or operating variables, 

that is, the recourse variables can be controlled in a way such that the best outcomes are 

obtained for the prevailing operating conditions established in the first-stage, a planning 

problem reduces to one in which the remaining decision variables are to be determined 

such that the expectation of an operationally-optimized economic objective is maximized 

(Pai and Hughes, 1987). 

 According to Sen and Higle (1999), the presence of uncertainty affects both feasibility 

and optimality of the optimization problem. In fact, formulating an appropriate objective 

function itself raises interesting modelling and algorithmic questions. Furthermore, in 

Section 1.1, we note that the many variants of the two-stage stochastic modelling 

approach lies primarily in the distinct approaches taken to evaluate the expected value 

term, which in principle (but not necessarily so) contains a multidimensional integral 

involving (possibly) the joint probability distribution of the uncertain parameters. 

However, this varies depending on the nature of the problem and information in the form 

of historical data that is available to the decision maker (Applequist et al., 2000). Gupta 

and Maranas (2003) rightly so pointed out that the main challenge in solving the two-

stage stochastic program lies in evaluating the second-stage expectation term. Various 

techniques have been proposed in works addressing production planning under 

uncertainty by employing the two-stage decision problem model. Ierapetritou and 

Pistikopoulos (1994a, 1994b, 1996) proposed an algorithmic procedure using numerical 

Gaussian quadrature integration to approximate the multiple integrals of the expected 

profit with the corresponding quadrature points simultaneously obtained as a result of the 

optimization procedure. Liu and Sahinidis (1996) use a Monte-Carlo sampling approach 

to estimate the expectation of the objective function. Clay and Grossmann (1997) employ 
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a sensitivity-based successive disaggregation algorithm without consideration of capacity 

expansion. Another approach in an earlier work is the technique employed by Friedman 

and Reklaitis (1975) that incorporates flexibility in the system by allowing for possible 

future additive corrections on the current decisions and optimize the system by applying 

an appropriate cost-for-correction in the objective function, which is essentially similar to 

the recourse model approach. It is deeply encouraging to note that recent applications of 

two-stage stochastic programming for solvinuncertainties and control risks explicitly, 

particularly the stochastic programming technique of two-stage stochastic linear 

programming with fixed recourse or in general also known as the scenario analysis 

technique. The underlying idea is to simultaneously consideg large-scale chemical 

production and process planning problems, as chronicled in Table 1.3, marvellously 

spans the entire full range of mathematical programming problems from linear programs 

(which no longer pose any serious computational complication with current availabilities 

of efficient algorithms and hardware computing prowess) and mixed-integer linear 

programs (MILP) to nonlinear programs (NLP) and mixed-integer nonlinear programs 

(MINLP). 

 

 

1.4.4 The Classical Two-Stage Stochastic Linear Program with Fixed Recourse 

 

Birge and Louveaux (1997) reiterated that stochastic programming is an attractive option 

for planning problems because it allows the decision maker to analyze r multiple 

scenarios of an uncertain future, each with an associated probability of occurrence. The 

model simultaneously determines an optimal contingency plan, due to the incorporation 

of recourse actions, for each scenario and an optimal plan that optimally hedges against 

these contingency plans. Optimization entails maximization of expected net profits or 

minimization of various expected costs, in which the term �expected� refers to 

multiplying net profits or costs associated with each scenario by its probability of 

occurrence (Lababidi et al., 2004). 

 On a more general note, a two-stage stochastic program with recourse is a special case 

of multistage stochastic program. As observed by Romisch and Schultz (2001) and 

Ahmed et al. (in press), much of the work in the area of multistage stochastic programs 
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has focused on stochastic linear programs, which do not handle integer requirements or 

nonlinearities. This is mainly due to the highly desired property of convexity of the value 

function of stochastic linear programs; however, breaks down in the case of stochastic 

integer programs (Balasubramanian and Grossmann, 2004). 
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CHAPTER 2 

Research Objectives 
 

 

2.1 PROBLEM DESCRIPTION AND RESEARCH OBJECTIVES 

 

The midterm production planning problem for petroleum refineries addressed in this 

work can be stated as follows. It is assumed that the physical resources of the plant are 

fixed and that the associated prices, costs, and market demand are externally imposed. 

Thus, the following are all assumed to be known or given (Reklaitis, 1982): 

• types and number of production units and inventory facilities; 

• the product slate; 

• the costs of materials, labour, and energy; 

• the product prices; as well as 

• the product demands. 

 With these assumed given information, the principal governing objective of this 

research is to determine the optimal midterm (medium term) production planning of a 

petroleum refinery by computing the amount of materials being processed at each time in 

each unit and in each process stream, by explicitly and simultaneously accounting for the 

three major factors of uncertainty, namely: (i) market demand or product demand; (ii) 

prices of crude oil (the raw material) and the final saleable refining commercial products; 

and (iii) product yields of crude oil from chemical reactions in the primary distillation 

unit, or more commonly known nowadays as the crude distillation unit (CDU), of a 

typical petroleum refinery. A hybrid of various stochastic optimization modelling 

techniques within the framework of the classical two-stage stochastic programming with 

recourse model structure are applied to reformulate a deterministic refinery production 

planning problem into one that is both solution robust and model robust. This is 

accomplished by adopting the Markowitz�s mean�variance approach in handling risk 

arising from variations in profit and penalty costs that are due to the recourse actions 

incurred as a result of violations of constraints subjected to the factors of uncertainty 

aforementioned. 
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 A numerical study based on a representative example drawn from the literature is then 

presented and solved to optimality to demonstrate the effectiveness of implementing the 

stochastic models proposed. As indicated, we will achieve this through reformulating the 

deterministic linear programming (LP) model developed by Allen (1971) for refinery 

operations planning by introducing elements of uncertainty. Subsequently, the solutions 

are provided by implementing four approaches or techniques for decision-making under 

uncertainty, as elaborated in the following with a gradual increase of complexity: 

• Approach 1: the Markowitz�s mean�variance (E�V or MV) model to handle 

randomness in the objective function coefficients of prices by minimizing the 

variance of the expected value (or mean) of the random coefficients, subject to a 

target profit constraint; 

• Approach 2: the two-stage stochastic programming with fixed recourse approach to 

model randomness in the right-hand side and left-hand side (or technological) 

coefficients by minimizing the expected recourse penalty costs due to violations of 

constraints; 

• Approach 3: incorporation of the Markowitz�s MV model within the two-stage 

stochastic programming framework developed in Approach 2 to minimize both the 

expectation and the variance of the recourse penalty costs; and 

• Approach 4: reformulation of the model developed in Approach 3 by utilizing the 

Mean-Absolute Deviation (MAD) in place of variance as the measure of risk imposed 

by the recourse penalty costs. 

 Finally, the results obtained will be analyzed, interpreted, and compared and 

contrasted; the latter primarily with the work reported by Ravi and Reddy (1998), who 

made use of the fuzzy linear fractional goal programming approach in their proposed 

solution on the same deterministic model of Allen (1971). 

 Acknowledging the shortcomings of deterministic production planning models as 

addressed in the earlier section on review of the existing literature in the field, the novelty 

of the approaches in this work lies in striving to present an explicit method of stochastic 

programming under uncertainty by utilizing existing concepts of straightforward yet 

effective modelling techniques in formulating tractable stochastic models for application 

in the large-scale optimization problem of petroleum refinery production planning. In 
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essence, the production plans are to be determined probabilistically within an 

environment of incomplete information. As events materialize with the uncertainties 

revealed, production rates of the refinery for the following planning period are to be 

determined in conditional fashion, taking account of accumulating experience and future 

possibilities, as denoted by the associated probabilities. The meaning and quantitative 

consequences to be assigned to each such event is to be determined beforehand from the 

scenario generation methodology that is applied, so that plans can be formulated and 

evaluated in advance for each possible contingency. Finally, these efforts are undertaken 

with the desirable intention of assessing potential future changes in the structure and 

requirements of the decision-making activity of production planning within a petroleum 

refinery (at least from a qualitative point-of-view, if not quantitatively through extending 

the optimization models in future work). 

 As a final remark, Shapiro (1993) praised stochastic programming with recourse 

models for offering rigorous formalism in evaluating the impact of uncertainty on 

production planning and scheduling plans. However, it is rightly cautioned that a great 

deal of artistry and problem specific analysis is required to effectively utilize the 

formalism since it can easily lead to producing complex models demanding heavy 

computational time. In line with this, justifications in using a specific modelling 

technique will be provided and comparisons made with other forms and techniques. 

 

 

2.2 OVERVIEW OF THE THESIS 

 

A major part of the remainder of the thesis shall focus on the implementation of the four 

approaches introduced in Section 2.1 for oil refinery planning under uncertainty and the 

resulting proposed general models. This is followed by the application of the stochastic 

models developed to a representative numerical example in order to test and demonstrate 

their suitability, effectiveness, and robustness for decision-making activities. 

 In Chapter 3, we present an exposition on the methodology of problem formulation for 

the planning of a large-scale process network under uncertainty, in view of application 

for the production planning of petroleum refineries. Rigorous and detailed mathematical 
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treatment of the associated theories underpinning the concept of two-stage stochastic 

programming with recourse model is thoroughly discussed. 

 In Chapter 4, we demonstrate the general formulation of the deterministic production 

planning model for petroleum refineries. The framework and structure of the 

deterministic planning model is based mainly on the production planning model proposed 

by McDonald and Karimi (1997) and on the refinery planning model in the work by 

Ierapetritou and Pistikopoulos (1996). 

 Subsequently, in Chapter 5, we reformulate the deterministic model developed in the 

preceding chapter with the addition of stochastic dimensions to address uncertainties in 

commodity prices, market demand, and product yields. As elaborated in the previous 

section, four approaches are adopted, resulting in four stochastic models with gradual 

complexity and capability, especially pertaining to risk management. 

 We dedicate Chapter 6 for a discussion on the implementation of the models on the 

General Algebraic Modeling System (GAMS) platform. Here, we strive to succinctly 

justify and advocate the use of a high-level modelling language like GAMS (and its 

counterparts such as AMPL) for the ease of constructing and implementing a large-scale 

optimization model. 

 Chapter 7 then discusses the two metrics that we deem most suitable in evaluating the 

performance of the stochastic models and hence, the value of the venture of adopting 

stochastic programming itself. The first metric pertains to the concepts of solution 

robustness and model robustness as introduced in the seminal work by Mulvey et al. 

(1995) while the second metric employs the use of coefficient of variation, traditionally 

defined as the inverse ratio of data to the noise in the data. From this definition, it follows 

that a small value of Cv is desirable as we strive to minimize the presence of noise. Thus, 

Cv can be adopted as an indicator of the degree of uncertainty in a stochastic model. 

 Chapter 8 forms the heart of the thesis as it is essentially the test bed of the 

performance of the proposed stochastic models. Without loss of generality, we consider 

the deterministic midterm production planning model for a petroleum refinery by Allen 

(1971) and Ravi and Reddy (1988) as the base case or core model of our numerical study. 

First, the deterministic model is solved to optimality using GAMS with the results 

validated by LINDO. Then, based on the detailed steps outlined in Chapter 5, the base 
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case model is reformulated according to the four approaches outlined to produce four 

convex nonlinear quadratic stochastic models. We then proceed to compute the optimal 

solution of the models and thereafter, a thorough analysis of the results obtained are 

established in an effort to investigate the robustness of the solutions and the models, by 

employing the aforementioned performance metrics. 

 Finally, we provide some concluding remarks with regards to the outlined research 

objectives that we have managed to achieve, followed by recommendations of promising 

future work to be undertaken, in Chapters 9 and 10, respectively. Miscellaneous 

supporting information is collected under Appendix and the thesis is brought to a close by 

a complete list of references detailing the multitude literature that has been cited in this 

work, as a respectful acknowledgement of the vast contributions of previous and present 

researchers to whom we owe our utmost gratitude. 
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CHAPTER 3 

Methodology for Formulation of Mathematical Programming Models 

and Methods for Problems under Uncertainty 
 

 

3.1 MOTIVATION FOR IMPLEMENTATION OF STOCHASTIC 

OPTIMIZATION MODELS AND METHODS 

 

Westerberg (1996) advocates the view that optimization is a tool to aid decision-making 

through the selection of better values in solving a problem. In real-world applications, 

optimization problems in practice depend mostly on several model parameters, noise 

factors, uncontrollable parameters, and others, whose quantities are not given or even 

known, least of all fixed, at the planning stage. Typical examples from engineering, 

economics, and operations research include material parameters (for example, elasticity 

moduli, yield stresses, allowable stresses, moment capacities, specific gravity), external 

loadings, friction coefficients, moments of inertia, length of links, mass of links, location 

of the centre of gravity of links, manufacturing errors, tolerances, noise terms, product 

demand parameters, technological coefficients in input�output functions, and cost factors 

(and many others). Owing to the existence of several types of stochastic uncertainties, 

namely physical uncertainty, economic uncertainty, statistical uncertainty, and model 

uncertainty, these parameters must be modelled by random variables having a certain 

probability distribution. In most cases, at least certain moments of this distribution are 

known. 

 In order to cope with these uncertainties, a basic procedure in the 

engineering/economic practice is to replace first, the unknown parameters by some 

chosen nominal values, for example, statistically-computed expected or mean values, 

estimates, or merely guesses, of the parameters. Then, the resulting and mostly increasing 

deviation of the performance (output, behaviour) of the system or structure from the 

prescribed performance, that is, the tracking error, is compensated by (online) input 

corrections. However, the online correction of a system/structure is often time-consuming 

and causes mostly increasing expenses, typically in terms of correction or recourse costs. 
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Very large recourse costs may arise in case of damages or failures of a manufacturing or 

processing plant. This can be omitted to a large extent by taking into account upfront at 

the planning stage, the possible consequences of the tracking errors and the known prior 

and sample information about the random data of the problem. Hence, instead of relying 

on ordinary deterministic parameter optimization methods based on some nominal 

parameter values and then just applying some correction actions (conventionally via 

sensitivity analysis or deterministic scenario analysis), stochastic optimization methods 

should be applied. By incorporating the stochastic parameter variations into the 

optimization process, expensive and increasing online correction expenses can be omitted 

or at least reduced to a large extent (Marti, 2005). 

 

 

3.2 AN OVERALL OUTLOOK ON FORMULATION OF STOCHASTIC 

OPTIMIZATION MODELS AND METHODS FOR THE REFINERY 

PRODUCTION PLANNING PROBLEM UNDER UNCERTAINTY 

 

In principle, probabilistic or stochastic modelling is an iterative procedure that principally 

comprises the following three steps, as outlined by Diwekar (2002, 2003): 

1. specify the identified uncertainties or randomness in key input parameters in terms of 

probability distributions; 

2. perform sampling for the distribution of the specified random parameter in an iterative 

fashion; 

3. propagate the effects of uncertainties through the model and apply suitable statistical 

techniques to analyze the results. 

 Planning under uncertainty requires the explicit representation of uncertain quantities 

within an underlying decision model. When the underlying model is a linear program, the 

representation of certain data elements as random variables results in a stochastic linear 

program (SLP) (Higle 1998). This provides the underlying framework for the 

deterministic refinery planning model problem considered in this work, subject to 

uncertainties in commodity prices, market demand, and product yields from crude oil. 

The fundamental idea behind SLP is the concept of recourse, that is, the ability to take 
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corrective action(s) after a random event has taken place. Recourse models use corrective 

actions, usually in the form of penalty functions, to compensate for the violation of 

constraints arising during the realization of uncertainty. In other words, it is the 

opportunity to adapt a solution to the specific outcome observed. The two-stage model is 

one of the main paradigms of recourse models. The two-stage model divides the decision 

variables into two stages. The first-stage variables are those that have to be decided right 

now (or �here-and-now�) before future actual realization of the uncertain parameters so 

as to accommodate any future uncertain parameter realizations or perhaps those that fall 

within some specified confidence limits. Hence, the two-stage formulation is also referred 

to as the �here-and-now� model. Then, the second-stage variables are those used as 

corrective measures, that is, recourse against any infeasibilities arising during the 

realization of the uncertainty. In the context of the refinery production planning problem 

under uncertainty, the raw material supply of crude oil(s) and the production rates are 

determined in the first stage or planning stage. Then, the effects of the uncertain 

parameters on system performance is established in the second stage or operating stage, 

in which decisions are made concerning the amount of production required to meet the 

actually realized product demand and product yields, or the amount of raw material 

required from other suppliers to meet production requirements, or the opposite situation 

of determining the inventory cost and space required to contain production surpluses. 

 It is apparent that the second stage is the most important part of the model since this is 

the stage at which the flexibility of the planning is checked, possibly by including 

consideration of variations of the operating variables to accommodate the uncertain 

parameter realizations. This part of the model is also the most computationally 

demanding, as remarks by Wellons and Reklaitis (1989). 
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3.3 FORMULATION OF STOCHASTIC OPTIMIZATION MODELS 

 

Ponnambalam (2005) categorizes stochastic optimization problems into three classes of 

parameter randomness (in a loosely restricted order of increasing complexity) as follows: 

(1) randomness in the objective function coefficients; (2) randomness in the right-hand-

side coefficients of constraints; and (3) randomness in the left-hand-side coefficients (also 

referred to as technological coefficients). He further discusses at least three conventional 

and widely-adopted methods of problem formulation and their associated challenges or 

difficulties when coefficients in a linear programming (LP) problem are random, as in the 

following. 

1. In the Markowitz�s mean�variance formulation approach, the LP becomes a 

quadratic programming (QP) problem that is somewhat harder to solve than an 

LP. 

2. In the two-stage stochastic linear programs with recourse method, two major 

challenges are in (i) producing reasonable scenarios and their probabilities, and 

(ii) in the exponentially increasing size of the problem with the number of 

uncertain parameters. However, the results obtained are quite practical and mean�

variance formulation can even be considered as a possible inclusion. 

3. In the case of chance-constrained programming, the problem is quite easy to solve 

in the case of right-hand side (RHS) coefficients randomness but becomes 

nonlinear and increasingly difficult to solve in the case of left-hand side (LHS) 

randomness. Moreover, if the constraints have to be satisfied with joint 

probability, then the formulation becomes tedious and hard to solve. Furthermore, 

the decision maker has to arbitrarily choose a probability value to satisfy. 

In addition to these three conventional approaches of stochastic optimization, the 

alternative method of robust optimization is also available in which an assumption on the 

perturbations of the uncertain coefficients are made. 

 The general approach for the formulation of stochastic optimization models can be 

found in any of the standard texts in the stochastic programming literature. The 

discussion here is based on Kall and Wallace (1994). First, the general form of the 

mathematical programming model is introduced as the following: 
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Here, it is understood that the set X as well as the functions gi:  n → , i = 0, �, m, 

with  n denoting the set of real n-vectors, are given by the modelling process. 

 If there are random parameters in (3.1), they may lead to the problem 
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where ξ%  is a random vector varying over a set Ξ ⊂  k . More precisely, it is assumed 

throughout that a family F of events, which are subsets of Ξ, and the probability 

distribution P on F, are given. Hence, for every subset A ⊂  Ξ that is an event, as denoted 

by A ∈  F, the probability P(A) is known. Furthermore, it is assumed that the functions 

gi(x,  ⋅ ): Ξ →  ∀ x, i are random variables themselves, and that the probability 

distribution P is independent of x. 

 However, problem (3.2) is not well defined since the meanings of �minimize� as well 

as of the constraints are not clear at all, if we think of taking a decision on x before 

knowing the realization of ξ% . Therefore, a revision of the modelling process is necessary, 

leading to the so-called deterministic equivalent for (3.2) (Kall & Wallace, 1994). 

 

 

3.3.1 The Deterministic Equivalent Model 

 

If the following variable is defined: 

 

  ( ) ( )
( )

0 if , 0,
,

, otherwise
i

i
i

g x
g x

g x
+  ξ ≤ξ = 

ξ
 (3.3) 



 

 57

then, the ith constraint is violated if and only if ( ),ig x+ ξ  > 0 for a given decision x and 

realization ξ of ξ% . Hence, we could provide for each constraint, a recourse or second-

stage activity yi(ξ) that, after observing the realization ξ, is chosen so as to compensate 

for the violation of a particular constraint, if there is one, by satisfying the condition 

( ), ( ) 0i ig x yξ − ξ ≤ . This extra effort is assumed to cause an extra cost or penalty of qi 

per unit, in which the additional costs termed as recourse function amount to: 

 

  ( ) ( )
1

, min ( ) ( ) , , 1, ,
m

i i i iy i
Q x q y y g x i m+

=

  ξ = ξ ξ ≥ ξ = 
  
∑ L  (3.4) 

 

Thus, this yields a total cost comprising first-stage and recourse cost of 

 

  ( ) ( ) ( )0 0, , ,f x g x Q xξ = ξ + ξ  (3.5) 

 

Instead of (3.4), we might consider a more general linear recourse program with a 

recourse vector ( ) ny Yξ ∈ ∈   (Y is some given polyhedral set, that is, a convex set with 

linear inequalities, such as { }0y y ≥ ), an arbitrary fixed m n×  matrix W (the recourse 

matrix), and a corresponding unit cost vector nq ∈  . This results in the following 

recourse function for (3.5): 

 

  ( ) ( ){ }, min , ,T

y
Q x q y Wy g x y Y+ξ = ≥ ξ ∈  (3.6) 

 

where ( ) ( ) ( )( )1, , , , ,
T

mg x g x g x+ + +ξ = ξ ξL . 

 If we consider a situation of a factory producing m products, ( ),ig x ξ  could be 

understood as the difference between the demand and the output of a product i. Then, 

( ),ig x+ ξ > 0 means that there is a shortage in product i, relative to the demand. If the 

factory is assumed to be committed to cover the demands, problem (3.4) could, for 
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instance, be interpreted as buying the shortage of the products at the market. Problem 

(3.6) instead could result from a second-stage or emergency production program, carried 

through with the factor input y and a technology represented by the matrix W. Choosing 

W = I, the m × m identity matrix, (3.4) turns out to be a special case of (3.6). 

 We could also consider a nonlinear recourse program to define the recourse function 

for (3.5); for instance, ( ),Q x ξ  could be chosen as: 

 

  ( ) ( ){ }, min ( ) ( ) , , 1, , ; n
i iQ x q y H y g x i m y Y+ξ = ≥ ξ = ∈ ⊂L   (3.7) 

 

where : nq →   and : n
iH →   are supposed to be given. 

 In any case, if it is meaningful and acceptable to the decision maker to minimize the 

expected value of the total costs (that is, consisting of the first-stage and the recourse 

costs) then instead of problem (3.2), we could consider its deterministic equivalent, the 

two-stage stochastic program with recourse: 

 

  ( ) ( ) ( ){ }0 0min , min , ,
x X x X

E f x E g x Q xξ ξ∈ ∈
ξ = ξ + ξ% %
% % %  (3.8) 

 

 The above two-stage problem is immediately extendable to the multistage recourse 

program as follows: instead of the two decisions x and y, to be taken at stages 1 and 2, we 

are now faced with K + 1 sequential decisions ( )0 1, , , n
Kx x x x τ

τ ∈L  , to be taken at the 

subsequent stages τ = 0, 1,L , K. The term �stages� can, but need not necessarily or 

strictly, be interpreted as time periods (depending on the context and nature of the 

problem addressed). However, an extensive discussion on the multistage recourse 

problems will not be presented here as this formulation is not considered in the present 

work. 
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3.4 RECOURSE PROBLEMS AND MODELS 

 

The term �recourse� refers to the opportunity to adapt a solution to the specific outcome 

observed. Recourse models result when some of the decisions must be fixed before 

information relevant to the uncertainties is available, while some of them can be delayed 

until afterward to allow for the mentioned opportunity for recourse action to be taken. For 

instance, in this problem of refinery planning under uncertainty, in addressing market 

demand uncertainty, the resource quantities, that is, the crude oil supply, must be 

determined fairly early, but the production quantities can be delayed until after the 

demand is known. In this sense, the production quantities may be thought of as being 

�flexible� or �adaptive� while the resource quantities of crude oil are not (Higle, 2005). 

 As elaborated earlier somewhat more mathematically, the general recourse model is to 

choose some initial decision that minimizes current costs plus the expected value of 

future recourse actions. With a finite number of second-stage realizations and all linear 

functions, the full deterministic equivalent linear program or extensive form can always 

be formed (Birge and Louveaux, 1997). 

 

 

3.5 COMPONENTS OF A RECOURSE PROBLEM 

 

Recourse problems are generally characterized by the following three properties: (1) 

scenario tree, (2) scenario problems, and (3) nonanticipativity constraints. A scenario is 

one specific, complete, realization of the stochastic elements that might appear during the 

course of the problem, for instance, a possible sequence of demand over the duration of 

the problem. The scenario tree is a structured distributional representation of the 

stochastic elements and the manner in which they may evolve over the period of time 

represented in the problem. A scenario problem is associated with a particular scenario 

and may be looked upon as a deterministic optimization problem. 

 Nonanticipativity constraints are specific conditions that may be necessary to include 

depending on the manner in which a problem is formulated so as to ensure that the 

decision sequence honours the information structure associated with the scenario tree. 
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They are the only constraints linking the separate scenarios (or linking decisions across 

scenarios in each period). Without them, a problem would decompose into a separate 

problem for each scenario, maintaining the structure of that problem (Birge & Louveaux, 

1997). They impose the condition that scenarios that share the same history of 

information until a particular decision epoch, should also make the same decisions. In 

reality, the nonanticipativity constraints ensure that the solutions obtained are 

implementable, that is, actions that must be taken at a specific point in time depend only 

on information that is available at that time. The future is uncertain; therefore, today�s 

decision cannot take advantage of knowledge of the future, thus, they are independent of 

each other. Because of this, the terms �nonanticipativity� and �implementability� are 

sometimes used interchangeably. These nonanticipativity constraints, which are derived 

from the scenario tree, are a distinguishing characteristic of stochastic programs; solution 

methods are typically designed to exploit their structure (Higle, 2005; http://www-

fp.mcs.anl.gov/otc/Guide/OptWeb/continuous/constrained/stochastic/index.html, accessed 

November 2, 2005). 

 

 

3.6 FORMULATION OF THE TWO-STAGE STOCHASTIC LINEAR 

PROGRAM (SLP) WITH RECOURSE PROBLEMS 

 

The classical two-stage stochastic linear program (SLP) with fixed recourse as originally 

proposed in the seminal works of Dantzig (1955) and Beale (1955) has the following 

general form: 

 

  
( )minimize , ( )
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0

Tc x E Q x
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where nx ∈   is the vector of first-stage decision variables of size (n × 1); 

 c, A, and b are the first-stage data of sizes (n × 1); (m × n); and (m × 1) 

respectively; 

 ω ∈  Ω represent random events; 

 q(ω), h(ω), and T(ω) are the second-stage data of sizes (k × 1); (l × 1); and (l × k) 

respectively; 

 W(ω) is the random recourse coefficient matrix of size (l × k); 

 y(ω) is the vector of second-stage decision variables. 

 In this classical SLP model, the problem in (3.9) represents the first-stage model while 

(3.10) corresponds to the second-stage model. x is also referred to as the �here-and-now� 

decision. Note in particular that x does not respond to ω as it is effectively determined 

before any information regarding the random or uncertain data is obtained, that is, before 

the actual realization of the uncertain parameters. In other words, x is characterized as 

being scenario-independent and its optimal value is not conditional on the realization of 

the uncertain parameters. Thus, they are the design or planning variables (depending on 

the context of the problem addressed). Variables in this set cannot be adjusted once a 

specific realization of the uncertain data is observed. c is the column vector of cost 

coefficient at the first stage. A is the first-stage coefficient matrix with b as the 

corresponding right-hand side vectors. 

 In contrast, the second-stage variable y is determined only after observations regarding 

ω have been obtained. For a given realization of ω, the second-stage problem data of q, h, 

and T become known. Each component of q, h, and T is thus a possible random variable. 

q is the vector of recourse cost coefficient vectors at the second stage. As stated, W is the 

random second-stage recourse coefficient matrix with h as the corresponding right-hand 

side vectors. T is the matrix that ties the two stages together while ω denotes scenarios in 

the future. If ( )iT ω  is the ith row of the matrix T(ω), then combining the stochastic 

components of the second-stage data results in a vector of a particular realization of the 

random data ( )1( ) ( ), ( ), ( ), , ( )T T
lq h T Tξ ω = ω ω ω ω L , which is also random with 

potentially up to N = k + l + (l × n) components. In other words, a single random event or 

state of the world ω influences several random variables that are all components of a 

single random vector ξ. This is one of the most profound feature of a two-stage stochastic 
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program (Birge and Louveaux, 1997; Higle, 2005; Uryasev, 2005, 

www.ise.ufl.edu/esi6912/FALL2005/DOCS/notes8.ppt, accessed November 11, 2005; 

Lai et al., 2005; Mulvey et al., 1995). 

 In the literature, the problem in (3.10) is variously termed as the second-stage 

problem, the subproblem, or the recourse subproblem. It allows some operational 

recourse or corrective actions to take place to improve the objective and correct any 

infeasibility. Essentially, the goal of a two-stage model is to identify a first-stage solution 

that is well-hedged or simply well-positioned against all possible realizations of ω. 

 From an application point-of-view especially in the field of operations research and 

management science, stochastic programs seek to minimize the cost of the first-stage 

decision plus the expected cost of the second-stage recourse decision. (A contrasting 

stand is usually taken in the financial engineering field in which the objective is typically 

to maximize profit, hence leading to a stochastic maximization program.) The first linear 

program minimizes the first-stage direct costs cTx plus the expected recourse cost 

( ), ( )E Q xξ  ξ ω   over all possible scenarios while meeting the first-stage constraints, Ax 

≥ b. The recourse cost Q depends on both x and ω. The second linear program describes 

how to choose y in which a different decision is taken for each random scenario ω. It 

minimizes the cost qTy subject to some recourse constraint Tx + Wy = h. As mentioned 

earlier, this random constraint can be thought of as requiring some action to correct the 

system after the random event occurs. It is the goal constraint in which violations of this 

constraint are allowed, but the associated penalty cost as given by qTy will influence the 

choice of x. Thus, qTy is the recourse penalty cost or the second-stage value function, or 

just simply referred to as the recourse function, while ( ), ( )E Q xξ  ξ ω   denotes the 

expected value of the recourse function. 

 In the case of refinery production planning under market demand uncertainty, x1, for 

example, might correspond to the resource levels of crude oil to be acquired and h1 

corresponds to a specific data scenario, notably the actual demands for the various 

refining products. The decision y1 adapts to the specific combination of x1 and h1 

obtained. In the event that the initial decision x1 is coupled with a �bad� outcome, the 

variable y1 offers an opportunity to recover to the fullest extent possible. For example, the 

random constraint would require the purchase of enough mass or volume of products as 

the second-stage recourse measure to supplement the original amount that has been 
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produced in order to meet the demand, or it would require the expense cost of storage of 

production surplus. Thus, recourse problems are always presented in the form of two or 

more decision stages (Higle, 2005). 

 Additionally, Sen and Higle (1999) pointed out that this formulation emphasizes the 

time-staged nature of the decision-making problem, that is, the selection of x is followed 

by the selection of y, which is undertaken in response to the scenario that unfolds. Thus, 

the first-stage decision x represents the immediate commitment made, while the second-

stage decision y is delayed until additional information is obtained. (For this reason, when 

solving a recourse problem, one typically reports only the first-stage decision vector.) 

 Much of the difficulty associated with recourse models may be traced to difficulties 

with evaluating and approximating the recourse function. In essence, the difficulty in 

solving the recourse problem may be attributed to the evaluation of the expectation of the 

random linear program value function ( ), ( )Q x ξ ω  that involves multidimensional 

integration. Notwithstanding the impracticality of the multidimensional integration of this 

particular function, the recourse function possesses one of the most sought-after 

properties in all of mathematical programming, namely convexity (Sen and Higle, 1999). 

 Higle (2005) made an interesting analytical remark that an optimal solution will tend 

to have the property that x leaves the second-stage decision in a position to exploit 

advantageous outcomes of ω without excessive vulnerability to disadvantageous 

outcomes. She further noted that in such a case, careful attention to the specific outcomes 

used to model the uncertainty is necessary. An overly coarse model may result in a failure 

to adequately represent outcomes that should influence the first-stage decision, leaving 

the second-stage in an un-modelled state of vulnerability. On the other hand, an 

excessively fine and detailed model may typically result in increased computational 

burden. 

 As presented without assuming any additional properties or structure on (3.10), this 

formulation is referred to as the two-stage SLP with �general recourse� problem. Further, 

there is specific structure in the recourse subproblem that can be exploited for 

computational advantage. The following section describes the specific subproblem 

structure type of fixed recourse, which extensively forms the underpinning structure of 

most models proposed in this work. 
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3.7 FORMULATION OF THE TWO-STAGE STOCHASTIC LINEAR 

PROGRAM (SLP) WITH FIXED RECOURSE PROBLEMS 

 

A special case of the recourse model, known as the fixed recourse model, arises when the 

constraint coefficients matrix W(ω) in the second-stage problem is not subject to 

uncertainty, that is, it is fixed and hence is denoted simply as the matrix W. This is by far, 

the most widely used form of the recourse models since most of the theory and 

computational methods have been developed for this class of linear two-stage problems 

(Ermoliev and Wets, 1988). For this, the recourse subproblem becomes: 

 

  
( ), ( ) minimize ( ) ( )

subject to ( ) ( ) ( )
( ) 0

TQ x q y
Wy h T x
y

ξ ω = ω ω
ω = ω − ω

ω ≥
 (3.11) 

 

Reduction of the classical two-stage SLP with fixed recourse to the deterministic 

equivalent program (DEP) yields 

 

  
minimize ( )
subject to ,

0

Tc x x
Ax b
x

+
=

≥



 (3.12) 

 

where 

 

  ( )( ) , ( )x E Q xξ  = ξ ω   (3.13) 

 

with the recourse function given by 

 

  ( ) { }, ( ) min ( ) ( ) ( ) , 0T

y
Q x q y Wy h T x yξ ω = ω = ω − ω ≥  (3.14) 
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and 

 

  ( )1( ) ( ), ( ), ( ), , ( )T T
lq h T Tξ ω = ω ω ω ω L  (3.15) 

 

Since the expected value of the minimum recourse cost ( ), ( )Q x ξ ω  modifies the 

objective of the first-stage problem, the whole model has a certain internal dynamical 

structure: in computing an optimal first-stage decision x, we have to take into account not 

only the direct first stage profit cTx but also the expected value of the future recourse cost. 

If there is no feasible solution to (3.11), we assume that ( ), ( )Q x ξ ω → +∞, and this 

should also be considered in the first-stage decision (Ermoliev and Wets, 1988). 

 Further to that, Ermoliev and Wets (1988) also highlighted the widespread interest in 

stochastic programming problems with recourse due to their vast application to modelling 

decision problems that involve random data. If some constraints, for example, Tx = h in a 

linear programming problem include random coefficients in T or h and a decision has to 

be taken before knowing the realizations T(ω) and h(ω) of T and h, it is generally 

impossible to require that the equality 

 

  T(ω)x = h(ω) (3.16) 

 

be satisfied for each realization of the stochastic constraint parameters. The problem with 

recourse is a way of overcoming these modelling difficulties; the recourse decision y may 

be interpreted as a correction in (3.16), and the recourse cost ( ), ( )Q x ξ ω  as a penalty for 

discrepancy in (3.16). 
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3.8 FORMULATION OF THE DETERMINISTIC EQUIVALENT PROGRAM 

FOR THE TWO-STAGE STOCHASTIC LINEAR PROGRAM (SLP) WITH 

FIXED RECOURSE AND DISCRETE RANDOM VECTORS 

 

In the following, the framework of the two-stage SLP with recourse model for random 

vectors with discrete distributions is considered and examined in more detail for the case 

of a discretely distributed random vector ξ%  (or equivalently stated as discretely 

distributed random elements), attaining values of: 

 

  ( )1 1 1 1 1, , with probability 0,q h T pξ = >  

  ( )2 2 2 2 2, , with probability 0,q h T pξ = >  

L  

  ( ), , with probability 0,L L L L Lq h T pξ = >  

 

where 
1

1
L

l
l

p
=

=∑  (3.17) 

 

In this case, the two-stage problem of (3.9) and (3.10) takes on the form 

 

  

( )
1

minimize ,

subject to
0

L
T

l l
l

c x p Q x

Ax b
x

=
+ ξ

=
≥

∑
 (3.18) 

 

where ( ), lQ x ξ  is the minimum objective value in the recourse problem 

 

  
minimize ( )
subject to

0, 1, 2,3, ,

T
l

l l

q y
Wy h T x
y l L

= −
≥ = L

 (3.19) 
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If we denote the solutions to problem (3.20) at a given x as � ( )ly x  for l = 1, 2,L, L, we 

can express the first-stage objective as 

 

  
1

�( ) ( )
L

T T l
l l

l
c x p q y x

=
+∑  (3.20) 

 

Although the solutions � ( )ly x  depend on x in a rather involved way, instead of 

considering (3.19) and (3.20) as a bilevel problem, we can put together the first-stage 

problem (3.19) and all realizations of the second-stage problem (3.20) into a large linear 

programming model: 

 

1 1 1 2 2 2

1 1 1

2 2 2

1 2

minimize ( ) ( ) ( )
subject to

0 0 0 0

T T T T
L L L

L L L

L

c x p q y p q y p q y
Ax b
T x Wy h
T x Wy h

T x Wy h
x y y y

+ + + +
+ =
+ =
+ =

+ =
≥ ≥ ≥ ≥

L

M M O M M

 (3.21) 

 

Problems (3.19)�(3.21) are equivalent in the sense that they have the same set of 

solutions for the first-stage decision vector x in (3.18) and in which the optimal values of 

y1, y2,L , yL in (3.21) are solutions to the realizations of the second-stage recourse 

problem (3.20) at the optimal x. Hence, (3.21) is referred to as the deterministic 

equivalent program of the two-stage SLP of (3.19)�(3.20). 

 It is noted that the nonanticipativity constraint is met. There is only one first-stage 

decision x whereas there are L second-stage decisions, one for each scenario. The first-

stage decision cannot anticipate one scenario over another and must be feasible for each 

scenario, that is, the conditions imposed by Ax = b and l lWy h T x= −  for l = 1, 2, 3,L , L. 

Since all the decisions x and yi are solved simultaneously, x is thus chosen to be optimal, 

in some sense, over all the anticipated scenarios. 
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 Another feature of the deterministic equivalent problem worth noting is that since the 

T and W matrices are repeated for every scenario in the model, the size of the problem 

increases linearly with the number of scenarios. Since the structure of the matrices 

remains the same and because the constraint matrix has a special shape, solution 

algorithms can take advantage of these properties. Taking uncertainty into account leads 

to more robust solutions but also requires more computational effort to obtain the 

solution (http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/continuous/constrained/ 

stochastic/index.html, accessed November 2, 2005). For further elaboration on the 

properties of the deterministic equivalent program of stochastic programs with fixed 

recourse, the interested reader is referred to the excellent extensive survey in the now 

classical paper by Wets (1974). 

 

 

3.9 NONANTICIPATIVE POLICIES 

 

As emphasized earlier, one of the more important notions incorporated within a stochastic 

programming formulation is that of implementability or nonanticipativity. 

Nonanticipativity of the decision process is an inherent component of stochastic 

optimization problems; this concept essentially and fundamentally distinguishes 

stochastic from deterministic optimization problems (Wets, 

http://www.math.ucdavis.edu/~rjbw/ARTICLES/ref2Circ.pdf, accessed on April 9, 

2006). It reflects the requirement that under uncertainty, the design or planning decisions 

x must be implemented before an outcome of the random variable is observed. That is, 

the planning decision is made while the random variable is still unknown, and therefore, 

it cannot be based on any particular outcome of the random variable. In the two-stage 

SLP, this implies that the first-stage or first-period decision x is independent of which 

second-stage or second-period scenario actually occurs. Thus, the wait-and-see approach, 

which is anticipative, is not an appropriate decision-making framework for planning. On 

the other hand, the adaptive here-and-now approach embodied in the two-stage SLP with 

general recourse provides planning decisions x that are not dependent on any outcome of 

the random variable and are hence nonanticipative (Sen and Higle, 1999). 
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 The scenario tree portrayed in Figure 3.1 illustrates this concept of nonanticipativity or 

implementability. Since information is revealed sequentially, two or more scenarios may 

share a common sequence of outcomes for the first t periods, with t < T, where T denotes 

the number of periods. For example, scenarios 1 and 2, which correspond to the paths a 

→ b → d → h and a → b → d → i, share the same sequence of outcomes in the first two 

periods, that is a → b, b → d and hence, these two scenarios are indistinguishable until 

the third period. To maintain implementability, the decisions associated with these two 

scenarios must be identical in the first two periods. In general, if two scenarios share the 

same sequence of nodes during the first t periods, they ought to share the same 

information base during these periods. Consequently, decisions associated with these 

scenarios must be identical through period t. This is essentially the requirement of the 

nonanticipativity condition as implicitly honoured in the formulation of the scenario tree 

in Figure 3.1. 

 In simple words, nonanticipativity indicates that today�s decisions cannot �anticipate� 

specific occurrences of future random events. Therefore, careful consideration must be 

given to the timing of all random events, hence rendering the stochastic structure as a 

secondary characteristic that can only be defined after the temporal structure has been 

determined (Gassmann, 1998). 
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Figure 3.1. The scenario tree is a useful mechanism for depicting the manner in which events may unfold. 
It can also be utilized to guide the formulation of a multistage stochastic (linear) programming model (Sen 
and Higle, 1999). 
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3.10 REPRESENTATIONS OF THE STOCHASTIC PARAMETERS 

 

A key component in formulating stochastic optimization models for decision making 

under uncertainty is the representation of the stochastic model parameters. According to 

Escudero et al. (1999), three approaches are conventionally and widely employed to 

represent and analyze uncertainty or randomness in this type of parameters or data: (1) by 

its average or mean value, that is, its expected value, (2) in terms of the continuous 

probability distribution that most aptly describe each item, or (3) based on a 

representative collection of unplanned events, termed as scenarios, which in precise 

probabilistic terms, corresponds to a discrete distribution given by a finite probability 

space (Henrion et al., 2001). 

 The characterization of each of these parameters as a unique mean value appears to be 

a vague exercise because it obviously could not be representative of the situation in all 

cases. The alternative of considering the continuous probability distributions of the 

parameters implicit in the model definition is a realistic and accurate approach (see for 

example, Gupta and Maranas, 2003; Petkov and Maranas, 1998; Ierapetritou and 

Pistikopouskos, 1996c; Wellons and Reklaitis, 1989). However, this approach usually 

leads to a very complicated model because it typically requires the following information: 

(a) statistical knowledge of a large number of historical data sets; (b) a given or known 

continuous probability distribution assumption of estimation; (c) knowledge of certain 

types of relationships or correlations among the variables; (d) methods of complicated 

algorithms to solve the formulated model, essentially to evaluate the numerical 

integration of the expectation terms; and (e) sound knowledge of statistical theory. 

 Therefore, the third alternative of scenario analysis is advocated as the most promising 

and practical alternative (within the refinery planning under uncertainty literature, see for 

example, Neiro & Pinto, 2005; Pongsakdi et al. (in press); Dempster et al., 2000; and 

Escudero et al., 1999; for a representative work in the operations research literature, see 

Eppen et al., 1989). The scenario-based technique attempts to represent a random 

parameter by forecasting all of its possible and likely future outcomes, typically in a 

scenario tree (or other methods) A representative scenario tree can be constructed, in 

general, by adopting the following approaches (among many other variants that have 



 

 71

been proposed in the literature): (a) the decision-maker, who qualifies as an expert in 

addressing the problem at hand, defines all the scenario items; (b) the decision-maker 

defines the scenario set, and computer codes are written to select a representative subset; 

(c) the decision-maker defines a typical basic scenario and the variability of the 

parameters, and computer simulations, typically based on Monte Carlo methods, are 

employed to create the scenario tree. This third option is also useful if a reduction of the 

state space is desired (Bonfill et al., 2004). 

 The scenario analysis approach enables the user to define relationships among the 

realizations of the parameters and between consecutive time periods (or groups of 

periods), for instance, as joint distributions to account for correlations among parameters. 

The likelihood of realization of each scenario depends on its assigned relative weight, 

that is, in effect, its probability. A scenario is defined by a given realization of the 

parameters along the time horizon. In the model developed in this work, a scenario is 

given by values of the product demand, commodity prices, and product yields for three 

possible representative outcomes generalized as the �realistic� event, the �optimistic� 

event, and the �pessimistic� event, as well as its probability of happening, together with 

the deterministic data (Escudero et al., 1999). 

 However, the infamous shortcoming of the scenario analysis or also known as the 

progressive hedging approach (Birge and Wets, 1991) is that the number of scenarios 

increases exponentially with the number of random parameters, resulting in an 

exponential increase in the problem size. As a result, the computational strategy becomes 

expensive because the computation time generally increases polynomially (quadratically 

or even cubically) with the size of the optimization problem (Biegler, 1993). In this 

aspect, continuous probability distributions for the uncertain parameters could be 

considered to circumvent this difficulty, in which, a substantial reduction in the size of 

the problem is usually accomplished at the expense of introducing nonlinearities into the 

problem through multivariate integration over the continuous probability space. In 

addition, the continuous distribution-based approach is used particularly in cases where a 

natural set of discrete scenarios cannot be identified and only a continuous range of 

potential futures can be predicted. By assigning a probability distribution to the 

continuous range of potential outcomes, the need to forecast exact scenarios is obviated. 
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Typically, the distribution-based approach is adopted by modelling the uncertainty as 

being normally distributed with a specified mean and standard deviation. 

 Nevertheless, Subrahmanyam et al. (1994) argued that since in many cases in the 

industry, no sufficiently detailed forecast is available anyway to adequately construct a 

continuous distribution, a discrete distribution for the uncertain parameters in the form of 

scenarios still emerges as the most realistic and practical approach. Furthermore, 

realizations of the random variables in a refinery planning problem generally correspond 

to a finite number of representative scenarios that need to be taken into account in the 

search for a �hedging� solution for the optimization under uncertainty problem. This is 

particularly so when no statistical information is readily available about the uncertain 

unknown parameters. From the solution perspective, this is an advantageous approach as 

it eliminates the cumbersome handling of the nonlinear terms introduced by continuous 

distributions, as stressed earlier. If a continuous distribution is indeed available, it can be 

approximated by a set of scenarios too, as depicted in Figure 3.2. The continuous 

distribution may be discretized into a number of parameter values with the associated 

probabilities given by the corresponding area under the probability distribution function. 

It is important to note that consideration in selecting the number of scenarios to represent 

uncertainty or randomness in the parameters is a trade-off between model accuracy and 

computational efficiency in which a larger number of scenarios would give higher 

solution accuracy but is computationally expensive at the same time. 

p2

p1
p3

µ = 0

Continuous probability distribution

p2

p1

p3

µ = 0

⇓ in discrete representation

 
Figure 3.2. Discrete representation of a continuous probability distribution
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3.10.1 Accurate Approach for Representation of the Stochastic Parameters via 

Continuous Probability Distributions 

 

As mentioned in earlier sections, Gupta and Maranas (2003) identified the evaluation of 

the expectation of the inner recourse problem as the main challenge associated with 

solving two-stage stochastic problems. For a scenario-based description of uncertainty, 

this can be achieved by explicitly associating a second-stage variable with each scenario 

and solving the resulting large-scale extensive formulation (Birge & Louveaux, 1997) by 

efficient solution techniques such as Dantzig−Wolfe (1960) decomposition and Benders 

(1962) decomposition. For continuous probability distributions, this challenge has been 

primarily resolved through the actually similar methodology of explicit/implicit 

discretization of the probability space in approximating the multivariate probability 

integrals. The two most commonly used discretization techniques in the chemical process 

systems engineering (PSE) literature are Monte Carlo sampling techniques (Liu & 

Sahinidis, 1996; Diwekar & Kalagnanam 1997) (which is also used for discrete 

distributions) and the Gaussian quadrature formula for approximation of integral 

evaluation of the expectation terms (Acevedo and Pistikopoulos, 1998; Ierapetritou and 

Pistikopoulos, 1994c, 1996c; Ierapetritou et al., 1996a; Straub & Grossmann, 1990). The 

primary advantage of these methods lies in their relative insensitivity to the form of the 

underlying probability distribution of the uncertain parameter. The Monte Carlo approach 

lacks in terms of accuracy but avoids the high-dimensional numerical integration since 

the expectations can be expressed as finite sums, with each constraint duplicated for each 

scenario, in which a second-stage variable can be associated with each realization of the 

random parameters (Bonfill et al., 2004). 

 However, the major downside to them, as also in the scenario-based approach, is the 

exponential increase in the problem size with the increasing number of uncertain 

parameters and the scenarios considered due to the nested structure of the two-stage 

formulation (Shah, 1998). This directly translates to an intensive and excessively large 

increase in computational requirements, rendering a limit to the practical commercial 

applicability of these techniques. Petkov and Maranas (1998) propose a methodology to 

narrow this computational gap, whose work is extended by Gupta and Maranas (2003, 
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2000). The approach explicitly solves the inner recourse problem analytically for the 

second-stage variables in terms of the first-stage variables. This is followed by analytical 

integration over all realizations of the random variables for the evaluation of the 

expectation terms. By the explicit solution of the inner problem followed by analytical 

integration over all product demand realizations, the need for discretization of the 

probability space is obviated. The stochastic attributes of the problem are translated into a 

resulting equivalent deterministic program at the expense of introducing nonlinearities 

into the optimization problem. This obviated the need for discretization of the probability 

space and hence, reduces the associated computational burden. 

 

 

3.11 SCENARIO CONSTRUCTION 

 

The issue of modelling the stochastic elements is perhaps the most crucial in stochastic 

optimization. To accomplish this, scenario analysis offers an effective and easily 

understood tool for addressing the stochastic elements in a multi-stage model. A scenario 

can be defined as a single deterministic realization of all uncertainties over the planning 

horizon. Ideally, the process constructs scenarios that represent the universe of possible 

outcomes (Glynn and Iglehart, 1989; Dantzig and Infanger, 1993). This objective differs 

from generation of a single scenario, for instance, as carried out in forecasting techniques 

(or trading strategies in financial practices) (Mulvey et al., 1997). 

 Each scenario corresponds to a particular outcome of the random elements in a 

random vector. It is largely a matter of notational convenience that we refer to these 

vectors and matrices as being random. In most cases, only a small number of the elements 

are actually random; the rest are constant (the latter are termed as degenerate random 

variables). In defining the set of scenarios, it is necessary to identify all possible 

outcomes of the random elements. This consists of identifying the values of those 

elements that are fixed and the set of all possible outcomes of those random or uncertain 

elements that vary. In undertaking the latter task, it is important to note the distinctions 

between models of dependent and independent random variables, which are elaborated as 

follows (Sen and Higle, 1999). 
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 From a modelling perspective, dependence results when the random elements are 

subject to a common influence and are most easily described using joint distributions. For 

example, in a hydroelectric-power-planning model, all hydrological reserves are 

influenced by the weather. In wet years, reservoirs will tend to be full; in dry years, they 

will tend toward lower levels. In such a case, it would be convenient to model wet 

periods and dry periods (or even multiple degrees of wet and dry periods) and to specify 

the set of reservoir levels that correspond to each type of period. By specifying the 

probability with which each type of period occurs, one obtains a joint distribution on the 

reservoir levels (Sen and Higle, 1999). 

 Independent random variables result when there is no apparent link between the 

various elements. In this case, one can most easily describe the random elements 

individually using marginal distributions. For example, in the telecommunication network 

planning example, the number of calls initiated between any pair of nodes is generally not 

influenced by the calls between any other pair. Thus, one models the pairwise demand as 

independent random variables using distributions appropriate to the application. (For 

example, if it is reasonable to assume that arrival of calls follow a Poisson process, then a 

Poisson distribution is appropriate.) In this case, a scenario identifies a value for each 

realization. With independent random variables, the set of all possible outcomes is the 

Cartesian product of the elemental outcomes for each random variable. The probability 

associated with any given outcome is the product of the corresponding marginal 

probabilities. For example, if there are two random variables with five outcomes each and 

one random variable with four outcomes and the random variables are independent, there 

are 5 × 5 × 4 = 100 possible scenarios being modeled. It is easy to see that with 

independent random variables, the number of possible scenarios grows exponentially in 

the number of random elements (Sen and Higle, 1999). 

 For the refinery planning problem under uncertainty, consider, for instance, the case of 

demand uncertainty for two products, gasoline and jet fuel as shown in Figure 3.3. The 

demand for each is described by three discrete points with point probability associated 

with each of them. A unique combination of two such points, one from each distribution 

of gasoline or jet fuel, constitutes a scenario. Assuming that demands for gasoline and jet 

fuel are completely independent, the associated joint probability of occurrence of both 
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points are given by the product of the individual probabilities. Therefore, the number of 

scenarios that can be generated is equal to the number of combinations that are possible 

by considering every pair. Mathematically, this is given by the number of elements of 

each scenario, that is, the number of possible states in each scenario, raised to the power 

of the number of random parameters. In this example, a scenario incorporates the 

possibility of the states of �average� (realistic), �above average� (the optimistic), and 

�below average� (pessimistic) (number of states = 3) in demand uncertainty for products 

gasoline and jet fuel (random parameters = 2). Therefore, the total number of scenarios is 

given by 3 × 3 = 9 scenarios. Notice that the number of scenarios grows exponentially 

with the number of random parameters and this presents a potential problem. A useful 

technique is to generate scenarios by employing Monte-Carlo type sampling method for 

the independent random parameters. A finite number of scenarios thus generated (which 

will be small in number when compared to the total number of scenarios) is then included 

in the planning analysis. The selection of scenarios is weighted by their probabilities in 

which scenarios with higher probability are more likely to be realized. Additionally, the 

scenario approach to uncertainty allows the designer to readily use intuitive forecasts in 

the model where a realization of a scenario at any point of time may be easily 

implemented, without having to cumbersomely deal with continuous distributions 

(Subrahmanyam et al., 1994). 

p1 = 0.35
demand = 2835 t/d 

Demand for gasoline

p2 = 0.45
demand = 2700 t/d 

p3 = 0.2
demand = 2565 t/d 

p1 = 0.35
demand = 2415 t/d 

Demand for jet fuel

p2 = 0.45
demand = 2300 t/d 

p3 = 0.2
demand = 2185 t/d 

 
Scenario Demand for gasoline (t/d) Demand for jet fuel (t/d) Probability 

1 2835 2415 0.35 × 0.35 = 0.1225 
2 2835 2300 0.35× 0.45 = 0.1575 
3 2835 2185 0.35 × 0.2 = 0.07 
4 2700 2415 0.45 × 0.35 = 0.1575 
5 2700 2300 0.45 × 0.45 = 0.2025 
6 2700 2185 0.45 × 0.2 = 0.09 
7 2565 2415 0.2 × 0.35 = 0.07 
8 2565 2300 0.2 × 0.45 = 0.09 
9 2565 2185 0.2 × 0.2 = 0.04 

Σ(Probability) = 1.000 
 

Figure 3.3. Scenario generation derived from discrete probability distributions (based on Subrahmanyam et 
al., 1994) 
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CHAPTER 4 

General Formulation of the Deterministic Midterm Production 

Planning Model for Petroleum Refineries 
 

 

4.1 ESTABLISHMENT OF NOMENCLATURE AND NOTATIONS FOR THE 

DETERMINISTIC APPROACH 

 

4.1.1 Indices 

 

i for the set of materials or products 

j for the set of processes 

t for the set of time periods 

 

 

4.1.2 Sets 

 

I set of materials or products 

J set of processes 

T set of time periods 

 

 

4.1.3 Parameters 

 

di,t demand for product i in time period t 
L
,i td , U

,i td  lower and upper bounds on the demand of product i during period t, 

respectively 
L
tp , U

tp  lower and upper bounds on the availability of crude oil during period t, 

respectively 
fmin
,i tI , fmax

,i tI  minimum and maximum required amount of inventory for material i at the 

end of each time period 
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bi,j stoichiometric coefficient for material i in process j 

γi,t unit sales price of product type i in time period t 

λ t unit purchase price of crude oil in time period t 

,i tγ%  value of the final inventory of material i in time period t 

,i tλ%  value of the starting inventory of material i in time period t (may be taken as 

the material purchase price for a two-period model) 

α j,t variable-size cost coefficient for the investment cost of capacity expansion of 

process j in time period t 

βj,t fixed-cost charge for the investment cost of capacity expansion of process j in 

time period t 

rt, ot cost per man-hour of regular and overtime labour in time period t 

 

 

4.1.4 Variables 

 

xj,t production capacity of process j (j = 1, 2, �, M) during time period t 

xj,t−1 production capacity of process j (j = 1, 2, �, M) during time period t−1 

yj,t vector of binary variables denoting capacity expansion alternatives of 

process j in period t (1 if there is an expansion, 0 if otherwise) 

CEj,t vector of capacity expansion of process j in time period t 

Si,t amount of (commercial) product i (i = 1, 2, �, N) sold in time period t 

Li,t amount of lost demand for product i in time period t 

Pt amount of crude oil purchased in time period t 
s
,i tI , f

,i tI  initial and final amount of inventory of material i in time period t 

Hi,t amount of product type i to be subcontracted or outsourced in time period t 

Rt, Ot regular and overtime working or production hours in time period t 
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4.1.5 Superscripts 

 

(  )L lower bound 

(  )U upper bound 

 

 

4.2 LINEAR PROGRAMMING (LP) FORMULATION OF THE 

DETERMINISTIC MODEL 

 

The basic framework for the deterministic linear production planning model for a 

petroleum refinery will be mainly derived from models formulated by McDonald and 

Karimi (1997) and Ierapetritou and Pistikopoulos (1994a), apart from the models specific 

to refinery planning as proposed by Pongsakdi et al. (in press), Dempster et al. (2000), 

and Escudero et al. (1999). In addition, we consider the remarks by Kallrath (2002) that a 

refinery planning model should comprise the following constraints: 

• flow of crude oil and components for blending operations (in the form of linear 

material balances); 

• proportional composition of flow streams (in the form of nonlinear equations); 

• quality constraints and capacity limits of processing/production units and storage tanks 

(in the form of inequalities denoting suitable lower and upper bounds); and 

• assignment of processing/production units and storage tanks (in the form of equations 

and inequalities involving binary variables). 

 Consider the production planning problem of a typical oil refinery operation with a 

network of M continuous processes and N materials as shown in Figure 4.1. Let j ∈  J = 

(1, 2,�, M) index the set of continuous processes whereas i ∈  I = (1, 2,�, N) index the 

set of materials. These products are produced during n time periods indexed by t ∈  T = 

(1, 2,�, n) to meet a prespecified level of demand during each period. Given also are the 

prices and availabilities of materials as well as investment and operating cost data over a 

time period. The problem then consists of determining (i) the production profiles; (ii) 

sales and purchases of chemical products; and (iii) capacity expansions for the existing 

processes over each time period that will maximize profit over the time period by also 
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ensuring future feasibility. A typical aggregated linear planning model consists of the 

following sets of constraints. 

 

Raw Materials
(Crude Oils/Crudes)

Process
Unit

Intermediate Intermediate

Intermediate

Process
Units

Process
Unit

Products}
 

 
Figure 4.1. A network of processes and materials of a typical oil refinery operation (based on Ierapetritou 

and Pistikopoulos, 1994a) 
 

 

4.2.1 Production Capacity Constraints 

 

  , , 1 ,j t j t j tx x CE j J−= + ∀ ∈  (4.1) 

 

  L U
, , , , , ,j t j t j t j t j ty CE CE y CE j J t T≤ ≤ ∀ ∈ ∀ ∈  (4.2) 

 

where ,
1 if there is an expansion
0 otherwisej ty


= 


 (4.3) 

 

 

where xj,t denotes the production capacity of process j during time period t; CEj,t 

represents the (potential) capacity expansion of process j in t; yj,t are binary variables 

deciding on expansion of process j in period t; and L
,j tCE  and U

,j tCE  are the constant 
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lower and upper bounds of the capacity expansion variables CEj,t, respectively. If 

capacity expansion is not considered, then equation (4.1) becomes 

 

  , , 1j t j tx x j J−≤ ∀ ∈  (4.4) 

 

 

4.2.2 Demand Constraints 

 

  , , , P, ,i t i t i tS L d i I t T+ = ∀ ∈ ∀ ∈  (4.5) 

 

  L U
, , , P, ,i t i t i td S d i I t T≤ ≤ ∀ ∈ ∀ ∈  (4.6) 

 

where Si,t denotes the amount of product i sold in time period t; Li,t is the amount of lost 

demand for product i in time period t; di,t is the demand for product i in time period t; and 
L
,i td  and U

,i td  are the lower and upper bounds on the demand of product i during period t, 

respectively. 

 

 

4.2.3 Availability Constraints 

 

  L U 1, 2,..., ; 1, 2,...,t t tp P p i N t T≤ ≤ = =  (4.7) 

 

where Pt denotes the amount of crude oil purchased in time period t while L
tp  and U

tp  

are the lower and upper bounds of the availability of crude oil during period t, 

respectively. 

 Note that an instance for which the bounds defined by (4.6) and (4.7) could arise is in 

the case of long-term contracts in which fixed amounts of sales or 

purchases/procurements are committed over several time periods (Iyer and Grossmann, 

1998). 
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4.2.4 Inventory Requirements 

 

In addition to the amount of materials purchased and/or produced, a certain level of 

inventory must be maintained at both time periods to ensure material availability. If the 

starting (initial) and final amount of inventory of material i in time period t is represented 

with the variables s
,i tI  and f

,i tI , respectively, the following conditions hold: 

 

 f s
, , 1 1,..., , 1,...,i t i tI I i N t T+= = =  (4.8) 

 

  fmin f fmax
, , , 1, 2,...,i t i t i tI I I i N≤ ≤ =  (4.9) 

 

where fmin
,i tI  and fmax

,i tI  are the minimum and maximum required amount of inventory for 

material i at the end of each time period. Equation (4.8) simply states that s
, 1i tI + , the 

starting inventory of material i in time period t+1 is the same as f
,i tI , the inventory of 

material i at the end of the preceding period t (if t = 1, then f f
, ,1i t iI I=  denotes the initial 

inventory). 

 

 

4.2.5 Material Balances (or Mass Balances) 

 

  s f
, , , , , 0, ,t i t i j j t i t i t

j J
P I b x S I i I t T

∈
+ + − − = ∈ ∈∑  (4.10) 

 

where bi,j is the stoichiometric coefficient for material i in process j. These balances can 

be further classified into three categories, namely for (i) fixed production yields; (ii) for 

fixed blends or splits; and (iii) for unrestricted balances, as accounted for explicitly by the 

numerical example to be studied later. 
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4.2.6 Objective Function 

 

A profit function over the time horizon is considered as the difference between the 

revenue due to product sales and the overall cost, which consists of cost of raw materials, 

operating cost, investment cost, and inventory cost: 

 

 
( ) ( )

f s
, , , , , , , , , , , ,

, , , ,

Profit
i t i t i t i t i t i t i t i t j t j t i t i t

i I i I i I i I j J i I

t T j t j t j t j t t t t t
j J

S I P I C x h H

CE y r R o O
∈ ∈ ∈ ∈ ∈ ∈

∈
∈

 γ + γ − λ − λ − −
 

=  
− α + β − + 
  

∑ ∑ ∑ ∑ ∑ ∑
∑

∑

%%

(4.11) 

 

where for the purpose of clearer presentation, the definition of each term is presented as 

follows: 

γi,t = unit sales price of product type i in time period t; 

λ i,t = unit purchase price of product type i in time period t; 

,i tγ%  = value of the final inventory of material i in time period t; 

,i tλ%  = value of the starting inventory of material i in time period t (may be taken 

as the material purchase price for a two-period model); 

Cj,t = operating cost of process j in time period t; 

hi,t = unit cost of subcontracting or outsourcing the production of product type i 

in time period t; 

Hi,t = amount of product type i to be subcontracted or outsourced in time period 

t; 

α j,t = variable-size cost coefficient for the investment cost of capacity 

expansion of process j in time period t; 

βj,t = fixed-cost charge for the investment cost of capacity expansion of process 

j in time period t; 

rt, ot = cost per man-hour of regular and overtime labour in time period t, 

respectively; 

Rt, 

Ot 

= regular and overtime working or production hours in time period t, 

respectively. 
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CHAPTER 5 

General Formulation of the Stochastic Midterm Production Planning 

Model under Uncertainty for Petroleum Refineries 
 

 

The refinery production planning problem under uncertainty differs from the 

deterministic problem in that some (or even all) of the planning parameters or coefficients 

are considered to be random variables. The production planning objective function must 

now not only represent the net profit to be derived from the sales of refined products 

(based on the amount of crude oil purchased); it must also reflect a measure of system 

performance. The ultimate goal of the planning problem is then to determine the 

maximum profit expected by implementing a production planning scheme that will 

operate in a feasible manner while accounting for the expected revenue loss mainly due 

to unmet demand and to a lesser degree, surplus of production (Wellons and Reklaitis, 

1989). 

 

 

5.1 STOCHASTIC PARAMETERS 

 

The following are the uncertain or random parameters considered in this work: 

• market demand or product demand (where similar meaning is implied in the 

interchangeability of both terms); 

• prices of crude oil (the raw material) and the final saleable products, referred to 

collectively as the prices of commodities; and 

• product yields of crude oil from chemical reactions in the primary distillation unit 

of a typical petroleum refinery. 

 In spite of the resulting exponential increase in problem size, the scenario analysis 

approach has been extensively applied and invoked in the open literature and has been 

proven to provide reliable and practical results (Gupta and Maranas, 2003; 2000). Hence, 

in this work, it is adopted for describing uncertainty in the stochastic parameters. 

Representative scenarios are constructed to model uncertainty in 
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prices, product demand, and production yields. This is accomplished within one of the 

most widely-used structures for decision making under uncertainty, that is, the two-stage 

stochastic programming framework. To reemphasize, in this framework, the decision 

variables of the problem are partitioned into two sets. The first-stage planning variables 

correspond to decisions that need to be made prior to resolution of uncertainty (the �here-

and-now� decisions). Subsequently, based on these decisions and the realization of the 

random events, the second-stage operating decisions are made subject to the restrictions 

of the second-stage recourse problem (the �wait-and-see� decisions). The presence of 

uncertainty is translated into the stochastic nature of the recourse penalty costs associated 

with the second-stage decisions. Therefore, the objective function consists of the sum of 

profits or costs determined by the first-stage decisions and the expected second-stage 

recourse costs (Gupta and Maranas, 2000). 

 

 

5.2 APPROACHES UNDER UNCERTAINTY 

 

The stochastic model is developed with the objective of yielding a solution that is less 

sensitive to the presence of uncertainties. The model attempts to minimize variation in 

profits and costs that arise due to operation under unplanned events or scenarios. Two 

methods to deal with uncertainty, discussed in light of the recent presentation by Nelissen 

(http://www.gams.com/presentations/present_uncertainty.pdf, accessed December 17, 

2005), are employed and combined in the proposed stochastic models in this work: 

• the static model of Markowitz�s mean�variance (E�V or MV) approach to handle 

randomness in the objective coefficients of prices by minimizing the expected 

cost and the variance (for the given expected value or mean of the objective 

function); and 

• the dynamic approach of two-stage stochastic programming with fixed recourse to 

handle randomness in the left-hand side (LHS) (or also known as technological 

coefficients) and the right-hand side (RHS) coefficients by trading off between 

maximizing profit and minimizing the impacts of the associated recourse penalty 

costs through accounting for their expected values and deviations; deviations are 
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representation of the risks taken and in this work, they are quantified by two 

measures, namely the variance and the mean-absolute deviation (MAD). 

 The following four approaches and approximation schemes are implemented in the 

formulation of the stochastic models: 

1. Approach 1: the Markowitz�s mean�variance model to handle randomness in the 

objective coefficients of prices by minimizing the variance of the expected value or 

mean of the random coefficients subject to a target value constraint; 

2. Approach 2: the two-stage stochastic programming with fixed recourse approach to 

model randomness in the right-hand side and left-hand side (or technological) 

coefficients by minimizing the expected recourse penalty cost due to violations of 

constraints; 

3. Approach 3: incorporation of the Markowitz�s E�V approach within the two-stage 

stochastic programming framework developed in Approach 2 in order to minimize 

both the expectation and the variance of the recourse penalty costs; this results in a 

stochastic quadratic programming model with fixed recourse; and 

4. Approach 4: reformulation of the model developed in Approach 3 by utilizing the 

Mean�Absolute Deviation (MAD) as the measure of risk imposed by the recourse 

penalty costs 

As an overview, in the two-stage stochastic programming approach to a production 

planning problem under uncertainty, the decision variables are classified into two sets. 

The first-stage variables, which are often known as planning variables themselves, are 

those that have to be decided before the actual realization of the uncertain parameters. 

Planning variables depend only on the fixed and structural constraints that are 

independent of uncertainty. These first-stage planning variables are typically the amount 

of raw materials needed, the production rates required, and others. Subsequently, once the 

values of the planning variables have been decided and the random events have presented 

themselves, further operational policy improvements can be made by selecting, at a 

certain cost, the values of the second-stage recourse variables, also known as the control 

or operating variables for implementing corrective actions. Due to uncertainty, the 

second-stage cost is a random variable. These second-stage recourse variables typically 

determine the amount of products to be purchased from other producers (or to be 
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outsourced) to meet the market demand actually realized or the amount of raw material 

required from other suppliers to achieve production requirements (Li et al., 2004). 

 

 

5.3 GENERAL TECHNIQUES FOR MODELLING UNCERTAINTY 

 

In general, uncertainties in commodity prices, future product demand, and process yields 

can be modelled in either of these two ways: first, by considering a specified range T 

defined as follows: 

 

  { }L U,T Tθ∈ = θ θ ≤ θ ≤ θ  (5.1) 

 

where  θL =  θN − ∆θ−, 

 θU = θN + ∆θ+, 

 θN = vector of the nominal values of the uncertain parameters, 

 ∆θ−, ∆θ+ = expected positive and negative deviations, respectively; 

or second, by providing probability distribution functions (Ierapetritou and 

Pistikopouslos, 1994a; Ponnambalam, 2005). This work adopts the former technique 

throughout. 

 

 

5.4 ESTABLISHMENT OF NOMENCLATURE AND NOTATIONS FOR THE 

STOCHASTIC APPROACH 

 

5.4.1 Indices 

 

s for the set of scenarios 

k for the set of products with yield uncertainty 
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5.4.2 Sets 

 

I set of materials or products 

K set of products with yield uncertainty 

 

 

5.4.3 Stochastic Parameters 

 

ps probability of scenario s 

γi,s,t unit sales price of product type i in time period t per realization of scenario s 

λ t,s unit purchase price of crude oil in time period t per realization of scenario s 

di,s,t demand for product i in time period t per realization of scenario s 

 

5.4.3.1 Recourse Parameters 

 

ic+  fixed unit penalty cost for shortfall in production (underproduction) of product type i 

ic−  fixed unit penalty cost for surplus in production (overproduction) of product type i 

,i kq+  fixed unit penalty cost for shortage in yields from material i for product type k 

,i kq−  fixed unit penalty cost for excess in yields from material i for product type k 

 

 

5.4.4 Stochastic Recourse Variables (Second-Stage Decision Variables) 

 

,i sz+  amount of underproduction of product type i per realization of scenario s 

,i sz−  amount of overproduction of product type i per realization of scenario s 

, ,i k sy+  amount of shortage in yields from material i for product type k per realization of 

scenario s 

, ,i k sy−  amount of excess in yields from material i for product type k per realization of 

scenario s 
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5.5 APPROACH 1: RISK MODEL I BASED ON THE MARKOWITZ�S MEAN�

VARIANCE APPROACH TO HANDLE RANDOMNESS IN THE OBJECTIVE 

FUNCTION COEFFICIENTS OF PRICES 

 

5.5.1 Uncertainty in the Price of Crude Oil 

 

The rapid rise in world petroleum crude oil prices in years 2004 to 2005, which triggered 

off a similar trend in petroleum-based fuel prices, has cast much uncertainty in the 

forecasting of future oil prices. This is a direct result of various events of global impact 

including (but certainly not confined to) increased demand from the emerging economic 

power of China; political conflicts and instability in major hydrocarbon resources and 

petroleum supplier countries in the Middle East; high gasoline demand from North 

America; an all-time thirty-year low of oil stocks in the Organization of Economic Co-

operation and Development (OECD) countries; supply uncertainty from Iraq, Nigeria, 

Russia, and Venezuela; and the disparity between crude availability and refining capacity. 

Coupled with the peaking in the world oil production and consumption (Hirsch et al., 

2006), it has indeed become highly pertinent to take into account the factor of crude oil 

price uncertainty in refinery production planning, arguably the heart of the downstream 

processing sector of the petroleum industry, as equally emphasized by Neiro and Pinto 

(2005). All these factors compounds the intricacies of the crude oil price determination 

process, this inevitably necessitates extending the price analysis beyond the markets for 

petroleum. Didziulis (1990) reports that crude oil prices are determined in two closely-

related markets, namely the crude oil markets and the refined products markets. As the 

raw material used in refineries in joint-products processes, for a given level of supply, the 

value of petroleum or crude oil lies in the value of refined products derived from it. 

Further elaboration on this issue is obviously beyond the scope of this work and the 

interested reader is referred to the rich literature available on this subject. 

 As readily recognized, a competing issue facing decision-makers in oil refineries is 

cost, which is directly related to price. To guarantee supplies of crude oil and availability 

of transportation, decision-makers must effectively pay a premium. They can purchase 

crude on a �spot� basis in each period at spot prices that could be lower than market 
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prices or firm prices. Spot prices, however, cannot be determined in advance. In addition, 

crude availability at the spot price is by no means certain or guaranteed, nor can the 

quantity of crude oil available be predicted. Similarly, transportation capacity can be 

purchased in an �interruptible� basis in each period at a potentially lower cost than for 

firm purchases, but again, availability and capacity are neither guaranteed nor predictable 

in advance (Bopp et al., 1996). 

 The Petroleum Division of the Energy Information Administration (EIA) of the 

Department of Energy (DOE), United States of America maintains an excellent website 

providing recent and current information on price data of crude oil and its refined 

products at http://www.eia.doe.gov/pub/oil_gas/petroleum/analysis_publications/ 

oil_market_basics/Price_links.htm (accessed December 27, 2005) while historical price 

data are accessible at http://www.eia.doe.gov/neic/historic/hpetroleum.htm (accessed 

December 28, 2005). Specific information on crude oil price in chronological order dated 

since 1970 until the daily present time is available at http://www.eia.doe.gov/emeu/cabs/ 

chron.html (accessed December 27, 2005). To model the uncertainty in crude oil price in 

this work, historical data on a daily basis for the Brent crude oil and the West Texas 

Intermediate (WTI) at Cushing crude oil for the years 2004 and 2005 is analyzed and is 

considered to be representative for midterm production planning activities (the 

justification for this reasoning follows). Figure 5.1 depicts the daily price for both types 

of crude oil for the considered period of January 5, 2004�December 30, 2005. The 

complete numerical data for this period and the associated computed analytical results are 

provided in detail in Appendix B. 

 As stated earlier, the trend of oil price in this two-year period is considered to be 

representative as it captured the four major events of spikes in oil price experienced since 

the triggering of the rising oil price phenomenon, namely: 

1. on October 22, 2004: the cumulative effects of the war on Iraq launched by the 

government of the U.S.A. rapid increases in global demand for crude oil, 

constrained capacity of the Organization of the Petroleum Exporting Countries 

(OPEC), and low worldwide inventories resulted in an all-time high of $55.17 per 

barrel for crude oil contract price as reported by the New York Mercantile 

Exchange (NYMEX) for the WTI. The aftermath effects of Hurricane Ivan forced 
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the temporary termination of natural gas and crude oil production from the Gulf 

Coast; 

2. on April 4, 2005: Chevron-Texaco, the major oil company with ownership of the 

fourth largest non-state-owned oil reserves in the world, agreed to buy Unocal, a 

medium-size U.S.-based oil company. It was the largest merger�acquisition 

exercise in the oil and gas industry since 2001; 

3. on July 5, 2005: Tropical storm Cindy interrupted oil and natural gas production 

in the U.S.�s Gulf of Mexico region. The storm shut off oil and gas platforms, 

forced the closure of the Louisiana Offshore Oil Port (the largest U.S. oil-import 

terminal) and some refineries also ceased operations; 

4. on August 28, 2005: Hurricane Katrina hit the U.S. Gulf of Mexico region near 

New Orleans, resulting in a severe impact on the local oil and natural gas 

production: shut down of key hydrocarbons infrastructure including the Louisiana 

Offshore Oil Platform, the Capline crude oil pipeline, and the Colonial and 

Plantation oil products pipelines; and disruption in operations of oil refineries. 

The U.S. government announced that it would loan out crude oil from the 

Strategic Petroleum Reserve to alleviate the situation and members of the 

International Energy Agency (IEA) pledged offers of emergency reserves to the 

U.S.. 
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Figure 5.1. Daily crude oil price data for the period January 5, 2004�December 30, 2005 
(Energy Information Administration (EIA), 2005) 
 

 From the data, the mean price of crude oil is determined. Three different statistics are 

then employed to investigate and portray the degree of variations in the data that reflect 

price uncertainty: (a) the standard error, that is, the percentage of difference from the 

mean or average value; (b) the sample standard deviation, that is, the square root of 

sample variance, which measures how widely values are dispersed from the mean (Ross, 

2004); and (c) the maximum price. The statistical analysis computation is executed by 

utilizing the Descriptive Statistics tool for Data Analysis in the Microsoft® Excel 

spreadsheet software package (Microsoft Corporation, 2001). The results of the analysis 

are summarized in Table 5.1. 

 
Table 5.1. Statistics of daily crude oil price data for the period of January 5, 2004�December 30, 2005 

(Energy Information Administration (EIA), 2005) 
 

Crude Oil 
Type 

Mean Price 
(US$/barrel) 

Standard 
Error 

Standard 
Deviation 

Maximum 
Price 

Brent 47.04 0.4704 9.990 67.09 
West Texas Intermediate (WTI) at Cushing 48.94 0.4325 9.671 69.82 
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5.5.2 Uncertainty in the Prices of the Major Saleable Refining Products of Gasoline, 

Naphtha, Jet Fuel, Heating Oil, and Fuel Oil 

 

Table 5.2 provides statistics of daily price data for the period January 5, 2004�December 

26, 2005 (Energy Information Administration (EIA), 2006) for the major saleable 

refining products considered in the numerical study to be presented in the following 

chapter. The products are gasoline, naphtha, jet fuel, heating oil, and fuel oil. 

 
Table 5.2. Statistics of daily price data for the major saleable refining products of gasoline, naphtha, 

jet fuel, heating oil, and fuel oil for the period of January 5, 2004�December 30, 2005 (Energy 
Information Administration (EIA), 2005) 

 

Product 
Mean Price 

(cent/gallon) 
Standard 

Error 
Standard 
Deviation 

Maximum 
Price Remark 

      
Gasoline 210.46 

cent/gallon 
3.139 32.01 311.7 Daily USA retail gasoline price 

data for all grades and all 
formulations 

(Source: Retail Gasoline Historical Prices, http://www.eia.doe.gov/oil_gas/petroleum/data_publications/
wrgp/mogas_history.html, accessed on January 23, 2006) 
      
Naphtha $343/ton 

MOPJ* 
(not available)  

(Source: Naphtha Remained Firm at $340�350, ChemLOCUS Chem Journal: Korea Chemical Market 
Information, http://www.chemlocus.com/news/daily_read.htm?menu=D1&Sequence=6538
&cpage=14&sub=, accessed on January 24, 2006) 
      
Jet Fuel 
(Kerosene-
type) 

143.1909 
cent/gallon 

1.800 172 40.091 74 313.03 Daily USA Gulf Coast kerosene-
type jet fuel spot price FOB (free-
on-board) 

(Source: Historical Petroleum Price Data�Other Product Prices, 
http://www.eia.doe.gov/neic/historic/hpetroleum2.htm#Other, accessed on January 23, 2006) 
      
Heating Oil 204.4566 

cent/gallon 
4.902 018 33.962 18 269.159 Weekly USA No. 2 heating oil 

residential price (excluding tax) 
(Source: Heating Oil and Propane Update, http://tonto.eia.doe.gov/oog/info/hopu/hopu.asp, accessed on 
January 23, 2006) 
      
Fuel Oil 86.813 04 

cent/gallon 
3.978 387 19.079 67 126.7 Monthly USA residual fuel oil 

retail sales by all sellers
(until November 30, 2005) 

(Source: Residual Fuel Oil Prices by Sales Type, 
http://tonto.eia.doe.gov/dnav/pet/pet_pri_resid_dcu_nus_m.htm, accessed on January 24, 2006) 
*Note: MOPJ stands for �Mean of Platts Japan�, one of the industry�s standards for reporting prices of 
petroleum products. For further information, the reader is referred to Platts Methodology and Specifications 
Guide for Asian Naphtha at http://www.platts.com/Content/Oil/Resources/ 
Methodology%20&%20Specifications/method_asian_naptha_2004.pdf (accessed on March 29, 2006). 
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Figure 5.2. Weekly USA retail gasoline price (cents per gallon) for all grades and all formulations for the 
period of January 5, 2004�December 26, 2005 (Energy Information Administration (EIA), Retail Gasoline 
Historical Prices, http://www.eia.doe.gov/oil_gas/petroleum/data_publications/wrgp/mogas_history.html, 
accessed on January 23, 2006). 
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Figure 5.3. Daily USA Gulf Coast kerosene-type jet fuel spot price FOB (free-on-board) for the period of 
January 5, 2004�December 23, 2005 (Energy Information Administration (EIA), Historical Petroleum 
Price Data�Other Product Prices, http://www.eia.doe.gov/neic/historic/hpetroleum2.htm#Other, accessed 
on January 23, 2006). 
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Figure 5.4. Weekly USA No. 2 heating oil residential price (cents per gallon excluding taxes) for the 
period of January 5, 2004�December 26, 2005 (Energy Information Administration (EIA), Heating Oil and 
Propane Update at http://tonto.eia.doe.gov/oog/info/hopu/hopu.asp, accessed on January 23, 2006). 
(Additional note: The No. 2 heating oil is a distillate fuel oil for use in atomizing type burners for domestic 
heating or for use in medium capacity commercial�industrial burner units.) 
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Figure 5.5. Monthly USA residual fuel oil retail sales by all sellers (cents per gallon) for the period of 
January 5, 2004�November 30, 2005 (Energy Information Administration (EIA), Residual Fuel Oil Prices 
by Sales Type, http://tonto.eia.doe.gov/dnav/pet/pet_pri_resid_dcu_nus_m.htm, accessed on January 24, 
2006. Note that there is no data available for the following periods: (i) between March 16, 2004 and 
October 3, 2004 and (ii) between March 15, 2005 and October 2, 2005. 
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5.5.3 Reportage of Oil Prices 

 

Agencies specializing in reporting prices of petroleum and petroleum products market 

such as Platts Oilgram Journal (McGraw-Hill), Argus, and the London Oil Report obtain 

price levels estimates from the trading houses. The resulting price estimates become the 

market reference prices that are used to set prices for other transactions. Typically, prices 

for more than 14 types of products are quoted daily. For certain products, there are three 

forms of price quotations, depending on whether shipment is by cargo or by barge and 

whether the price if on the basis of free-on-board (FOB) or cost, insurance, and freight 

(CIF). 

 These published prices represent the estimated value at a particular time of a cargo of 

a standard product of known characteristics; for instance, for gas oil, these properties 

would be mass in tonnage, relative density, sulphur content, cetane index, and others. 

Thus, the published quotations are far from being representative of the variety of products  

that are actually traded. 

 The selling price for a cargo is agreed in terms of a differential from an agreed 

quotation. This adjustment factor principally takes into account the tonnage, the method 

of transportation, and the quality, plus all other aspects relevant to any commercial 

transaction (Favennec, 2001) 

 

 

5.5.4 Stochastic Modelling of Randomness in the Objective Function Coefficients of 

Prices for the General Deterministic Model 

 

The classical approach to model the tradeoffs between expectation and variability in a 

stochastic optimization problem is to employ variance as the measure of variability or 

dispersion. This gives rise to adopting the well-known mean�variance (E−V) portfolio 

optimization model of Markowitz (1952, 1959), conveniently referred to as the MV or E�

V approach. The goal of the Markowitz model consists of two criteria, namely to 

maximize the first criterion of expected profit while appending a limiting constraint on 

the magnitude of the second criterion of risk, which is measured by using variance 
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(Eppen et al., 1989). Malcolm and Zenios (1994) presented an application of this 

approach by adopting the robust optimization framework proposed by Mulvey (1995) to 

the problem of capacity expansion of power systems. The problem was formulated as a 

large-scale nonlinear program with the variance of the scenario-dependent costs included 

in the objective function. Another application using variance is presented by Bok et al. 

(1998), also within a robust optimization model, for investment in the long-range 

capacity expansion of chemical process networks under uncertain demand. A brief review 

of the Markowitz�s model is presented in Appendix A. 

 In his model, Markowitz (1952) introduced the concept of portfolio management 

theory using a mathematical programming approach. An investor has a choice between 

various financial instruments whose rate of return is uncertain. Theoretically, the investor 

should maximize expected utility, but this utility function is not usually available. 

Instead, the Markowitz approach is to �draw� the so-called efficient frontier, in which for 

a given expected return, one solves a quadratic program that identifies the portfolio 

minimizing variance. (Alternatively, the efficient frontier can be interpreted as the 

solution that minimizes variance for an each expected return.) A plot of expectation 

(typically, expected profit) versus variance is produced. The onus is then on the decision 

maker to choose a point on this efficient frontier corresponding to the desired profit with 

the associated bearable amount of risk (Wets, 1996). 

 It follows that the application of portfolio theory to the selection of production 

planning programs will involve the determination of sets of programs that are efficient in 

the return�risk (or profit�risk) space. In this approach, portfolio variance is used as the 

measure of risk. An efficient portfolio is defined as the minimum variance portfolio that 

yields a specified level of expected return or profit under relevant constraints 

characterizing the decision space. The efficient frontier is obtained by solving the 

problem for a set of exogenously specified expected income or profit levels and joining 

the optimum solutions in the expected profit�variance (E�V) space. This framework, 

which leads to a convex quadratic programming problem, is a widely used portfolio 

management technique in the finance literature especially because of its desirable 

theoretical properties (Cabrini et al., 2004). 
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 As argued in the previous section, since prices are likely to be uncertain and to show 

variability due to a multitude of possible reasons, it is desired to assume a distribution of 

possible prices rather than a fixed price (typically the expected value or mean) for each 

product. The goal of the stochastic model then is to determine production quantities (as 

given by the variables xi, with i indicating the product type) that meet specified 

requirements, as dictated by market demand, by simultaneously minimizing the various 

expected production costs. 

 

 

5.5.5 Sampling Methodology by Scenario Generation for the Recourse Model under 

Price Uncertainty 

 

A collection of scenarios that best captures and describes the trend of prices of the 

different types of crude oil as raw material feeds and prices of the saleable refining 

products for a reasonable period of time are generated based on available historical data 

as presented in Section 5.6.1. The solution is bound to be more robust and representative 

with more scenarios considered; however, as cautioned earlier, the major pitfall with the 

recourse problem via scenario analysis is the explosive nature of exponential increase in 

problem size with the number of uncertain parameters. Weights representing an a priori 

probability measure can be assigned to all possible outcomes ω of the outcome space Ω. 

As scenarios represent every possible environment ω that becomes an element of the 

probability space, the associated probabilities of ps with index s = 1, 2, �, NS denoting 

the sth scenario are assigned to each scenario respectively to reflect the corresponding 

likelihood of each scenario of state of the world being realized (Ermoliev and Wets, 

1988), with 1s
s S

p
∈

=∑ . Table 5.3 summarizes attributes of the scenarios constructed for 

modelling price uncertainty whereas Table 5.4 presents the scenario construction to 

model price uncertainty for a refinery producing i = 1, 2, �, N commercial products. 

Note that the price of the raw material crude oil is expressed as a negative coefficient 

because it is a cost term. 
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Table 5.3. Attributes of the scenario construction for modelling price uncertainty for product i 
 

Price Uncertainty: Objective Function Coefficient of Prices ($/ton) 
 Scenario 1 

(s = 1) 
Scenario 2 

(s = 2) L  Scenario NS 
(s = NS) 

Percentage of deviation from 
the expected value +χ1% −χ2% L  +χNS% 

Price of product i in scenario s 
($/ton) ci,s 

ci,1 ci,2 L  ci,NS 

Probability ps p1 p2 L  pNS 
 

Table 5.4. Representative scenarios of price uncertainty in the refinery planning under uncertainty 
problem 

 
Price Uncertainty: Objective Function Coefficient of Prices ($/ton) Material/ 

Product Scenario 1 Scenario 2 L  Scenario NS 
Product 1 
(typically the raw 
material, crude oil) 

c1,1 c1,2 L  c1,NS 

Product 2 c2,1 c2,2 L  c2,NS 
Product 3 c3,1 c3,2 L  c3,NS 
M  M  M  L  M  
Product N cN,1 cN,2 L  cN,NS 
Probability ps p1 p2 L  pNS 

 

 

5.5.6 Expectation of the Objective Function 

 

As mentioned earlier, the classical mean�variance approach devised by Markowitz (1952, 

1959) is adopted in an attempt to maximize profit by minimizing the variance for the 

given expected value (mean) of the objective function. To represent the different 

scenarios accounting for uncertainty in prices, the price-related random objective 

coefficients comprising (i) λ i,t for the raw materials costs of different types of crude oil 

that can be handled by the crude distillation unit of a refinery and (ii) γi,t for the prices of 

saleable refined products are added with the index s to denote the scenarios, taking into 

account the probabilities of realization of each scenario. For ease of reference, both 

groups of price (or cost) parameters are redefined as the parameter ci,s,t or ,i s tc ′ , in which 

the only minor difference between the two is in the use of the index i′ and the 

corresponding set of I′ to refer to �products� that are actually the raw materials crude oils 

as distinguished from the index i used to indicate saleable products. 
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 For any constants a and b, using the identity for expectations gives the following: 

 

  ( ) [ ] [ ]E aX bY aE X bE Y± = ±  (5.2) 

 

Since the objective function given by equation (4.8) is linear, it is straightforward to show 

that the expectation of the objective function with random price coefficients is given by 

the following: 
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(5.3) 

 

 It is pertinent to point out that consideration of the expected value of profit alone as 

the objective function, which is characteristic of stochastic linear programs, is obviously 

inappropriate for moderate and high-risk decisions under uncertainty since it is well 

acknowledged that most decision makers are risk averse for important decisions. As 
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stressed by Mulvey et al. (1995), the expected value objective ignores both the risk 

attribute of the decision maker and the distribution of the objective values. Hence, 

variance of the objective function ought to be considered as a risk measure of the 

objective function, which is the second major component of the Markowitz�s mean�

variance approach adopted in this Risk Model I. 

 

5.5.7 Variance of the Objective Function 

 

For any constants a and b, using the identity for variances gives the following: 

 

  ( ) 2 2( ) ( )V aX bY a V x b V Y± = +  (5.4) 

 

Noting that it is the coefficients of the objective function that are random and not the 

deterministic production mass variables xi for each product type i, thus variance for the 

expected value of the objective function as shown in equation (5.3) is expressed as: 
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Similar to the derivation of the expectation of the objective function, the random price 

coefficients are collectively redefined as ci,s,t to give the following relation for the 

variance of profit: 
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 Although the above derivation is mathematically and statistically sound, it does not 

explicitly evaluate variances of the random price coefficients as given by ( ), ,i s tV c  and 

( ), ,i s tV c ′ . We therefore consider an alternative formulation using the following definition 

for variance of X from Markowitz (1952) (but the definition should be easily available in 

any standard text on statistics): 

 

  ( ) ( ) ( ) ( )2 2 2 2
1 1 2 2 3 3 n nV p x E p x E p x E p x E= − + − + − + + −L  (5.7) 

 

If we consider NS number of different scenarios in set S, then variation in profit is given 

by the probabilistically-weighted summation of the squared deviation of the objective 

function of a scenario from the expected value of the objective function, as depicted 

below: 
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where sµ refers to the average scenario or the �most likely� scenario in which the 

coefficients take on the expected values, thus resulting in the expression [ ]0sz E z
µ

−  

equals to zero and yielding: 
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5.5.8 Risk Model I 

 

In the spirit of the Markowitz�s mean�variance approach, the objective function for the 

stochastic model can now be formulated as: 

 

  [ ]1 0 1 0maximize ( )
s.t. constraints 

z E z V z= − θ

−(4.1) (4.7)
 (5.8) 

 

that is, the model is subject to the same set of constraints as the deterministic model, with 

θ1 as the risk parameter or risk factor associated with risk reduction for the expected 

profit (for convenience, θ1 will henceforth simply be referred to as the profit risk factor). 

 For the reason of obtaining a term that is dimensionally consistent with the expected 

value term, the standard deviation of z0 may be considered instead of the variance as a 

risk measure to reflect dispersions of the random objective function. In the case of 

variance, the difference in dimensionality is taken care of by the risk factor θ1. This is 

concurred by Markowitz (1952) where it is stated that even though variance is the more 

well-known measure of dispersion about the expected, if instead of variance, an investor 

was concerned with standard error or with the coefficient of dispersion σ/E  (also known 

as the coefficient of variation in more recent literature), the choice would still lie in the 

set of efficient portfolios. (As an aside, a very recent paper by Kristoffersen (2005) 

discusses a variety of risk measures in the two-stage stochastic linear programming 

approach.) 

 Therefore, the objective function considering standard deviation, which would require 

a different risk factor 1′θ , is expressed as: 

 

  [ ]1 0 1 0maximize ( )z E z V z′= − θ  (5.9) 

 

Note that the solution convergence is expected to be different for models (5.8) and (5.9) 

due to the presence of the square root operation of variance in computing standard 
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deviation, which would be expected to increase the computation time. In this regard, 

model (5.8) is preferred to model (5.9). 

 However, the primary difficulty in executing both models (5.8) and (5.9) is in 

determining a suitable range of values for the profit risk factors θ1 and 1′θ , respectively 

that will cater to decision makers who are either risk-prone or risk-averse. An approach to 

overcome this is proposed, among others, by Terwiesch et al. (1994) and Ponnambalam 

(2005), in which the variance or the standard deviation of the objective function is 

minimized as follows: 

 

  1 0minimize ( )z V z=  (5.10) 

 

or 

 

  1 0minimize ( )z V z=  (5.11) 

 

while adding the inequality constraint for the mean of the objective function (as given by 

equation (5.1)) that sets a certain target value for the desired profit to be achieved: 

 

  E[z0] ≥ Target objective function value (5.12) 

 

The process of maximizing or minimizing one objective while specifying constraints on 

another is a widespread practice in dealing with problems with two objectives (Eppen et 

al., 1989) such as in this model, in which the two objectives considered are profit and the 

risk associated with it. 

 In order to take advantage of the faster convergence rate in computing variance as 

compared to standard deviation, the objective function given by equation (5.10) is 

adopted in our model. Thus, in the model, the profit risk factor is now controlled by 

specifying the desired profit that will give the target objective function value, with the 

corresponding risk reflected by the variance expressed in the new objective function 

(5.10). Mathematically, it is also noted that the target value constraint is needed; 
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otherwise, the optimization problem would simply compute the objective function value 

to be zero as that obviously corresponds to the minimum value of variance. Note that an 

equivalent representation of the objective functions (5.10) and (5.11) is given by the 

negative of the corresponding maximization problem, which thus gives Risk Model I: 

 

  [ ]
1 0

0

maximize Var( )
s.t. Target objective function value

constraints 

z z
E z

= −
≥

−(1) (7)
 (5.13) 

 

while the equivalent expression for the inferiorly preferred objective function due to an 

expected longer computation time is given by: 

 

  1 0maximize Var( )z z= −  (5.14) 

 

 To determine the suitable range for the target objective function value (that is, the 

desired profit), a test value is assumed and the corresponding solution is computed. Then, 

the test value is increased or decreased, with the solution computed each time in order to 

investigate and establish the range of target objective function values that ensures 

solution feasibility. It is noted that the maximum target objective function value to 

maintain solution feasibility should be fairly well approximated by the optimal objective 

function value of the deterministic model. 

 As emphasized in the 1952 seminal paper by Markowitz, it is useful to keep in mind 

that the decision with maximum expected return or profit is not necessarily the one with 

minimum variance. There is a rate or trade-off at which an investor can gain expected 

profit by taking on variance or risk, or reduce risk by giving up expected profit. In 

essence, this trade-off will be demonstrated by the profit gained for different values of the 

profit risk factor θ1 (or 1
′θ ) specified. 

 As an additional note, the formulated model is alternatively known as a two-stage risk-

based programming approach. The model is now complete and is solved to optimality 
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based on a numerical example with the obtained results discussed, as to be found in the 

subsequent part of the paper where a representative example is presented. In the 

immediate following section on an alternative modelling approach, this Markowitz�s 

mean�variance model as developed here, is implemented within a two-stage stochastic 

programming framework and is extended to become a recourse model. 

 

 

5.6 APPROACH 2: THE EXPECTATION MODEL AS A COMBINATION OF 

THE MARKOWITZ�S MEAN�VARIANCE APPROACH AND THE TWO-

STAGE STOCHASTIC PROGRAMMING WITH FIXED RECOURSE 

FRAMEWORK 

 

In this approach, the existing deterministic model is reformulated in an attempt to 

minimize the expected value of the recourse penalty costs due to violations of constraints 

by incorporating the Markowitz�s mean�variance model within a two-stage stochastic 

programming with fixed recourse framework. The model attempts to handle uncertainty 

in the random objective coefficients of prices, the random left-hand side (LHS) 

(technological) coefficients, and the random right-hand side (RHS) coefficients. One of 

the primary motivations for adopting the recourse problem model of minimizing only the 

expected penalty costs is to avoid the computationally more demanding nonlinear 

quadratic programming problem that arises with the simultaneous minimization of both 

the expected value and variance of the recourse penalty costs. (The latter, that is, the 

approach of minimizing both the expected value and the variance of the penalty costs, 

will be addressed in Approach 3 in the following section.) Additionally, as intended in 

the model development of Approach 1 in the preceding section, the aim for the inclusion 

of the Markowitz�s mean�variance Model 1 is to account for randomness in the objective 

coefficients due to uncertainty arising in prices of crude oil and the commodities (which 

comprises) gasoline, naphtha, jet fuel, heating oil, fuel oil, and cracker feed. 
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5.6.1 Two-Stage Stochastic Programming with Fixed Recourse Framework to Model 

Randomness in the Right-Hand-Side (RHS) Coefficients of Product Demand 

Constraints 

 

With the onslaught of an impending energy crisis due to rising crude oil prices, energy 

over-consumption, and depletion of hydrocarbon resources worldwide, the oil and gas 

industry has become increasingly competitive with market demand, essentially driven by 

customers consumption needs, imposing a significant complexity in production 

requirements. Jung et al. (2004) noted that among the many factors contributing to 

uncertainties in a typical example of the chemical process industry (of which the 

production planning of a petroleum refinery is a chief example), product demand 

uncertainty, as dictated by market demand, may well hold the dominant impact on profits 

and customer satisfaction. This is equally emphasized by a series of papers addressing 

chemical production planning under uncertainty by Gupta and Maranas (2000, 2003) that 

identified product demand as one of the key sources of uncertainties in the wider context 

of any production�distribution system. It is further noted that product demand 

fluctuations over medium-term (1�2 years) to long-term (5�10 years) planning horizons 

may be significant. Hence, deterministic planning and scheduling models may yield 

unrealistic results by not capturing the effect of demand variability on the trade-off 

between lost sales and inventory holding costs. 

 Demand uncertainty, leading to cause of failure in accounting for significant demand 

fluctuations by incorporating a stochastic description of product demand, can result in 

over- or under-production, with resultant excess inventories or unsatisfied customer 

demand, respectively. The latter could also result in incurred cost due to outsourcing or 

external purchasing for production make-up. Excess inventory incurs unnecessarily high 

inventory holding charges, while the consequences of the inability to meet customer 

needs eventually translates to both loss of profit and potentially, the long term loss of 

market share. These are highly undesirable scenarios particularly in current market 

settings where the profit margins are extremely tight. In terms of strategic corporate 

planning, the former scenario results as a failure in effectively managing the downside 
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risk exposure of a company while the latter corresponds to a failure in recognizing an 

opportunity to capture additional market share (Gupta and Maranas, 2000; 2003). 

 Even though it has been increasingly common for firms to subcontract or outsource 

certain amount of production in order to meet increasing customer demand, in general, 

they are still viewed as an additional cost to firms, as mentioned earlier. The expected 

value of the ability to meet the product needs of customers is traditionally called the 

customer satisfaction index. Under competitive market conditions, customer satisfaction 

level, also known as service level, is recognized as an important index that must be 

monitored and maintained at a high level. Thus, deterministic planning models, which do 

not recognize the uncertainty in future demand forecasts, can be expected to result in 

inferior planning decisions as compared to stochastic models that explicitly considers 

uncertainty (Gupta et al., 2000). 

 

 

5.6.1.1 Rationale for Adopting the Two-Stage Stochastic Programming Framework 

to Model Uncertainty in Product demand 

 

From the arguments presented in the previous section, it is highly evident that in 

production systems, demand forecasts are often critical to the planning process. When 

demand is assumed to be known with certainty, an optimal deterministic production plan 

can easily be obtained, which in turn leads to an optimal capacity plan. But, as readily 

acknowledged, in reality, demand is rarely known with absolute certainty. Consequently, 

production planning decisions are usually postponed until better information is available. 

However, capacity plans cannot be postponed, and hence cannot rely on the production 

plan. Indeed, as demand varies from week to week, there may not be a unique production 

plan. Thus, the two-stage nature of the production planning process is apparent, as 

advocated by Higle and Sen (1996). 
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5.6.1.2 Sampling Methodology by Scenario Generation for the Recourse Model 

under Market Demand Uncertainty 

 

Uncertainty in market demand introduces randomness in constraints for production 

demand, that is, the production requirements of intermediates and final saleable products 

as given by equation (4.3). The sampling methodology employed for scenario generation 

for the recourse model under demand uncertainty is similar to the case of price 

uncertainty addressed in the previous section. Table 5.5 summarizes attributes of 

scenarios constructed for modelling demand uncertainty. 

 Considering that there are numerous minor variations within the many complex 

refining processes that cause random variations in the production of the major final 

saleable commercial products, it is not unreasonable to assume by virtue of the Central 

Limit Theorem that these cumulative minor random effects will be approximately 

normally distributed. With demand di,s as the random variable where i denotes the 

product type and s indicates the corresponding scenario considered, the following 

relationship represents the random demand: 

 

  is d dd z= σ +µ  (5.15) 

 

where z is the variable for the standard normal distribution with mean 0 and variance 1 

while µd and σd are the mean and variance for the distribution of demand. Similar to 

Approach 1, a collection of representative events or scenarios of market demand 

uncertainty for i = 1, 2, �, NS products with associated probabilities to indicate their 

comparative frequency of occurrence (Ermoliev and Wets, 1988) are depicted in Table 

5.6. 

 
Table 5.5. Attributes of the scenario construction for modelling market demand uncertainty for 

product i 
 

Demand Uncertainty: Right-Hand-Side Coefficient of Constraints 
for Product i Demand (ton/day) under Scenario s  

Scenario 1 
(s = 1) 

Scenario 2 
(s = 2) L  Scenario NS 

Percentage of deviation from 
the expected value +δ1% −δ2% L  +δNS% 

Demand for product i 
(ton/day) di,s 

di,1 di,2 L  di,NS 

Probability ps p1 p2 L  pNS 
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Table 5.6. Representative scenarios of market demand uncertainty in the refinery planning under 
uncertainty problem 

 
Demand Uncertainty: Right-Hand-Side Coefficient of Constraints for Product i Demand 

(ton/day) under Scenario s, di,s 
Product type i Scenario 1 Scenario 2 L  Scenario NS 
Product 1 d1,1 d1,2 L  d1,NS 
Product 2 d2,1 d2,2 L  d2,NS 
Product 3 d3,1 d3,2 L  d3,NS 
M  M  M  L  M  
Product N dN,1 dN,2 L  dN,NS 
Probability ps p1 p2 L  pNS 
 

 

5.6.1.3 Modelling Uncertainty in Product Demand by Slack Variables in the 

Stochastic Constraints and Penalty Functions in the Objective Function due to 

Production Shortfalls and Surpluses 

 

As emphasized earlier, one of the main consequences of uncertainty within the context of 

decision-making is the possibility of infeasibility in the future. The two-stage recourse 

models provide the liberty of addressing this issue by postponing some decisions into the 

second stage; however, this comes at the expense of the use of corresponding penalties in 

the objective function, as reiterated by Sen and Higle (1999). Decisions that can be 

delayed until after information about the uncertain data is available almost definitely 

offer an opportunity to adjust or adapt to the new information received. Although it is 

acknowledged that it is typically beyond our control whether decisions can or cannot be 

delayed, there is generally value associated with delaying a decision, when it is possible 

to do so, until after additional information is obtained; this is advocated by Higle (2005). 

 In devising the appropriate penalty functions, we resort to the introduction of some 

compensating slack variables in the probabilistic constraints to eliminate the possibility of 

second-stage infeasibility. In addition to that, the recourse-based modelling philosophy 

requires the decision maker to impute a price as a penalty to remedial activities that are 

undertaken in response to the randomness. For some applications such as in production 

planning and inventory models, these costs are standard. (However, in some situations, it 

may be more appropriate to accept the possibility of infeasibility under some 
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circumstances, provided the probability of this event is restricted below a given 

threshold) (Sen and Higle, 1999). 

 As pointed out by Clay and Grossmann (1997), compensating slack variables 

accounting for shortfall and/or surplus in production are introduced in stochastic 

constraints with the following results: (i) inequality constraints are replaced with equality 

constraints; (ii) numerical feasibility of the stochastic constraints can be ensured for all 

events; and (iii) penalties for feasibility violations can be added to the objective function. 

Since a probability can be assigned to each realization of the stochastic parameter vector 

(that is, to each scenario), the probability of feasible operation can be measured. Further 

according to Clay and Grossmann (1997), assigning penalties to the feasibility slack 

activities in the objective function is similar to the �discrepancy cost� approach suggested 

by Dempster (1980). Using Dempster�s approach, one assigns a cost to the violation of 

any of the constraint conditions. In the production planning context, one example would 

be to add a slack variable for producing less than the minimum demand for a product, and 

then penalizing this slack based on the cost of purchasing this makeup product from the 

outside market; likewise, for the condition of surplus production with respect to the 

market demand, the slack variable is penalized based on the inventory cost for holding or 

storing the excess of production. 

 In other words, the stochastic nature of a production requirement constraint is handled 

accordingly by noting that there is an added cost associated with infeasibility of any 

stochastic constraint, as equally noted, among others, by Evers (1967) and Wets (1983). 

In addition, infeasibility requires appropriate action to be taken, hence, giving rise to the 

notion of recourse and the subsequent construction of the desired recourse problems or 

models. Thus, the principle that applies is that infeasibility due to violation(s) of the 

constraints will be acceptable, but this is penalized through the introduction of slack 

variables modelled as the expected shortfalls (or shortages) or surpluses in production. 

The penalty for infeasibility is included in the objective function as a result of uncertainty 

in market demand leading to randomness in production requirements. The penalty terms 

in the objective function is handled by maximizing the expected profit while minimizing 

the expected value or mean of the recourse penalty costs. (Later in Approach 3, the 
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variance of the expected recourse penalty costs is minimized as well to reflect the level of 

risk undertaken by a decision maker). 

 The use of penalty functions in the objective function for stochastic models was 

pioneered by Evers (1967) as a technique of accounting for losses due to infeasibility. In 

our context of production planning of chemical plants (such as an oil refinery) under the 

exogenous uncertainty of product demand, a penalty term in the objective function is 

employed to quantify the effect of missed revenues and loss of customer confidence. It 

typically assumes the following form: 

 

  ( )
1

max 0,
N

i i i
i

P Q
=

 −γ θ − ∑  (5.16) 

 

where γ is the penalty coefficient whose value determines the relative weight attributed to 

production shortfalls as a fraction of the profit margins (Wellons and Reklaitis, 1989; 

Birewar and Grossmann, 1990; Ierapetritou and Pistikopoulos, 1996; Petkov and 

Maranas, 1998). 

 Based on the concepts presented, the penalty coefficients in the stochastic refinery 

planning model are supposed to be proportional to the respective shortfalls or surpluses in 

products. These penalties are interpreted and assumed accordingly, per unit of 

undeliverable or overproduced products, as follows: 

ic+ : the fixed penalty cost paid per unit of demand di,s that cannot be delivered or 

satisfied by production and thus, is considered as cost of lost demand, or if it is to be 

obtained from other sources, then it is the cost of purchasing in the open market to 

meet the shortfall in unsatisfied production requirement demand; 

ic − : the fixed penalty cost paid per unit of the products produced in excess of di,s and 

is typically the cost of inventory to store the production surplus that exceeds demand. 

It is noted that inventory cost should always be lower than the cost of purchasing a 

commodity in the open market as otherwise, it would be comparatively more economical 

for the refinery to outsource their production, thus defeating the purpose of setting up an 

inventory system. 

 As pointed out by Kall and Wallace (1994), the penalty costs incurred due to 

violations in the constraints are actually determined after the observation of the random 
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data; hence, they are recourse costs that are imposed on the second-stage variables. Based 

on statistical concepts, in a case involving repeated execution of the production as it is in 

the operations of a refinery, it becomes appropriate to apply an expected value criterion. 

More precisely, the objective of the model is to maximize the sum of the original first-

stage profit from sales terms while minimizing the expected recourse costs of the second-

stage variables. To accomplish this, Risk Model I developed in Approach 1 based on the 

Markowitz�s MV approach is reformulated to incorporate the penalty terms. Accordingly, 

the following non-negative second-stage recourse slack variables are introduced and 

defined as follows: 

,i sz+ : the amount of unsatisfied demand of product i due to shortfall in supply or 

underproduction (shortages in production) per realization of scenario s; 

,i sz− : the amount of extra product i produced due to surplus in supply or 

overproduction (excesses in production) per realization of scenario s; 

where ,i sz+  ≡ max(0, z) is the positive part of z while ,i sz−  ≡ max(0, −z) is the negative part 

of z. Thus, the expected recourse penalty for the second-stage costs due to uncertainty in 

product i demand for all considered scenarios generated is given by: 

 

  ( ),demand , ,s s i i s i i s
i I s S

E p c z c z+ + − −

∈ ∈
= +∑∑  (5.17) 

 

 To ensure that the original information structure associated with the decision process 

sequence is honoured, for each of the products whose demand is uncertain, s new 

constraints to model the s number of scenarios generated for each product are added to 

the stochastic model in place of the original deterministic constraint. Herein lies a 

demonstration of the fact that the size of a recourse model formulated to handle 

uncertainty increases exponentially since the total number of scenarios grows 

exponentially with the number of random parameters. This step ensures compliance with 

the notion that while some decisions (as presented by the associated decision variables) 

can respond to a specific scenario; other decisions represented by other constraints cannot 

do so (Higle, 2005). In general, the new constraints are expressed as: 

 

  , , , , ,i i s i s i sx z z d i I s S+ −+ − = ∈ ∈  (5.18) 



 

 114

or in graphical representation: 

 

Deterministic model 
constraint

Stochastic model 
constraints

Scenario 1

2 2 2i i i ix z z d+ −+ − =
1 1 1i i i ix z z d+ −+ − =

, , ,i i s i s i sx z z d+ −+ − =

Scenario 2

Scenario s
MM

i ix d≤

 
 

Figure 5.6. Graphical representation of the transformation of a deterministic model�s 
constraints into a correspondingly formulated stochastic model�s constraints that capture 

its possible scenarios 
 

 

5.6.1.4 The surplus penalty ic+  and the shortfall penalty ic−  

 

In general, the ,i sz+  and ,i sz−  recourse variables are used in stochastic linear programming 

with simple recourse framework to obtain equality for all stochastic constraints. These 

variables appear only once in the formulation and must be dealt with in a manner that 

recognizes their economic consequences (Wets, 1983). As highlighted earlier, the role of 

the recourse variables in the formulation is to obtain feasibility for the various possible 

realizations of the stochastic demand constraints. Any deviation from the equality of the 

stochastic constraints will raise a net cost. Therefore, the surplus stock ,i sz−  that exists at 

the end of a particular period is actually a liability since the cost of producing or 

obtaining the surplus cannot be recovered. This excess production is dealt with by 

assuming that the firm can realize a salvage value for it at the end of each period or is 

simply sent to inventory. In the case of salvaging, the company will realize a cash inflow 

from the sale of the surplus and the penalty will be negative since the total cost is reduced 

(the cost of producing surplus has already been accounted for in the first-stage production 

amount variables). The salvage value must be less than the cost of production or 

subcontracting (or outsourcing) since otherwise, the refinery will always have an 

incentive to overproduce, secure in the knowledge that the variable cost of production can 

be later recaptured. 
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 When the refinery underproduces, it must scramble to fill excess demand and incurs a 

cost approximately equal to the cost of producing the required stock through 

subcontracting/outsourcing or overtime labour or by purchasing the product from the 

open market. If the refinery is operating at a level that is close to capacity (or if it is not 

close to capacity but has to incur an additional setup cost), this will usually result in the 

firm incurring costs that exceed normal production costs. The size of the penalty will then 

depend on the cost of the least expensive and available alternative production route or 

method (Kira et al., 1997). 

 

 

5.6.1.5 Limitations of Approach 2 

 

It is well-acknowledged that the scenario approach adopted in formulating recourse 

models results in an exponential growth in the problem size as the number of scenarios 

increases exponentially with the number of uncertain parameters to be modelled. 

Additionally, employing penalty functions in modelling violations of constraints with 

random parameters is also large restricted in that many new non-negative slack variables 

,i sz+  and ,i sz− , accounting for the constraints� violations, must be added. 

 

 

5.6.1.6 A Note on a More General Penalty Function for Production Shortfalls 

 

Birewar and Grossmann (1990) pointed out that the penalty function described simply as 

the product of the cost of production shortfall and the shortfall quantity (penaltyi,t = cost 

Ωit × shortfalli,t, i = 1, 2, �, Np, t = 1, 2, �, T) may not be able to adequately represent 

loss of consumer satisfaction due to the shortfalls in orders booked. For example, it is 

more realistic to assume that the degree of consumer dissatisfaction will increase as the 

percentage shortfall increases. In other words, the constant of proportionality would rise 

as the percentage shortfall increases. For example, if the shortfall SFit for product i in 

interval t is less than 1
,i tσ , then the penalty is proportional to the shortfall and the constant 
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of proportionality or the penalty constant is 1
,i tΩ . For a shortfall between 1

,i tσ  and 2
,i tσ , 

the penalty constant is given by 2
,i tΩ . For a shortfall greater than 2

,i tσ , the penalty 

constant is given by 3
,i tΩ . 

 The total penalty for each product i in interval t is defined by the following three 

groups of constraints: 

 

  1
, , , pPN SF , 1,2,..., , 1,2,...,i t i t i t i N t T≥ Ω = =  (5.19) 

 

  ( )1 1 1 2
, , , , , pPN + SF , 1,2,..., , 1,2,...,i t i t i t i t it i t i N t T≥ σ Ω − σ Ω = =  (5.20) 

 

  ( )1 1 2 2 2 3
, , , , , , , , pPN + + SF , 1,2,..., , 1,2,...,i t i t i t i t i t i t i t i t i N t T≥ σ Ω σ Ω − σ Ω = =  (5.21) 

 

provided 

 

  1 2 3
, , , p, 1,2,..., , 1,2,...,i t i t i t i N t TΩ ≤ Ω ≤ Ω = =  (5.22) 

 

Similarly, any such group linear constraints can be used to replace the penalty constraints 

in the model(s). This approach will be considered in future work. 

 

 

5.6.2 Two-Stage Stochastic Programming with Fixed Recourse Framework to Model 

Randomness in the Left-Hand-Side (LHS) or Technology/Technological Coefficients 

of Product Yield Constraints 

 

5.6.2.1 Uncertainty in Product Yields 

 

The different types of petroleum crude oil and their associated values are defined, 

identified, and distinguished according to their yields structure or pattern besides the 
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qualities of their refined useful products (OSHA Technical Manual, 

http://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_2.html, accessed on September 30, 

2005). Thus, different types of crude oil would lead to varying degrees of product yields. 

The yield pattern is dependent upon complex interaction of feed characteristics and 

reactor conditions that determine severity of operation (Gary and Handwerk, 1994; 

http://jechura.com/ChEN409/, accessed on October 17, 2005). 

 To determine the value of crude oil, comprehensive compilations of laboratory and 

pilot plant data that define the properties of the specific crude oil are undertaken. These 

data are termed as crude assays. A similar method is also used to establish the processing 

parameters of a particular crude oil. At a minimum, the assay should contain a true 

boiling point curve and a specific gravity curve for the crude oil. Most crude oil suppliers, 

however, extend the scope of the assay to include sulphur contents, viscosity, pour points, 

and many other properties (Jones, 1995; Gary and Handwerk, 1994; Speight, 1998). 

 In the literature, the term product yields (as used in Li (2004), for example) is also 

variably referred to as production yields (Pongsakdi et al., in press; Lababidi et al., 2004), 

processing yields (Fisher and Zellhart, 1995), or process yields (Bassett et al., 1997). 

Estimating the yields of the desired fractions that might be obtained from a single crude is 

a fairly simple task. However, the refiner is rarely processing a single crude but a mixture 

of a number of crudes. Assays are usually available for single crudes, but only for very 

few blends, and these are unlikely to be the ones of interest. Performing a complete assay 

of a crude is therefore an expensive and time consuming procedure. The blend being 

charged to the crude distillation unit, typically the first processing unit encountered in 

refining processes, could change significantly before an assay could be completed. The 

refiner, therefore, must have some other means of estimating the amounts of the various 

streams that he should gain (that is, the product yields) from his current blend of crude 

oils. Fortunately, computer programs are available that can take crude assay data and 

derive from them, a complex of pseudo-hydrocarbon components that will satisfactorily 

represent the actual crude. For a complete treatment of this subject, the reader is referred 

to the text by Maples (1993). 

 Liou et al. (1989) reported that uncertainties in yield of reactors, or more precisely, 

product yield of chemical reactions that take place in reactors, are mainly due to the 
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different impact of two factors, namely (1) nonideal flow and/or (2) catalytic pellet 

transport limitations, on the performance of the laboratory or pilot plant reactors in the 

scale-up procedure to commercial reactors. This problem is even more prominent and 

demands increased attention when a large number of chemical reactions occur 

simultaneously, as in the multiple unit operations that make up a petroleum refinery. 

 The factor of nonideal flow refers to deviation from ideal plug flow modelling used in 

pilot plant studies during the scale-up procedure to industrial-standard reactors. The yield 

in a relatively shorter laboratory reactor is affected by axial dispersion more than that of a 

full-scale industrial reactor operating at the same residence time distribution. An a priori 

estimate of the maximum deviation in the yield of a laboratory reactor from that of a full-

scale reactor is important in estimating the uncertainty involved in the scale-up practice. 

This information is vital for predicting the minimum length of a laboratory reactor for 

specified operating conditions so that the yield of a desired product will not deviate from 

that of a commercial reactor by more than some specified value. 

 The second factor of transport limitations in catalytic pellets affects the yield of a 

desired product when many isothermal reactions occur simultaneously. The yield in a 

laboratory reactor is typically higher than that of an industrial unit as the catalytic pellets 

used are usually smaller. Therefore, it is pertinent to model in order to predict the 

maximum uncertainty that may be introduced by this difference. It is reported that 

research has been carried out to determine the effect of diffusion on the local yield of a 

desired product for a system with an arbitrary number of first-order isothermal reactions 

in which the involved prediction requires knowledge of all rate constants. 

 As an example, the analysis and scale-up of a laboratory packed bed reactor is often 

complicated by the presence of intraparticle diffusion resistance, which results in the 

intrinsic kinetics becoming unclear. The difference in particle size and consequently, in 

intraparticle diffusion, introduces an uncertainty in the scale-up procedure. Therefore, it 

is crucial to be able to predict a priori, the maximum impact of both intraparticle 

diffusion and axial dispersion on reactors with simultaneous multiple reactions (Liou et 

al., 1989). 

 On the other hand, at the operational level, the phenomenon of catalyst deactivation 

may affect the yield of reactions, thereby introducing significant uncertainties in 
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modelling product yields. By definition, any process, chemical or physical, which 

decreases the intrinsic activity of a catalyst, can be classified as deactivation. In many 

cases involving more complex catalysts or reactions, deactivation can be accompanied by 

large changes in selectivity as well and hence, lead to uncertainty in related products� 

yields and conversion (Petersen and Bell, 1987). In general, catalyst deactivation can be 

caused by coke formation; contamination of the active sites, agglomeration, and 

poisoning of the catalyst. As an illustration, coke formation or coking, widely 

experienced in the catalysis of hydrocarbon conversions, can deactivate both metallic and 

acid catalytic active sites for hydrocarbon reactions. Accumulation of such carbonaceous 

deposits affects selectivity in hydrocarbon conversions, thus resulting in uncertainty in 

product yields (Sermon et al., 1996). 

 In addition, from the modelling point-of-view, Yang et al. (1996) remarked that 

product yields for many reactions of organic species or compounds are known to be 

relatively uncertain or random due to lack of data or to the lumping procedures used to 

condense mechanisms of the reactions. For instance, feedstocks of fluidized catalytic 

crackers, the major refinery unit operation for gasoline production, consist of thousands 

of components, thus rendering the estimation of intrinsic kinetic constants to be very 

difficult. Therefore, the lumping of components according to the boiling point range is 

generally accepted, although as noted, this is bound to result in uncertainty of the product 

yields (Alvarez-Ramirez, 2004). 

 Nevertheless, Fisher and Zellhart (1995) cautioned that planners and users of a 

planning model must recognize that the developed planning model and the entailing plan 

is a forecast for an uncertain future. Therefore, an excessive amount of time should not be 

spent in trying to estimate product yields that are accurate to a very high degree. 

Although product yields should always be as accurate as possible, it is not to the extent 

that the curse of �paralysis of analysis� sets in due to concern that the yields are not 

perfect. In general, it is acknowledged that yields within one percent of the actual 

(correct) value are acceptable. Yields for each refinery process should be inspected for 

mass balances, hydrogen balances, and balances for other significant materials such as 

sulphur, where and when applicable. 
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 There is relatively few works addressing uncertainty in product yields of chemical 

reactions in the process systems engineering (PSE) literature pertaining to production 

planning. The recent work of Pongsakdi et al. (in press) mentions accounting for this 

factor of uncertainty; however, neither an explicit representation in the stochastic model 

formulation nor a detailed discussion of yield uncertainty is presented. Uncertainty in 

yield from a process, termed as productivities, appears to be an active work in the 

Grossmann and coworkers research group at Carnegie Mellon University, with Goel 

(2004) classifying yield in a process network problem under uncertainty as an 

endogenous parameter, an under-treated issue in uncertainty modelling in which the 

implication is that the structure of the scenario tree generated is dependent of when 

decisions are made. This work has been extended by Tarhan and Grossmann (2005). 

 

 

5.6.2.2 Product Yields for Petroleum Refining Processes 

 

As product yields from a process feature as one of the primary sources of uncertainty in 

the midterm planning of a refinery, it is deemed worthwhile to attempt to identify the 

factors that influence the outcome of the yield pattern of a specific refining process, and 

which directly (or possibly indirectly) contribute to uncertainty in product yields for the 

particular process. This information is summarized in Table 5.7. 

 

 

5.6.2.3 Product Yields from the Crude Distillation Unit (CDU) 

 

The crude distillation unit (CDU) is the primary unit operation for the initial fractionation 

of crude oil. A representation of the true boiling point (TBP) distillation curve for the 

CDU is obtained by associating the temperature scale and the distilled percentages as 

shown in Figure 5.7. In this diagram, each rectangular area represents the yield of the 

different cuts from the crude. With this representation, it is possible to situate the types of 

petroleum cuts and the corresponding temperature limits or cut points as that obtained in 

refineries. An alternative representation of boiling temperature against cumulative 
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volume percentage, which is perhaps more commonly encountered, is shown in Figure 

5.8 for the Arabian Light crude oil. 

 
Table 5.7: Factors influencing the yield pattern of processes in petroleum refining (Gary and 

Handwerk, 1994) 
 

Refinery Process Factors influencing Yield 
Crude distillation • Crude oil type 

• Feed characteristics 
• Reactor conditions/Operating severity, e.g., temperature and pressure 

  
Coking • Temperature (high) 

• Pressure (low) 
• Feed characteristics especially carbon residue 

  
Catalytic cracking Catalyst type 
  
Catalytic hydrocracking • Crude oil type 

• Previous processing operations 
• Catalyst type and activity 
• Operating conditions, e.g., temperature and pressure 

  
Catalytic reforming • Reactor pressure 

• Catalyst type and activity 
• Feed quality 

  
Isomerization • Feed properties 

• Operating severity 
  
Alkylation • Isobutane/Olefin ratio 

• Temperature 
 

 In current industrial practice of refinery planning and optimization using linear 

programming, the CDU is modelled based on the stream TBP cut point scheme using the 

technique of swing cut modelling. (Sahdev et al., 2004, 

www.cheresources.com/refinery_planning_optimization.shtml, accessed February 22, 

2006). Swing cuts are increasingly used in linear programming assay tables to represent 

the refinery�s flexibility to alter cut-points for optimization of side-cut yields and 

properties. (Tucker, Michael A, www.kbcat.com/pdfs/tech/tp_002.pdf, accessed February 

22, 2006). 
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Figure 5.7. Representation of the true boiling point (TBP) distillation curve for the crude distillation unit 
(CDU) (taken from ENSPM Formation Industrie, 1993) 
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Figure 5.8. Fractions from the distillation curve for the Arabian Light crude oil (taken from Jechura, 
http://jechura.com/ChEN409/, accessed on October 17, 2005) 

 

 

5.6.2.4 Sampling Methodology by Scenario Generation for the Recourse Model 

under Product Yields Uncertainty 

 

Uncertainty in product yields introduces randomness in the mass balances as given by 

equation (4.7). The sampling methodology employed for scenario generation for the 

recourse model under product yields uncertainty is similar to the case of demand 

uncertainty addressed in the previous section. Table 5.8 summarizes attributes of 

scenarios constructed for modelling product yields uncertainty whereas Table 5.9 

presents the scenario construction to model yield uncertainty of products k = 1, 2, 3, �, 

Nc from material i. Note that in order to ensure that the material balances are satisfied, the 

summation of yields must equal to unity. Therefore, if there are Nc number of products 

with randomness in yield, then the yield for the Ncth product considered is computed as 

the difference of the summation of yields for the (Nc�1) products subtracted from 1, that 

is, , , , ,
1

1
c

c

N

i N s i k s
k

y y
=

= −∑ . In most situations pertaining to chemical processes planning, 

doing so would not distort the physics of the problem as usually, there is provision to 

account for yield losses. In the case of petroleum refining, the Ncth product usually refers 

to a product at the �bottom of the barrel� of a certain processing unit, which possesses 

relatively insignificant commercial value compared to the yields of the other products 

produced by the same unit. 
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Table 5.8. Attributes of the scenario construction for modelling product yields uncertainty from 
material i 

 
Yield Uncertainty: Left-Hand Side Coefficient of Mass Balance for 

Product k Yield from Material i (unitless) under Scenario s  
Scenario 1 

(s = 1) 
Scenario 2 

(s = 2) L  Scenario NS 
Percentage of deviation from 
the expected value + ψ1% −ψ2% L  +ψNS% 

Yield of product k from 
material i (ton/day) yi,k,s 

yi,k,1 yi,k,2 L  yi,k,NS 

Probability ps p1 p2 L  pNS 
 

Table 5.9. Representative scenarios of product yields uncertainty in the refinery planning under 
uncertainty problem 

 
Yield Uncertainty: Left-Hand Side Coefficient of Mass Balance for Product 

k Yield from Material i (unitless) under Scenario s, yi,k,NS 
Product type j Scenario 1 Scenario 2 L  Scenario s 
Product 1 yi,1,1 yi,1,2 L  yi,1,NS 
Product 2 yi,2,1 yi,2,2 L  yi,2,NS 
Product 3 yi,3,1 yi,3,2 L  yi,2,NS 
M  M  M  L  M  
Product Nc 

, ,1
1

1
cN

i k
k

y
=

−∑  , ,2
1

1
cN

i k
k

y
=

−∑  L  , ,
1

1
cN

i k NS
k

y
=

−∑  

Probability ps p1 p2 L  pNS 
 

 

5.6.2.5 Modelling Uncertainty in Product Yields by Slack Variables and Penalty 

Functions for Shortages and Excesses in Yields 

 

To be consistent with the definitions of the variables accounting for production shortfalls 

( ,i sz+ ) and surpluses ( ,i sz− ) in addressing demand uncertainty, variables to denote the 

deviation from the expected value (mean) of the yield of product j from material i are 

defined as follows. A positive deviation refers to a shortage in product yield; conversely, 

a negative deviation denotes an excess in product yield. Therefore, the variables are 

properly defined as below: 

, ,i k sy+ : the amount of shortage in yields from material i (from the expected value) for 

product type k per realization of scenario s, 
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, ,i k sy− : the amount of excess in yields from material i (from the expected value) for 

product type k per realization of scenario s, 

The amount of shortage of yields from crude oil can be equivalently interpreted as the 

amount of material to be added to compensate for the associated shortage in product k; in 

contrary, the amount of excess of yields indicates the amount of material to be reduced to 

account for the associated surplus in product k. 

 Based on the similar approach of adopting penalty functions for modelling demand 

uncertainty, it is assumed that a fixed penalty cost of ,i kq+  is incurred per unit of , ,i k sy+  

amount of shortage of yield from material i, and a fixed penalty cost of ,i kq−  for per unit 

of excess of yield from material i by the amount , ,i k sy− . Thus, the expected recourse 

penalty for the second-stage costs due to uncertainty in yield of product k from material i 

for all considered scenarios generated is given by: 

 

  ( ),yield , , , , , ,s s i j i k s i j i k s
i I s S

E p q y q y+ + − −

∈ ∈
= +∑∑  (5.23) 

 

 As in the case of product demand uncertainty, to ensure that the original information 

structure associated with the decision process sequence is honoured, Ns new constraints 

(in place of the original single deterministic fixed yield constraint) to account for the Ns 

number of scenarios dealing with product yield uncertainty are introduced for each 

product whose yield is uncertain (Higle, 2005). The general form of the new constraints 

is: 

 

  1 , , , , 0, , ,i i i k s i k sT x x y y i I k K s S+ −+ + − = ∀ ∈ ∀ ∈ ∀ ∈  (5.24) 

 

 To obtain realistic values for the yield deviation terms, upper bounds of five (5) 

percent of the crude oil mass flowrate are imposed as an estimate of the maximum value 

that these terms could sensibly assume. 

 The combination of Tables 5.4, 5.6, and 5.9 as given by Table 5.10 completes the 

scenario formulation in order to simultaneously model uncertainties in commodity prices, 
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product demand, and product yields as represented by randomness in the coefficients of 

the objective function and the RHS and the LHS of the constraints, respectively. The 

major assumption that prices, demand, and yields in each scenario are highly correlated 

enables the combination of all the scenarios in a stochastic programming model with 

discrete random variables. Otherwise, the computation would involve the construction of 

joint probability distribution of random variables that are made up of scenarios depicting 

all possible combinations of the three parameters of prices, demand, and yields. This will 

be considered in future work. 

 The corresponding expected recourse penalty for the second-stage costs due to 

uncertainties in both demand and yields is given by: 
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( ) ( )
( ) ( )
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s s s

s i i s i i s s i i k s i i k s
i I s S i I s S
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 (5.25) 

 

The expression for sE ′  as given by equation (5.25) clearly formalizes and illustrates one 

of the most profound concepts of the recourse model, that is, the sole random variable is 

now redefined to be the scenarios and no longer the separate random variables of 

coefficients denoting prices, demand, and yields as considered earlier. Mathematically, 

single random vectors of the recourse variables ( ), , , , , ,, , ,i s i s i k s i k sz z y y+ − + −ξ =%  are used in place 

of the four single random variables ,i sz+ , ,i sz− , , ,i k sy+ , and , ,i k sy− , in which vectors ξ%  are 

random variables themselves (denoted here by the wavy line above the symbol). ξ%  is 

described by a finite discrete distribution of ( ){ }, , 1,2,3,..., 0s s sp s s p sξ = > ∀  as 

depicted by the discrete probabilities in Table 5.10 (Kall and Wallace, 1994). 
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Table 5.10. Complete scenario formulation for the refinery production planning under uncertainty in 
commodity prices, market demand for products, and product yields problem 

 
Material/Product Scenario 1 Scenario 2 L  Scenario NS 

Price Uncertainty: Objective Function Coefficient of Prices ($/ton) 
Product 1 c1,1 c1,2 L  c1,NS 
Product 2 c2,1 c2,2 L  c2,NS 
Product 3 c3,1 c3,2 L  c3,NS 
M  M  M  L  M  
Product N cN,1 cN,2 L  cN, NS 

Demand Uncertainty: Right-Hand-Side Coefficient of Constraints for Product i 
Demand (ton/day) under Scenario s, di,s 

Product 1 d1,1 d1,2 L  d1,NS 
Product 2 d2,1 d2,2 L  d2,NS 
Product 3 d3,1 d3,2 L  d3,NS 
M  M  M  L  M  
Product N dN,1 dN,2 L  dN,NS 
Yield Uncertainty: Left-Hand Side Coefficient of Mass Balance for Product j Yield 

from Material i (unitless) under Scenario s, yi,k,s 
Product 1 yi,1,1 yi,1,2 L  yi,1,NS 
Product 2 yi,2,1 yi,2,2 L  yi,2,NS 
Product 3 yi,3,1 yi,3,2 L  yi,2,NS 
M  M  M  L  M  
Product Nc 

, ,1
1

1
cN

i k
k

y
=

−∑  , ,2
1

1
cN

i k
k

y
=

−∑  L  , ,
1

1
cN

i k NS
k

y
=

−∑  

Probability ps p1 p2 L  pNS 
 

 

5.6.2.6 Expectation Model I 

 

A new reformulated objective function z2 is now proposed, consisting of the sum of the 

following components: (1) maximization of the expected net profit from product sales 

subtracting the raw material costs of purchasing crude oil and the operating costs; (2) 

minimization of the sum of variance in profit; and (3) minimization of the sum of 

expected recourse penalty costs due to shortfalls or surpluses in production and shortages 

or excesses of product yields from certain materials. The mathematical expression for this 

new objective function is presented as: 

 

  [ ]2 1 0 1 0maximize ( )s sz z E E z V z E′ ′= − = − θ −  (5.26) 

 

where 
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subject to 

 deterministic constraints (first stage): 

  (4.1) and (4.2) for production capacity; 

  (4.7) for mass balances except for fixed production yields (which are random); 

  (4.4) for availability constraints; 

  (4.5) and (4.6) for inventory requirements; 

 stochastic constraints (second stage): 

  (5.18) for demand constraints 

  , , , , ,i i s i s i sx z z d i I s S+ −+ − = ∈ ∈ ; 

  (5.24) for mass balances for fixed production yields 

  1 , , , , 0, , ,i i i k s i k sT x x y y i I k K s S+ −+ + − = ∈ ∈ ∈ . 

 

 Solution of the first-stage variables provides decisions on the flowrate of production 

streams. Historical data of actual commodity prices, market demand, and product yields 

are considered, and depending on which scenario occurs, appropriate production will be 

executed in order to satisfy the realized prices, demand, and yields. These are the second-

stage recourse decisions that are clearly constrained by what has been produced in the 

first-stage (apart from being constrained or depended upon by the corresponding 

scenario).  

 Theoretically, the solution is, in general, likely to be more representative or more 

robust with more scenarios considered but at the expense of being computationally 

expensive (that is, increase in computation time). Furthermore, with considerable number 

of scenarios taken into account, typically in the hundreds (for example, Pongsakdi et al. 

(in press) considered 600 scenarios), more �noise� is present in the data. A more practical 

approach is perhaps to compute the expected values of the data obtained from the first 

round of scenario generation, and then to subject these expected values to a second round 
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of scenario generation in order to obtain a more robust solution, although with a trade-off 

in the increment of solution time. Another approach that can be considered is the use of 

the concept of principal component analysis (PCA) in distilling the hundreds of scenarios 

into a smaller number of representative scenarios, thus reducing both the amount of 

computational time and the presence of noisy data. 

 

 

5.6.2.7 Expectation Model II 

 

As remarked in Approach 1, a potential complication with Expectation Model I lies in 

computing a suitable range of values for the profit risk factor θ1. Therefore, the proposed 

alternative modelling strategy of minimizing the variance, or in keeping to the 

maximization problem, becomes maximizing the negative of the variance, while adding a 

target value constraint for the mean of the original profit objective function; this is 

employed as follows for Expectation Model II: 

 

  [ ]
2 0

0

maximize ( )
subject to Target objective function value

deterministic and stochastic constraints 

sz V z E
E z

′= − −
≥

−(4.1) (4.7)
 (5.27) 

 

 

5.7 APPROACH 3: RISK MODEL II WITH VARIANCE AS THE MEASURE OF 

RISK OF THE RECOURSE PENALTY COSTS 

 

5.7.1 Two-Stage Stochastic Programming with Fixed Recourse to Model Uncertainty 

in Prices, Demand, and Product Yields by Simultaneous Minimization of the 

Expected Value and the Variance of the Recourse Penalty Costs 

 

As highlighted earlier, Mulvey et al. (1995) stress the inappropriateness of models with 

the expected value objective since they ignore both the risk attitude of the decision-maker 

and the distribution of the objective values sξ  (as given by equation (5.25) for 
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Expectation Models I and II developed in the previous section). Higle (2005) equally 

advocated this by noting that expected values are risk-neutral models; hence they do not 

always provide a satisfactory model for decision-making under risk. This is especially so 

in the settings of moderate and high-risk decision-making under uncertainty as most 

decision-makers are risk-averse in making (relatively) important decisions. 

 Therefore, in this third approach, the expected value model developed in Approach 2 

is extended to incorporate the measure of economic risk associated with an investment 

alternative. This is accomplished by reformulating the recourse penalty terms, again in 

the spirit of the Markowitz�s mean�variance approach, as similar to the profit terms. The 

resulting risk model obtained is one in which in maximizing expected profit by 

minimizing its deviation (as computed by its variance), the expected value of the recourse 

penalty costs is minimized as well as its deviation by computing a parameterized function 

of the variance of the penalty costs. In general, this is the classical approach long 

favoured among financial planners in the field of financial engineering to enable 

decision-makers to investigate the tradeoffs between expectations and variances of costs 

associated with their decisions (although by stating this, we do not intend in any way to 

conceal the fact that there has also been published works doubting the practicality of the 

MV approach, among others, by Michaud and Michaud (2006), Michaud (1998), and 

Jobson and Korkie (1981)). According to Luenberger (1998), this approach enables the 

tradeoffs between the means and the variances to be explicit while Mulvey et al. (1995) 

perceives the incorporation of the variance term as an indicator of model robustness, as 

will be analyzed through the numerical example on refinery midterm planning. Note that 

we did not consider adopting the robust optimization model in the form originally 

proposed by Mulvey et al. (1995) following the argument made by Sen and Higle (1999) 

that the robust models are, in general, structurally unrelated to solutions obtained from 

the recourse model based on Markowitz�s mean�variance approach. Instead, they further 

stressed that the robust optimization models are instead dominated by solutions derived 

from the inferior least-cost model. 

 A brief review on the concept of variance for a random variable follows. If X is a 

random variable (that is, a variable whose value is decided by chance) that can take on a 

finite number of values x1, x2, x3, �, xn, with the associated probability of such 
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occurrences given by p1, p2, p3, �, pn, respectively, then the expected value or mean of X 

is defined to be: 

 

  1 1 2 2 3 3 n nE p x p x p x p x= + + + +L  (5.28) 

 

From the definition of variance of X introduced earlier in equation (5.5) (Markowitz, 

1952), the parameterized function of the variance for the various expected recourse 

penalty for the second-stage costs Vs is thus derived as: 
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 (5.29) 

 

Note that the index s′ and the corresponding set S′ is merely used to denote scenarios for 

the evaluation of the inner expectation term in order to distinguish from the original index 

s used to represent the scenarios. The variance Vs is weighted by the risk tradeoff 

parameter θ2 that is varied over the entire range of (0, ∞) to generate a set of feasible 

decisions that have maximum return for a given level of risk. This feasible decisions set 

is equivalent to the �efficient frontier� portfolios introduced by Markowitz (1952; 1959) 

for financial investment applications. The parameter θ2 can be seen as reflecting the 

decision maker�s attitude towards variability, that is, in more explicit terms, the risk 

attitude of the decision maker. Hence, the following is the mathematical description of 

Risk Model II, as a result of the recourse reformulation of Expectation Model I developed 

in Approach 2, utilizing variance as the measure of risk by minimizing the variance in the 

expected recourse penalty costs: 
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  [ ]3 2 2 0 1 0 2maximize ( )
subject to deterministic and stochastic constraints 

s s sz z V E z V z E V′= − θ = − θ − − θ
−(4.1) (4.7)

 (5.30) 

 

As denoted, Risk Model II is subject to the same set of constraints as for Expectation 

Model I outlined in Approach 2. 

 It is desirable to demonstrate Risk Model II as possessing robustness both in terms of 

its solution (solution robust) as well as the model itself (model robust). According to 

Mulvey et al. (1995), a solution to a stochastic optimization model is defined as solution 

robust if it remains close to optimality for all scenarios of the input data; and model 

robust if it remains almost feasible for all data scenarios. In refinery planning, model 

feasibility is as pertinent as solution optimality. In mitigating demand uncertainty, model 

feasibility is measured by expected surpluses and shortfalls in production, in which each 

denotes situation of excess production and unmet demand, respectively. Values of 

expected unmet demand should be minimized in order to gain customer demand 

satisfaction, while excess production should be simultaneously minimized to contribute to 

better inventory management. 

 Risk Model II is characterized by solutions in the multiobjective space as defined by 

the expected recourse penalty costs and the variance of the recourse costs. In the model, a 

measure of solution robustness is obtained by varying the penalty parameter  θ2 and 

observing the corresponding changes in the expected value of recourse penalty costs and 

expected feasibility. The model does not serve to present an absolute optimal solution 

that corresponds to the best possible outcome (typically in terms of maximum profit and 

minimum cost) desired by any decision-maker; it is merely a tool to facilitate a decision-

maker in determining the choice that constitutes the best decision. As pointed out by 

Applequist et al. (2000), while the concept of using variance of the objective function 

value as a measure of risk is sound, such an approach requires the specification of the 

values of the one or more penalty of trade-off parameters (such as given by θ1 and θ2 in 

this Risk Model II). It is therefore left entirely in the hands of the decision-maker to 

effectively choose from a family of solutions corresponding to different values of these 

trade-off parameters. 
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5.7.2 Limitations of Approach 3 

 

This approach results in an even larger nonlinear programming (NLP) problem than 

Approach 2, involving quadratic terms introduced by variance of the expected recourse 

penalty costs, which adds to the computational burden in the solution. Therefore, in 

general, it is undesirable to consider higher moments (beyond variance) in stochastic 

modelling approach as even the consideration of variance already requires the solution of 

a nonlinear program.  

 It should also be pointed out that incorporating the variance of the recourse function as 

part of the objective function could potentially cause the problem to lose convexity. Thus, 

without employing the techniques of global optimization, one is liable to get trapped in 

local optima solutions. In some models, incorporating the variance of the recourse 

function into the objective function leads to poor design or planning for cases in which 

the variance is small, but the design is unnecessarily expensive (Sen, 2001). Furthermore, 

Sen and Higle (1999) remarked that this approach that has its roots in the Markowitz�s 

model, which is based on assumptions such as normally distributed returns, that may not 

necessarily hold in some applications. 

 In addition, since variance is a symmetric risk measure, profits both below and above 

the target levels are penalized equally, when it is actually desirable to only penalize 

profits of the former, that is, profits that are below the target (Barbaro and Bagajewicz, 

2004). In other words, constraining or minimizing the variance of key performance 

metrics to achieve robustness, which in this case are the profit and the recourse penalty 

costs, may result in models that overcompensate for uncertainty, as reported by Samsatli 

et al. (1998). They therefore propose a general approach to robustness that can be tailored 

for various types of constraints to be imposed on the system and on specific suitable 

performance metrics. Other potentially more representative risk measures should also be 

considered with Kristofferson (2005) providing a recent review of a wide choice of risk 

measures applicable within a two-stage stochastic optimization framework (as 

highlighted earlier in Section 5.5.7). 
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5.7.3 A Brief Review of Risk Modelling in Chemical Process Systems Engineering 

(PSE) 

 

The subject of risk modelling, mainly incorporated through stochastic optimization 

models, has been receiving increasing attention from the chemical process systems 

engineering (PSE) community since the publication of one of the earliest papers (if not 

the earliest) addressing this issue by Applequist et al. (2000) of the PSE research group at 

Purdue University. Of late, the Miguel Bagajewicz research group at University of 

Oklahoma, for instance, has produced a steady stream of publications addressing research 

problems related to financial risk management in planning under uncertainty, mainly with 

applications in the oil and gas industry. This can be found in the works of Pongsakdi et al. 

(in press), Barbaro and Bagajewicz (2004a, 2004b), and Aseeri and Bagajewicz (2004). 

Other works from Bagajewicz and co-workers that also incorporate the concept of 

financial risk management include Guillen et al. (2005), Aseeri et al. (2005), Bonfill et al. 

(2004),), and Romero et al. (2003). 

 

 

5.8 APPROACH 4: RISK MODEL III WITH MEAN-ABSOLUTE DEVIATION 

(MAD) AS THE MEASURE OF RISK IMPOSED BY THE RECOURSE 

PENALTY COSTS 

 

In this proposed fourth approach, we attempt to formulate a two-stage stochastic 

programming with fixed recourse framework to model the same three factors of 

uncertainties (namely commodity prices, market demand, and product yields) by 

minimizing the mean-absolute deviation (MAD) of the various expected recourse penalty 

for the second-stage costs. In essence, this model replaces the variance term in the 

objective function of Risk Model II with the MAD term. 
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5.8.1 The Mean-Absolute Deviation (MAD) 

 

The mean-absolute deviation (MAD) (often inaccurately called the mean deviation) is 

defined as: 

 

  
1

1MAD
N

i i
i

f x x
N =

= −∑  (5.31) 

 

where N is the sample size, xi are the values of the samples, x  is the mean, and fi is the 

absolute frequency. 

 In their pioneering work, Konno and Yamazaki (1991) proposed a mean-absolute 

deviation (MAD) portfolio model to formulate a large scale portfolio optimization 

problem. This serves as an alternative measure of risk to the standard Markowitz�s mean�

variance portfolio selection model, which models risk by the variance of the rate of return 

of a portfolio, thus leading to a nonlinear convex quadratic programming (QP) problem. 

Although both measures are almost equivalent from a mathematical point-of-view, they 

are substantially different from a computational point-of-view in the following ways. 

First, the use of MAD, essentially as a proposed linearization method of the objective 

function to produce an equivalent linear programming (LP) problem, serves to overcome 

the computational difficulties of the QP portfolio model and therefore, enables large-scale 

problems to be solved faster and more efficiently. This is a situation that held true at least 

until the mid-1990s before greater advancements in computer technology increasingly 

narrowed the gap in speed between the computational solution of an LP and a convex QP. 

Second, since the model can be casted into a linear programming (LP) problem, it can be 

solved much faster than a corresponding MV model. Third, the LP formulation has 

computational advantages over the QP formulation when integer constraints and 

nonconvex functions are considered. Thus, in the area of investment portfolios within the 

financial engineering field, the LP formulation is more suitable in handling problems 

associated with real transaction environments. Moreoever, it is further reported that the 

minimization of MAD provides similar results as the Markowitz formulation if the return 

is multivariate normally distributed (Konno and Wijayanayake, 
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2002; Konno and Koshizuka, 2005). Appendix C presents a theoretical treatment of 

MAD based on Konno and Yamazaki (1991). 

 Three additional fundamental difficulties also exist with the MV model: (i) the 

assumption that returns are normally distributed about the mean, which is not required in 

the MAD model, (ii) the required storage and calculation of a usually dense variance 

covariance matrix; which again is not required in the MAD model formulation and 

consequently, its estimation is avoided; and (iii) the use of variance as a measure of risk 

equally penalizes both upside and downside variation; when it should only be the latter 

that is undesirable and thus penalized, as stressed earlier in Section 5.7.2 and 

demonstrated graphically in Figure 5.9 (Konno and Yamazaki, 1991; Simaan, 1997; 

Speranza, 1996; Murtagh, http://www.esc.auckland.ac.n/Organisations/ 

ORSNZ/conf37/Papers/Murtagh.pdf, accessed on November 12, 2005). 

Penalty

Returnr

Penalty

Returnr
Mean-Absolute Deviation (MAD) Variance  

 
Figure 5.9. Penalty functions for mean-absolute-deviation (MAD) and variance minimization (based on 

Zenios and Kang (1993) and Samsatli et al. (1998)). 
 
 Ogryczak and Ruszczynski (1999) further demonstrated that MAD is an authentic 

measure of risk in view of its compatibility with von Neumann�s principle of 

maximization of expected utility (MEU) under risk aversion; a result corroborated by 

Speranza (1996). This substantiates the solid economic foundation of the theoretical 

properties of MAD (Konno and Koshizuka, 2005). 
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5.8.2 Two-Stage Stochastic Programming with Fixed Recourse to Model Uncertainty 

in Prices, Demand, and Product Yields by Simultaneous Minimization of the 

Expected Value and the Mean-Absolute Deviation of the Recourse Penalty Costs 

 

Konno and Yamazaki (1991) present the absolute deviation function, denoted as L1 risk, 

as: 
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From equation (5.25) of Approach 2, the expected recourse penalty for the second-stage 

costs due to the combined uncertainties in market demand and product yields from crude 

oil is given by: 
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 Thus, the corresponding mean-absolute deviation (MAD) of the expected penalty costs 

due to violations of constraints for maximum product demand and product yields as a 

result of randomness in both demand and yields is formulated as: 
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 (5.33) 

 

 Since this function is not linear, it is linearized by adopting the transformation 

procedure proposed by Konno and Yamazaki (1991) and revisited in Papahristodoulou 

and Dotzauer (2004). The variables Yij ≥ 0 are defined, in which these Yij variables can be 
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interpreted as linear mappings of the nonlinear expression given by 

( ) ( ) ( ) ( ), , , , , ,i is i is i is i is s i i s i i s i i k s i i k s
i I s S

c z c z q y q y p c z c z q y q y+ + − − + + − − + + − − + + − −
′ ′ ′ ′ ′

′ ′∈ ∈

 + + + − + + + ∑ ∑ . Thus, 

equation (5.33) is rewritten simply as 
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subjected to the following three constraints: 
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and the non-negativity constraints for Yij: 

 

  0ijY ≥  (5.37) 

 

Similar to the formulation of Risk Model II in Approach 3 that utilizes variance as the 

measure of risk for the recourse penalty costs, the adoption of MAD introduces the risk 

parameter θ3, varied over the entire range of (0, ∞) to consider its trade-offs with the 

expected profit term, the profit variability term, and the expected recourse term in the 

objective function. Therefore, the reformulated mathematical program for Risk Model III, 

which utilizes MAD as the measure of risk, is given by: 
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 (5.38) 

 

subject to the same set of constraints as for Expectation Model I and Risk Model II with 

the addition of constraints (5.35)�(5.37). 

 Note that the risk parameters  θ1 and θ3, in their dual role as the scaling factors for the 

variance term and the MAD term respectively, would mathematically necessitate that the 

value of θ1 is (much) smaller than θ3 (θ1 < θ3) since θ1 is required to scale down the 

squared operation involved in computing variance whereas the MAD term is in the same 

dimension as the expectation terms. 
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CHAPTER 6 

Model Implementation on the General Algebraic Modeling System 

(GAMS) 
 

 

In the past, users have to spend a substantial amount of time on computer coding to solve 

mathematical programming problems. However, major progress has been achieved in 

recent times in the development of mathematical optimization algorithms and computer 

codes, thus reducing significant amount of time required to form and implement solution 

procedures. This enables more time to be focussed on developing strong model 

formulations rather than developing coding and solver development. 

 The formulation and solution of major types of mathematical programming problems 

with increasingly larger scale can now be effectively performed with modelling systems 

such as GAMS (General Algebraic Modeling System) (Brooke et al., 1998) and AMPL 

(Fourer et al., 1992). While these require that the model be expressed explicitly in 

algebraic form, they have the advantage of being automatically interfaced with codes of 

solvers for solving the various types of problems that may be encountered. The modelling 

platform GAMS, for instance, has a library of solvers with the capability of providing 

global solutions for linear programs (LP), integer linear programs (ILP) and mixed 

integer linear programs (MILP), as well as determining local optima of nonlinear 

programs (NLP), integer nonlinear programs (INLP), and mixed integer nonlinear 

programs (MINLP) that have nonlinearities in continuous variables (Rardin, 1999). 

GAMS can also perform automatic differentiation and allow the use of indexed 

equations, which greatly facilitates and enhances the generation of large scale models. 

Furthermore, these modelling systems are now widely available on desktop personal 

computers (PCs) (Grossmann et al., http://egon.cheme.cmu.edu/papers.html, accessed on 

December 10, 2005). 

 In essence, GAMS allows the user to almost exclusively concentrate on modelling a 

problem by making the setup simple: defining variables, equations, and data, and then 

selecting an appropriate solver. In fact, GAMS possess the capability of providing a 

default solver that is determined to be (most) suitable for the structure of the problem at 
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hand. The problem formulation can be altered with speed and ease, and the specification 

of different solvers to be tested requires only minimal effort of a single line coding. All 

solution algorithms can be deployed without requiring any change in existing models, 

thus resulting in significant reduction of time dedicated to developing and executing 

computational experiments.  

 As explained, GAMS is a modelling system for optimization that provides an interface 

with a variety of different algorithms of solvers. Models are supplied by the user to 

GAMS in an input file in the form of algebraic equations using a higher level language. 

GAMS then compiles the model and interfaces automatically with a solver, which is an 

optimization algorithm. The compiled model as well as the solution computed by the 

solver is subsequently reported back to the user through an output file. The simple 

diagram below, taken from Grossmann (1991, http://www.che.boun.edu.tr/che477/gms-

mod.html, accessed on September 30, 2005), illustrates this process. 

 

Input File
MODEL

GAMS
Compilation

of Model

Output File
RESULTS

Optimization
Solver

 
 

Figure 6.1. Framework of the GAMS modelling system 
 

 Note that in this work, the objective functions of the proposed stochastic models are 

made up of convex functions as given by the expectation operation, the variance 

operation, the recourse function, or the Mean-Absolute Deviation (MAD) expression, in 

various forms of nonnegative-weighted combinations as stipulated in the formulation of 

the respective models. We therefore conclude that all the models possess the highly 

sought-after mathematical programming property of convexity based on the theorem that 

states �any f(x) formed as the nonnegative-weighted (αi ≥ 0) sum 
1

( ) ( )
k

i i
i

f g
=

α∑x x  of 

convex functions gi(x), i = 1,�, k, is itself convex� (Rardin, 1998). Since the local 
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optimal of a convex function is also the global optimal, a starting value to initialize the 

solution in GAMS would not be required 

 Based on the established ease and advantages of using GAMS, numerical studies of 

the deterministic model and the proposed stochastic models are coded and implemented 

using GAMS Integrated Development Environment (IDE) version 2.0.19.0 (Module 

GAMS Rev 130) for Windows platform. The models are then solved using CPLEX 9.0 

(ILOG CPLEX Division, http://www.gams.com/dd/docs/solvers/cplex.pdf, accessed 

February 12, 2006) for the linear deterministic case and CONOPT 3 (Drud, 1996, 

http://www.gams.com/solvers/conopt.pdf, accessed on January 10, 2006) for the five 

nonlinear stochastic cases on a Pentium IV, 1.40 GHz, 512 MB of RAM machine (a 

notebook computer instead of a desktop, to be precise). 

 CPLEX is incidentally the default solver in GAMS for handling linear programs (LP), 

whose algorithm is based on the interior point methods that were first introduced by 

Karmarkar (1984). For nonlinear programming (NLP) problems, CONOPT 3 is also the 

GAMS default solver, in which it is based on a feasible path generalized reduced gradient 

method with restoration. The solutions generated for the deterministic equivalent 

formulation of the stochastic problems consist of: (i) the first-stage decision variables of 

production flowrates for all process streams and (ii) the second-stage recourse variables 

of production deviations due to randomness in demands and yields. Due to the 

nonlinearities of the stochastic models, starting values for the first-stage decision 

variables have been initialized to the optimal solutions obtained from the deterministic 

model in an effort to ensure solutions of global optimality. Although a global optimum 

could not be guaranteed due to the general nonconvexities of the problems, multiple local 

solutions have not been detected under tests of varied initial conditions. This also 

indicates that CONOPT 3 is a robust solver for the nonlinear nonconvex stochastic 

models. 

 In addition, it may be useful to note that nonlinear optimization algorithms often 

search in the space defined by superbasic variables, which are variables that are not in the 

basis but whose values are between the upper and lower bounds. If an infeasible solution 

is found by the solver used in GAMS, it is most likely due to the non-existent of a 

superbasic variable, in which the facility within GAMS would readily report. 
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CHAPTER 7 

Analysis of Results from the Stochastic Models 
 

 

In the context of production planning, robustness can be generally defined as a measure 

of resilience of the planning model to respond in the face of parameter uncertainty and 

unplanned disruptive events (Vin and Ierapetritou, 2001). For this, we propose the 

adoption of two metrics that have previously been used in the optimization literature, 

under similar and different contexts, to quantitatively measure and account for 

characteristics of planning under simultaneous uncertainty in three different parameters 

(namely commodities� prices, market demands, and product yields). The two metrics are: 

(1) the concepts of solution robustness and model robustness according to the pioneering 

idea of robust optimization by Mulvey and co-workers (1995) and (2) the coefficient of 

variation Cv. 

 

 

7.1 SOLUTION ROBUSTNESS AND MODEL ROBUSTNESS 

 

According to Mulvey et al. (1995), Bok et al. (1998) and Malcolm and Zenios (1994), 

solution robustness of an optimization model with respect to optimality is indicated by 

the optimal model solution that is almost optimal, or remains close to optimal, for any 

realization of the uncertain scenarios. This implies solutions that are less sensitive to 

changes in the data when different scenarios are considered. On the other hand, model 

robustness refers to solution robustness with respect to feasibility, with the optimal model 

solution that remains �almost� feasible for any realization of the scenarios. Thus, in 

general, for production planning problems, model robustness or model feasibility is 

represented by the optimal solution that has almost no shortfalls or surpluses in 

production as reflected by the expected total unmet demand and total excess production, 

respectively; both of which should be kept to a minimum. A trade-off exists between 

solution optimality and model-and-solution robustness. In order to investigate these 
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trends, the following parameters are tabulated and analyzed from the raw computational 

results of the refinery production rates for the stochastic models: 

• the expected deviation in profit as measured by variance V(z0); 

• the expected total unmet demand or production shortfall; 

• the expected total excess production or production surplus; and 

• the expected recourse penalty costs Es. 

 

 

7.2 COEFFICIENT OF VARIATION 

 

The concepts of the value of the stochastic solution VSS and the expected value of 

perfect information EVPI (Birge, 1982; Birge, 2005; Birge and Louveaux, 1997; Gupta 

and Maranas, 2000; Kall and Mayer, 2005; Uryasev, 2005) appear to be unsuitable in the 

case of nonlinear quadratic programming problems such as in the present work. 

Therefore, a different measure is sought to interpret the solutions obtained. One such 

approach is to investigate the coefficient of variation Cv. Cv for a set of values is defined 

as the ratio of the standard deviation to the expected value or mean, and is usually 

expressed in percentage. It is calculated as: 

 

  v
Standard Deviation 100% 100% 100%

Mean
VC
E

σ= × = × = ×
µ

 (7.1) 

 

Statistically, Cv is a measure of reliability, or evaluated from the opposite but equivalent 

perspective, it is also indicative of a measure of uncertainty. It is alternatively interpreted 

as the inverse ratio of data to noise in the data in most conventional textbooks on 

statistics. Therefore, it is apparent that a small value of Cv is desirable as it signifies a 

small degree of noise or variability (in a data set, for instance) and hence, reflects low 

uncertainty. 

 It follows then that in the realm of stochastic optimization, coefficient of variation can 

be purposefully employed to investigate, denote, and compare and contrast the relative 

uncertainty in models being studied. In a risk minimization model, as the expected value 
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of mean is reduced, the variability in the expected value (as typically measured by 

variance or standard deviation) is reduced as well. The ratio of this change can be 

captured and described by the coefficient of variation. Conversely, a comparison of the 

relative merit of models in terms of their robustness can also be represented by their 

respective values of coefficient of variation (that is, in the sense that a model with a lower 

coefficient of variation is favoured since there is less uncertainty associated with it, thus 

contributing to its reliability; this is in tandem with the original definition of Cv as a 

measure of reliability). 

 In addition to these arguments, in the seminal paper of his Nobel Prize-winning work 

(in the field of economics) of mean�variance model for optimization of investment 

portfolio selection, Markowitz (1952) remarked that the use of coefficient of variation as 

a measure of risk would equally ensure that the outcome of a decision-making process 

still lies in the set of efficient portfolios. 

 In a data set of normally distributed demands, if the coefficient of variation Cv of 

demand is given as a case problem parameter, the standard deviation is computed by the 

multiplication of Cv with the deterministic demand (Jung et al., 2004) Increasing values 

of Cv result in increasing fluctuations in the demand and this is again undesirable. 

 Computation of the coefficient of variation is based on the objective function of the 

formulated model. Table 7.1 displays the expressions to compute the coefficient of 

variation for the respective models developed in the preceding section. Note that the 

coefficient of variation for the corresponding deterministic case of each model is 

determined based on the expected (E) result of using the deterministic expected value 

(EV) solution, or EEV for short. In more elaborate terms, EEV is the solution obtained 

from solving the stochastic models using results from the deterministic expected value 

problem (that is, the deterministic model with the random parameters replaced by their 

expected values or means). 

 

 

(Please turn the page over for Table 7.1.) 
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Table 7.1. Coefficient of variation for the deterministic and stochastic models developed 
 

Approach Model Objective Function 

Coefficient of Variation 

v
VC
E

σ= =
µ

 

Deterministic cTx [Given by the expected (E) 
result of using the 
deterministic expected 
value (EV) solution (EEV)] 

    
1 Risk Model I 1 0max ( )z V z= −  

 
[ ]1 0 1 0max ( )z E z V z= − θ  

( )
[ ]

0
v

0

V z
C

E z
=  

    
2 Expectation 

Models I and II 
I: [ ]2 0 1 0max ( ) sz E z V z E= − θ −  
II: 2 0max ( ) sz V z E= − −  

( )
[ ]

0
v

0 s

V z
C

E z E
=

−
 

    
3 Risk Model II [ ]3 0 1 0 2max ( ) s sz E z V z E V= − θ − − θ  ( )

[ ]
0

v
0

s

s

V z V
C

E z E
+

=
−

 

    
4 Risk Model III 

(MAD) 
[ ]3 0 1 0 3max ( ) ( )s sz E z V z E W p= − θ − − θ  ( )

[ ]
0

v
0

( )s

s

V z W p
C

E z E
+
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CHAPTER 8 

A Representative Numerical Example and Computational Results for 

Petroleum Refinery Planning under Uncertainty�I: The Base Case 

Deterministic Refinery Midterm/Medium-Term Production Planning 

Model 
 

 

As a representative numerical example for the purpose of computational experimentation 

and testing, we consider the deterministic refinery production planning model proposed 

by Allen (1971) as the base case or core model, without loss of generality. The model is 

then reformulated with the addition of stochastic dimension according to the principles 

and approaches that have been extensively outlined in the previous section on general 

model development. 

 This model is also adopted in the work of Ravi and Reddy (1998), which employs the 

fuzzy programming technique to account for uncertainty. This provides a further avenue 

for us to analyze solutions from our work in light of the fuzzy approach solutions. 

 

 

8.1 PROBLEM DESCRIPTION AND DESIGN OBJECTIVE 

 

The base case models the planning of the operations of a petroleum refinery as an 

ordinary single objective linear programming (LP) problem of total daily profit 

maximization. Allen (1971) remarked that the LP approach is particularly useful in this 

context it provides considerable flexibility in the way a plant could be operated. 
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8.2 THE DETERMINISTIC REFINERY MIDTERM PRODUCTION PLANNING 

MODEL 
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Figure 8.1. Simplified representation of a petroleum refinery for formulation of the deterministic linear 
program for midterm production planning 

 

Figure 8.1 is a simplified representation of a refinery that is essentially made up of a 

primary distillation unit (or more commonly known nowadays as the crude distillation 

unit or CDU) and a middle distillates cracker (more widely known as the catalytic cracker 

in modern settings). The refinery processes crude oil to produce gasoline, naphtha (for 

gas making), jet fuel, heating oil, and fuel oil. The primary unit splits the crude into 

naphtha (13 weight percent, or 13 wt% yield), jet fuel (15 wt%), gas oil (22%), cracker 

feed (20%), and residue (30%). Gasoline is blended from naphtha and cracked blend 

stock in equal proportions. Naphtha and jet fuel products are straight run. Heating oil is a 

blend of 75% gas oil and 25% cracked oil. Fuel oil can be blended from primary residue, 

cracked feed, gas oil, and cracked oil in any proportions. Yields for the cracker (weight 

percent on feed) are flared gas (5%), gasoline blend stock (40%) and cracked oil (55%). 

This information along with the flow diagram of Figure 8.1 describes the physical 

system. All the variables that are in the same units of tonne/day, or denoted symbolically 

as t/d, are first assigned to process streams to represent the flow rate in each. Since in 
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linear programming, decision variables cannot feasibly be negative, assigning a variable 

to a stream also defines its direction of flow and prevents any possibility of flow reversal, 

for instance, cracked blend stock going into naphtha product. In Figure 8.1, variables 

have been assigned to all the streams. 

 The minimum number needed to define a system fully should be identified. In this 

example, it is three since, for example, fixing x1 determines x7, x4, x8, x9, and x10; fixing x2 

then determines x11, x16, x3, x14, x17, x20, and x15;and finally fixing x5 then determines x12, 

x18, x13, x19, and x6. An LP model could be formulated using only these three structural 

variables or any other suitable three variables. In this case, the solution would only give 

values of the three variables and the remainder (if needed) would have to be calculated 

from them afterwards. It is usually more convenient to include some additional variables 

in the LP model over and above the minimum number. Each variable added needs an 

additional mass balance constraint to define it. Instead of calculating a variable separately 

from the solution, the means of finding its value is thus included in the model itself. 

 The next step is to construct linear constraints that describe the physical plant 

relationships and define the amount of flexibility existing in plant operation. These 

constraints are categorized as follows. 

 

 

8.2.1 Limitations on Plant Capacity 

 

In the example, the feed rates of crude oil to the primary unit and cracker, averaged over 

a period of time, can be anything from zero to the maximum plant capacity. The 

constraints are: 

 

primary distillation unit: x1 ≤ 15 000 (8.1) 

 

cracker: x14 ≤ 2500 (8.2) 
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8.2.2 Mass Balances 

 

Mass balance constraints are in the form of equalities. There are three types of such 

constraints: fixed plant yield, fixed blends or splits, and unrestricted balances. Except in 

some special situations such as planned shutdown of the plant or storage movements, the 

right hand-side of balance constraints is always zero. For the purpose of consistency, flow 

into the plant or stream junction has negative coefficients and flows out have positive 

coefficients. The constraints are as follows: 

 

 

8.2.2.1 Fixed Yields 

 

For the primary distillation unit: 

 

  1 70.13 0x x− + =  (8.3) 

 

  1 40.15 0x x− + =  (8.4) 

 

  1 80.22 0x x− + =  (8.5) 

 

  1 90.20 0x x− + =  (8.6) 

 

  1 100.30 0x x− + =  (8.7) 

 

For the cracker: 

 

  14 200.05 0x x− + =  (8.8) 

 

  14 160.40 0x x− + =  (8.9) 
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  14 170.55 0x x− + =  (8.10) 

 

 

8.2.2.2 Fixed Blends 

 

For gasoline blending: 

 

  2 110.5 0x x− =  (8.11) 

 

  2 160.5 0x x− =  (8.12) 

 

For heating oil blending: 

 

  5 120.75 0x x− =  (8.13) 

 

  5 180.25 0x x− =  (8.14) 

 

 

8.2.2.3 Unrestricted Balances 

 

Naphtha: 7 3 11 0x x x− + + =  (8.15) 

 

Gas oil: −x8 + x12 + x13 = 0 (8.16) 

 

Cracker feed: −x9 + x14 + x15 = 0 (8.17) 

 

Cracked oil: −x17 + x18 + x19 = 0 (8.18) 

 

Fuel oil: −x10 � x13 � x15 � x19 + x6 = 0 (8.19) 
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8.2.3 Raw Material Availabilities and Product Requirements 

 

The constraints considered so far are concerned with the physical plant. Constraints are 

also needed relating to external factors such as the availability of raw materials and 

product requirements over a time period. For this example, there are no restrictions on 

crude oil availability or the minimum production required. The maximum production 

requirement constraints (in t/d) are as follows: 

 

Gasoline: x2 ≤ 2700 (8.20) 

 

Naphtha: x3 ≤ 1100 (8.21) 

 

Jet fuel: x4 ≤ 2300 (8.22) 

 

Heating oil: x5 ≤ 1700 (8.23) 

 

Fuel oil: x6 ≤ 9500 (8.24) 

 

 

8.2.4 Objective Function 

 

Although optimization can be stated in many different ways, the common optimization to 

an industrial process is to maximize the profitability of the process, or to minimize the 

overall costs, in which the former is adopted in this work. In this model, the whole 

refinery is considered to be one process, where the process uses the given petroleum 

crude oil to produce various petroleum products in order to achieve specific economic 

objectives. Thus, the objective of the optimization at hand is to achieve maximum 

profitability given the type of crude oil and the refinery facilities. No major hardware 

change in the current facilities is considered in the optimization. The optimization tries to 

find the optimal operation modes of units and stream flows that maximize the overall 

profit of the whole refinery while observing all the possible process constraints. 
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 Thus, the economic objective function considered is the net profit or net revenue to be 

maximized, in units of $/day. The cost of acquiring the raw material crude oil and 

transforming it to finished products are subtracted from the gross revenues accruing from 

the sale of finished products. Note that there is no cost associated with blending as this 

cost is netted out of the unit sales price of the finished products. The sign convention 

denotes costs as negative and realization from sales as positive. Each element in it 

consists of the product of coefficient of unit cost or unit sales price ($/ton) and a 

production flowrate variable (ton/day or t/d). Thus, the objective function is as follows 

(Shapiro, 1993): 

 

1 1 14 2 3 4 5 6
crude primary cracker gasoline jet fuelnaphtha heating oil fuel oil

oil unit

maximize 7.5 0.5 1.5 18.5 8.0 12.5 14.5 6.0z x x x x x x x x= − − − + + + + +
      

 

 

hence, 

 

 1 2 3 4 5 6 14maximize 8.0 18.5 8.0 12.5 14.5 6.0 1.5
ix

z x x x x x x x= − + + + + + −  (8.25) 

 

Since linear programming variables cannot feasibly be negative, an additional constraint 

to be specified is: 

 

 x1, x2, �, x20 ≥ 0     or     xi ≥ 0, i = 1, 2, � 20 (8.26) 

 

It is noted that the constraints of production requirements is directly impacted by the 

market demand for the final refinery products. Therefore, in the stochastic version of the 

model, the random decision variables will be introduced into these constraints. Since the 

objective function is to maximize profit, the production requirements are expressed in 

terms of inequalities with an upper bound (�less than� inequalities) in order to ensure that 

the optimization problem is bounded (otherwise, the maximum profit can be solved to an 

infinite value). Conversely, if the objective function is to minimize production cost, then 

the production requirements would be expressed in the form of inequalities with a lower 

bound. This can be deduced logically, as a �less than� inequality would include the 
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possibility of the solution of non-production (that is, the operations or production of the 

refinery is halted or the entire plant is shut down) as cost is equals to zero in this 

situation. 

 

 

8.3 COMPUTATIONAL RESULTS FOR DETERMINISTIC MODEL 

 

The deterministic LP model was set up on GAMS and solved using CPLEX version 9.0.2 

(http://www.gams.com/dd/docs/solvers/cplex.pdf, accessed February 12, 2006). CPLEX 

has been proven to be a very stable LP solver, and the default settings are almost always 

sufficient to obtain an optimal solution within excellent solution times 

(http://www.gams.com/solvers/solvers.htm#CPLEX, accessed February 12, 2006). The 

solution computed was compared against the solution obtained using the computational 

software package LINDO (Linear Interactive and Discrete Optimizer) (Schrage, 1990), 

an easy-to-use engine for solving linear and integer optimization models. Both solutions 

have been verified to be consistent with each other (with values generated accurate to 

three decimal places for the computation with GAMS/CPLEX and to six decimal places 

with LINDO) and is tabulated in Table 8.1. 

 In CPLEX, a normal run performs an iterative procedure analogous to the LP primal 

simplex method until the optimal solution is reached. The optimal solution for this 

deterministic model are obtained by CPLEX after three (3) iterations in a trivial CPU 

time whereas nine (9) iterations are needed by using LINDO (also in within negligible 

CPU time). Table 8.2 details the computational statistics for solving Deterministic Model. 

 

 

8.4 SENSITIVITY ANALYSIS FOR THE SOLUTION OF DETERMINISTIC 

MODEL 

 

A sensitivity analysis for the objective function coefficients is performed using the 

available facility in LINDO to determine lower and upper limits of each coefficient with 

no change in the optimal solution. Table 8.3 displays the ensuing results of these limits in 
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Table 8.1. Computational results for Deterministic Model from GAMS/CPLEX and LINDO 

 
Value (ton/day) 

Decision 
Variable 

Lower 
Limit Level 

Upper 
Limit 

Dual Price/ 
Marginal 
($/ton) 

 Slack or 
Surplus 
Variable 

Value 
(ton/day) 

Dual Price/ 
Marginal 
($/ton) 

x1 0 12 500 +∞ 0  s1 2 500 0
x2 0 2 000 +∞ 0  s2 0 3.575 
x3 0 625 +∞ 0  s3 700 0
x4 0 1 875 +∞ 0  s4 475 0
x5 0 1 700 +∞ 0  s5 425 0
x6 0 6 175 +∞ 0  s6 0 8.5 
x7 0 1 625 +∞ 0  s7 3 325 0
x8 0 2 750 +∞ 0  a8 0 8.0 
x9 0 2 500 +∞ 0  a9 0 12.5 
x10 0 3 750 +∞ 0  a10 0 6.0 
x11 0 1 000 +∞ 0  a11 0 9.825 
x12 0 1 275 +∞ 0  a12 0 6.0 
x13 0 1 475 +∞ 0  a13 0 0
x14 0 2 500 +∞ 0  a14 0 29.0 
x15 0 0 +∞  −3.825  a15 0 6.0 
x16 0 1 000 +∞ 0  a16 0 8.0 
x17 0 1 375 +∞ 0  a17 0 29.0 
x18 0 425 +∞ 0  a18 0 6.0 
x19 0 950 +∞ 0  a19 0 6.0 
x20 0 125 +∞ 0  a20 0 8.0 

    a21 0 6.0 
    a22 0 9.825 
    a23 0 6.0 
    a24 0 6.0 

z ($/day) −∞ 23 387.50 +∞ (optimal objective function value = maximum profit) 
 

Table 8.2. Computational statistics for Deterministic Model 
 

Solver 
Single continuous 

variables Constraints 
Resource usage/ 

CPU time (s) Iterations 
CPLEX 21 25 0.000 (trivial) 3 

 

which the current solution or basis remains optimal. The allowable increase column 

section indicates the amount by which an objective function coefficient can be increased 

with the current basis remaining optimal, giving the lower limit value of the coefficient. 

Conversely, the allowable decrease column section is the amount by which the objective 

coefficient can be decreased with the current basis remaining optimal, thus determining 

the upper limit. 

 We observe that nine out of the 20 decision variables have positive infinity as an upper 

limit for their associated coefficients and this is deemed reasonable since all the decision 

variables are positive; moreover, the objective is to maximize profit. For example, the 
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Table 8.3. Sensitivity analysis for the objective function coefficients of Deterministic Model 
 

Objective function coefficient ranges ($/ton) 
Decision 
variable 

Allowable 
decrease 

Lower 
limit 

Current 
value 

Upper 
limit 

Allowable 
increase 

x1 0.715 000 −8.715 000 −8.000 000 −7.235 000 0.765 000 
x2 4.468 750 14.031 25 18.500 000 +∞ +∞ 
x3 14.300 000 −6.300 000 8.000 000 13.884 615 5.884 615 
x4 4.766 667 7.733 333 12.500 000 17.600 000 5.100 000 
x5 8.500 000 6.000 000 14.500 000 +∞ +∞ 
x6 1.134 921 4.865079 6.000 000 7.062 500 1.062 500 
x7 5.500 000 −5.500 000 0.000 000 5.884 615 5.884 615 
x8 3.250 000 −3.250 000 0.000 000 3.477 273 3.477 273 
x9 3.575 000 −3.575 000 0.000 000 3.825 000 3.825 000 
x10 2.383 333 −2.383 333 0.000 000 2.550 000 2.550 000 
x11 8.937 500 −8.937 500 0.000 000 +∞ +∞ 
x12 11.333 333 11.333 333 0.000 000 +∞ +∞ 
x13 3.250 000 3.250 000 0.000 000 3.477 273 3.477 273 
x14 3.575 000 −5.075 000 −1.500 000 +∞ ∞ 
x15 +∞ −∞ 0.000 000 3.825 000 3.825 000 
x16 8.937 500 −8.937 500 0.000 000 +∞ +∞ 
x17 6.500 000 −6.500 000 0.000 000 +∞ +∞ 
x18 34.000 000 −34.000 000 0.000 000 +∞ +∞ 
x19 6.500 000 −6.500 000 0.000 000 34.000 000 34.000 000 
x20 71.500 000 −71.500 000 0.000 000 +∞ +∞ 

 

decision variable x2 denoting the production mass flow rate of gasoline (in ton/day) has 

current objective function coefficient value of price of $18.50/ton for profit. The price of 

gasoline can be as low as $4.47/ton without altering the optimum profit. Therefore, if a 

customer wishes to enter into a purchasing agreement or contract for the commodities 

produced by the refinery, the trader or marketer, acting with the knowledge of the 

management, can negotiate the trading price down to as low as the extent of the lower 

limits of prices listed in Table 8.2 without affecting or �hurting� the company�s profit, so 

to speak, as the optimal solution would not be changed. This boosts the refinery�s 

flexibility to negotiate prices so long as it is within the bounds of each coefficient as 

determined in Table 8.2, especially in the volatile market of spot trading of crude oil and 

the commodities (Zayed and Minkarah, 2004). 

 As before, the sensitivity analysis for the right-hand side of constraints is executed as 

well by utilizing LINDO with the corresponding results displayed in Table 8.4. The upper 

limits for some of the constraints are positive infinity while the lower limits vary. Lower 

limits for most of the constraints are observed to be of negative value. Constraints whose 
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upper limits are allowed to go to positive infinity imply that they are not critical to the 

production process. As an illustration, the right-hand side constraint for the production 

requirement or demand of heating oil can be as low as none without inflicting a change in 

the optimal solution. The other constraints can be analyzed in a similar manner (Zayed 

and Minkarah, 2004). 

 The values of the slack or surplus variables and the dual prices in Table 8.1 provide 

the most economical average operating plan for a 30-day period. For instance, it indicates 

that the primary distillation unit is not at full capacity as the solution generates a 

production mass of 12 500 tons/day against its maximum production capacity of 17 300 

tons/day (as given by the summation of the right-hand-side values of constraints (8.20)�

(8.24)). Another analytical observation reveals that the maximum production requirement 

is only met for heating oil. 

 
Table 8.4. Sensitivity analysis for right-hand side of constraints of Deterministic Model 

 
Right-hand side of constraints ranges (ton/day) 

Constraints 
Allowable 
decrease 

Lower 
limit 

Current 
value 

Upper 
limit 

Allowable 
increase 

(8.1) 2 500.000 000 12 500.000 000 15 000.000 000 +∞ +∞ 
(8.2) 1340.909058 1 159.090 94 2 500.000 000 3 000.000 000 500.000 000 
(8.3) 625.000 000 −625.000 000 0.000 000 475.000 000 475.000 000 
(8.4) 1 875.000 000 −1 875.000 000 0.000 000 425.000 000 425.000 000 
(8.5) 1 475.000 000 −1 475.000 000 0.000 000 3 325.000 000 3 325.000 000 
(8.6) 500.000 000 −500.000 000 0.000 000 961.538 510 961.538 513 
(8.7) 3 750.000 000 −3 750.000 000 0.000 000 3 325.000 000 3 325.000 000 
(8.8) 125.000 000 −125.000 000 0.000 000 +∞ +∞ 
(8.9) 475.000 000 −475.000 000 0.000 000 350.000 000 350.000 000 

(8.10) 950.000 000 −950.000 000 0.000 000 3 325.000 000 3 325.000 000 
(8.11) 625.000 000 −625.000 000 0.000 000 475.000 000 475.000 000 
(8.12) 475.000 000 −475.000 000 0.000 000 350.000 000 350.000 000 
(8.13) 1 475.000 000 −1 475.000 000 0.000 000 1 275.000 000 1 275.000 000 
(8.14) 950.000 000 −950.000 000 0.000 000 425.000 000 425.000 000 
(8.15) 625.000 000 −625.000 000 0.000 000 475.000 000 475.000 000 
(8.16) 1 475.000 000 −1 475.000 000 0.000 000 3 325.000 000 3 325.000 000 
(8.17) 500.000 000 −500.000 000 0.000 000 961.538 510 961.538 513 
(8.18) 950.000 000 −950.000 000 0.000 000 3 325.000 000 3 325.000 000 
(8.19) 6 175.000 000 −6 175.000 000 0.000 000 3 325.000 000 3 325.000 000 
(8.20) 700.000 000 2 000.000 000 2 700.000 000 +∞ +∞ 
(8.21) 475.000 000 625.000 000 1 100.000 000 +∞ +∞ 
(8.22) 425.000 000 1 875.000 000 2 300.000 000 +∞ +∞ 
(8.23) 1 700.000 000 0.000 000 1 700.000 000 3666.6666 1 966.666 626 
(8.24) 3 325.000 000 6 175.000 000 9 500.000 000 +∞ +∞ 

 



 

 158

 By definition, the dual price or shadow price of a constraint of a linear programming 

model is the amount (or rate) by which the optimal value of the objective function is 

improved (increased in a maximization problem and decreased in a minimization 

problem) if the right-hand-side of a constraint is increased by one unit, with the current 

basis remaining optimal. A positive dual price means that increasing the right-hand side 

in question will improve the objective function value. A negative dual price means that 

increasing the right-hand side will have a reverse effect. Thus, the dual price of a slack 

variable corresponds to the effect of a marginal change in the right-hand-side of the 

appropriate constraint (Winston and Venkataramanan, 2003). 

 The dual prices of slacks on mass balance and product requirement rows can be 

interpreted more specifically. Consider a mass balance constraint: 

 

 1 2 3 0x x x− − + =  (8.27) 

 

where x3 is the product stream. Introducing the artificial slack variable an and then 

rearranging, we obtain: 

 

 1 2 3

1 2 3

0n

n

x x x a
x x x a

− − + + =
+ = +

 (8.28) 

 

The product stream is increased by an and the feed streams x1 and x2 must increase 

correspondingly. The dual price of an indicates the effect of making marginally more 

products without taking into account its realization (which is on x3), that is, it indicates 

the cost added by producing one extra item of the product, or in other words, the marginal 

cost of making the product. In addition to that, consider the product requirement 

constraint: 

 

 
3

3

3
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m

m

x
x s
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≤
⇒ + =
⇒ = −

 (8.29) 
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The dual price of the slack variable sm on this constraint indicates the effect of selling this 

product at the margin, that is, it indicates the marginal profit on the product. If the 

constraint is slack so that the slack variable is positive (basic), the profit at the margin 

must obviously be zero and this is in line with the zero dual price of all basic variables. 

Since cost + profit = realization for a product, the sum of the dual prices on its balance 

and requirement constraints equal its coefficient in the original objective function. 

 In this problem, there are two balance constraints on heating oil as given by equations 

(8.13) and (8.14), the dual prices of which are both $6.00/ton. This is the marginal cost of 

diverting gas oil and cracked oil from fuel oil to heating oil. The dual price for the 

constraint on heating oil production as given by inequality (8.23) is $8.50/ton and this is 

the marginal profit on heating oil, in line with the realization of $14.50/ton in the 

objective function as given by the coefficient of x5 (Allen, 1971). 

 From the economic interpretation viewpoint, the dual prices can be seen as prices for 

the scarce resources that minimize the total accounting cost of these resources to the 

refinery, and yet involve a scarce-factor cost of producing a unit of each commodity that 

is no less than its unit profit yield. The dual prices indicate what proportion of its profits 

that the refinery owes to each such scarce factor (Baumol, 1958). 

 As stated earlier, the solution for the deterministic model was verified with the 

optimization software LINDO. Given that the numerical example presented as a case 

study addresses only the three primary units of a typical oil refinery, it should be kept in 

mind that while the example model is nonetheless representative, the results should be 

viewed as a (preliminary) proof of concept rather than a well-tested planning model for 

the operations of a refinery. The emphasis (and novelty) of this work lies chiefly in the 

five stochastic models, to be presented in subsequent sections, for planning in the 

downstream processing of the highly dynamic and uncertain hydrocarbon industry. 
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8.5 DISADVANTAGES OF THE SENSITIVITY ANALYSIS OF LINEAR 

PROGRAMMING AS MOTIVATION FOR STOCHASTIC PROGRAMMING 

 

Sensitivity analysis is used with a pretext of an attempt to study the robustness of the 

solution to a linear programming (LP) model. If there is cause for concern regarding the 

accuracy of the data used, sensitivity analysis is undertaken to determine the manner in 

which the solution might change if the data were different. When the solution does not 

change (or when the nature of the solution does not change, as in when the basis remains 

optimal), it is believed that the proposed solution is appropriate. Unfortunately, such is 

not true if the solution is sensitive to the data. A question arises as to how to proceed if 

the solution, or the nature of the solution, varies when the data is changed. Therefore, 

although sensitivity analysis offers some sense of security, it is important to recognize 

that in many cases, this is really somewhat a false sense of security. If there is some 

uncertainty about the values of some data elements, it ought to be included in the model. 

This is precisely the situation for which the stochastic programming modelling approach 

are intended, that is, when we know that some of the data elements are difficult to predict 

or estimate (Higle, 2005). 

 Furthermore, in most cases, the output of SA is misleading when used to assess the 

impact of uncertainty. SA is most appropriate when the basic structure of the model is not 

altered by the presence of uncertainty�for example, when all uncertainties will be 

resolved before any decisions are made. When the decisions are to be made, a 

deterministic model will be appropriate, but as long as the available data and information 

remain uncertain, we will not know which deterministic model will be appropriate and 

suitable. SA is merely able to help us appreciate the impact of uncertainty without 

providing the measures to hedge against it. This is because sensitivity analysis based on 

the output of a model constructed on the presumption of deterministic data as in an LP 

will not reflect an ability to adopt to information that becomes available within a 

sequential decision process, thus rendering it ineffectual for decision making under 

uncertainty (Higle and Wallace, 2003). 

 This explains why Mulvey et al. (1995) argue that sensitivity analysis (SA) is a 

reactive approach to controlling uncertainty in justifying the adoption of the stochastic 
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programming philosophy. As emphasized by Higle (2004), SA merely measures the 

sensitivity of a solution to changes in the input data. It provides no mechanism by which 

this sensitivity can be controlled. On the other hand, stochastic programming is a 

constructive approach that is superior to SA. With stochastic linear programming (SLP) 

models, the decision maker is afforded the flexibility of introducing recourse variables to 

take corrective actions. 

 Nevertheless, the SLP model optimizes only the first moment of the distribution of the 

objective value as it ignores higher moments of the distribution, in addition to the 

decision maker�s preferences towards risk. These aspects are particularly important for 

asymmetric distributions and for risk-averse decision makers. Therefore, in this work the 

SLP formulation is extended by incorporating risk measures in the form of variance and 

mean-absolute deviation (MAD), as will be demonstrated in the stochastic models 

introduced in the following section. 

 In handling constraints, SLP models aim at finding the planning variable (x) such that 

for each realized scenario, an operating variable setting (y) is possible in satisfying the 

constraints. For systems with some redundancy, such a solution might always be possible. 

The SLP literature even allows for the notion of complete recourse, whereby a feasible 

solution y exists for all scenarios, and for any value of x that satisfies the recourse 

constraints. 
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CHAPTER 9 

A Representative Numerical Example and Computational Results for 

Petroleum Refinery Planning under Uncertainty�II: The Stochastic 

Refinery Midterm/Medium-Term Production Planning Model 
 

 

9.1 APPROACH 1: RISK MODEL I BASED ON THE MARKOWITZ�S MEAN�

VARIANCE (E�V) APPROACH 

 

The deterministic objective function is given by: 

 

 1 2 3 4 5 6 148.0 18.5 8.0 12.5 14.5 6.0 1.5z x x x x x x x= − + + + + + −  (8.25) 

 

where in the following the coefficients, with the associated variables of amount of 

production in mass flowrate indicated in parentheses, denote the price of crude oil (x1) as 

the raw material and the sales prices of the products or commodities, namely gasoline 

(x2), naphtha (x3), jet fuel (x4), heating oil (x5), fuel oil (x6), and the feed to the cracking 

unit (x14) (henceforth, referred to simply as the cracker feed), respectively. Therefore, if c 

is a row vector consisting of the price (or cost) coefficients as its elements and x is the 

column vector of production flowrate, then the objective function can simply be generally 

represented as: 

 

 Tz c x=  (9.1) 

 

 For the prioritized purpose of method demonstration of the validity of the 

mathematical programming tools proposed (that is, without claiming that the model 

captures all detailed aspects of the problem), three possible coefficients of variation 

(defined as the ratio of standard deviation to mean) depicting three different scenarios are 

considered to be representative of the uncertainty in the objective function coefficients of 

prices, based on the trends of the historical data presented in Sections 5.5.1 and 5.5.2. The 
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three representative scenarios are constructed as (i) the �above average� scenario 

denoting a representative percentage of 10 percent positive deviation from the mean 

value; (ii) the �average� scenario that takes on the expected value or mean; and (iii) the 

�below average� scenario, correspondingly denoting a representative 10 percent negative 

deviation from the mean value. 

 Table 9.1 summarizes attributes of modelling uncertainty in the price of crude oil. 

Subsequently, Table 9.2 displays details of all three scenarios for all materials where 

price uncertainty is considered. 

 
Table 9.1. Attributes of the scenario construction example for modelling crude oil price uncertainty 

 
Price Uncertainty: Objective Function Coefficient of Prices ($/ton) 

Scenario 1 (s = 1) Scenario 2 (s = 2) Scenario 3 (s = 3)  
Above Average Price Average Price Below Average Price 

Percentage of deviation 
from the expected value +10% 0 

(i.e., the expected value) −10% 

Price of crude oil ($/ton) Ps P1 = 8.8 P2 = 8.0 P3 = 7.2 
Probability ps p1 = 0.35 p2 = 0.45 p3 = 0.20 
 

Table 9.2. Representative scenarios of price uncertainty in the refinery planning under uncertainty 
problem 

 
Price Uncertainty: Objective Function Coefficient of Prices ($/ton) 
Scenario 1 Scenario 2 Scenario 3 

Material/Product 
(i) 

Above Average Price 
(+10%) 

Average Price 
(Expected Value/Mean) 

Below Average Price 
(−10%) 

Crude oil (1) −8.8 −8.0 −7.2 
Gasoline (2) 20.35 18.5 16.65 
Naphtha (3) 8.8   8.0 7.2 
Jet fuel (4) 13.75 12.5 11.25 
Heating oil (5) 15.95 14.5 13.05 
Fuel oil (6) 6.6   6.0 5.4 
Cracker feed (14) −1.65 −1.5 −1.35 
Probability ps 0.35 0.45 0.2 

 

 As stressed in the general model development, since the objective function is linear, 

the expectation of the objective function value is given by the original objective function 

itself: 
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[ ] ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 2 3 4 5 6 14

1 2 3 4 5 6 14

8.0 18.5 8.0 12.5 14.5 6.0 1.5

8.0 18.5 8.0 12.5 14.5 6.0 1.5

E z E x x x x x x x

E x E x E x E x E x E x E x

= − + + + + + −

= − + + + + + + −

[ ]0 1 2 3 4 5 6 148.0 18.5 8.0 12.5 14.5 6.0 1.5E z x x x x x x x= − + + + + + −  (9.2) 

 

 To represent the three scenarios accounting for uncertainty in prices, the objective 

coefficients of the expected value of price in equation (9.2) are rewritten as follows, 

taking into account the probabilities of realization of each scenario: 

 

  

[ ] ( ) ( ) ( ) ( ) ( )( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( )( ) ( )( ){ }
( ) ( ) ( )( ) ( )( ){ }
( ) ( ) ( )( ) ( )( ){ }
( ) ( ) ( ) ( ) ( )( )

0 1

2

3

4

5

0.35 8.8 0.45 8.0 0.2 7.2

0.35 20.35 0.45 18.5 0.2 16.65

0.35 8.8 0.45 8.0 0.2 7.2

0.35 13.75 0.45 12.5 0.2 11.25

0.35 15.95 0.45 14.5 0.2 13.05

0.35 6.6 0.45 6.0 0.2 5.4

E z E x

E x

E x

E x

E x

E x

 = − + − + − 

 + + + 

 + + + 

 + + + 

 + + + 

 + + + { }
( ) ( ) ( ) ( ) ( ) ( ){ }

6

140.35 1.65 0.45 1.5 0.2 1.35E x + − + − + − 

 (9.3) 

 

 For a more explicit representation of the three scenarios considered, the terms in 

equation (9.3) are rearranged and clustered into three expressions, with each denoting a 

corresponding scenario: 

 

 
[ ] ( ) ( )

( )( )
( )( )

0 1 2 3 4 5 6 14

1 2 3 4 5 6 14

1 2 3 4 5 6 14

0.35 8.8 20.35 8.8 13.75 15.95 6.6 1.65

0.45 8.0 18.5 8.0 12.5 14.5 6.0 1.5

0.2 7.2 16.65 7.2 11.25 13.05 5.4 1.35

E z x x x x x x x

x x x x x x x

x x x x x x x

= − + + + + + −

+ − + + + + + −

+ − + + + + + −

 (9.4) 

 

or in a general compact representation as given below: 

 

  [ ] { } { }random
0 price, 1, 2,3, 4,5, 6,14 , 1, 2,3s i i

i I s S
E z p C x i I I s S

∈ ∈
= = ∈ ⊆ = ∈∑∑  (9.5) 
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 To formulate the variance for the given expected value of the objective function, note 

that it is the coefficients of the objective function that are random (as also emphasized 

earlier in the model development) and not the deterministic design variables x1, x2, x3, x4, 

x5, x6, x14; thus, variance is expressed as: 

 

  

( )
( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

0 1 2 3 4 5 6 14

1 2 3 4 5

6 14

2 2 2 2 2
0 1 2 3 4 5

2 2
6 14

( ) 8.0 18.5 8.0 12.5 14.5 6.0 1.5

8.0 18.5 8.0 12.5 14.5

6.0 1.5

( ) 8.0 18.5 8.0 12.5 14.5

6.0 1.5

V z V x x x x x x x

V x V x V x V x V x

V x V x

V z x V x V x V x V x V

x V x V

= − + + + + + −

= − + + + +

+ +

= − + + + +

+ + −

 (9.6) 

 

or in a general compact representation: 

 

  { }2 random
0 price( ) ( ), 1, 2,3, 4,5,6,14i i

i I
V z x V C i I I

∈
= = ∈ ⊆∑  (9.7) 

 

To evaluate the variance of the price coefficients, we use the formulation presented in 

equation (5.7) by substituting the objective functions for each of the three scenarios with 

its general form as given by equation (9.1), as follows: 

 

 ( ) ( ) ( ) ( )1 1 2 2 3 3

2 2 2
0

T T T T T T
s s s s s sV z p c x c x p c x c x p c x c x= − + − + −  (9.8) 

 

where 
i i

T
s sz c x=  and 0[ ] TE z c x= . 

 Since Scenario 2 represents the average scenario, so 
2

0T T
sc x c x− =  and yields 

 

 
( ) ( ) ( )
( ) ( ) ( )

1 1 3 3

1 1 3 3

2 2

0

2 22 2
0

T T T T
s s s s

T T T T
s s s s

V z p c c x p c c x

V z p c c x p c c x

   = − + −   

= − + −
 (9.9) 
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Comparison between equations (9.6) and (9.9) reveals that the variances of the price 

coefficients can be estimated as the variance for a sample consisting of the three 

considered scenarios. As an example, variance for the price coefficient of crude oil is 

given by: 

 

  

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )[ ] ( )[ ]
( )( )

( )

1 1 3 3

1 1 2 3 3 2

2 2

2 2
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8.0
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0.35 0.8 0.2 0.8

0.35 0.2 0.64

8.0 0.352

T T T T
s s s s

T T T T
s s s s s s

V p c c p c c

p c c p c c

V

− = − + −

= − + −

   = − − − + − − −   

= − + −

= +

− =

 (9.10) 

 

Similar variance calculation procedure is carried out for the other variance terms to yield 

the results tabulated in Table 9.3. 

 
Table 9.3. Variance of the random objective function coefficients of commodity prices 

 
Product Type (i) Variance of Price 

Crude oil (1)  0.352  
Gasoline (2)  1.882375  
Naphtha (3)  0.352  
Jet fuel (4)  0.859375  
Heating oil (5)  1.156375  
Fuel oil (6)  0.198  
Cracker feed (14)  0.012375  

 

 Substituting the values of price variances calculated and tabulated in Table 9.3 into 

equation (9.6) yields: 

 

  
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2
0 1 2 3 4

2 2 2
5 6 14

( ) 0.352 1.882 375 0.352 0.859 375

1.156 375 0.198 0.012 375

V z x x x x

x x x

= + + +

+ + +
 (9.11) 

 

 Therefore, Risk Model I is formulated as: 

 



 

 167

( ) ( ) ( ) ( )
( ) ( ) ( )

1 0

2 2 2 2
1 2 3 4

2 2 2
5 6 14

maximize ( )

0.352 1.882 375 0.352 0.859 375

1.156 375 0.198 0.012 375

z V z

x x x x

x x x

= −

 + + +
= − 

+ + +  

 

s.t 

[ ]
( ) ( )

( ) ( )
( ) ( )

1 2 3 4 5 6 14

0 1 2 3 4 5 6 14

1 2 3 4 5 6 14

Target0.35 8.8 20.35 8.8 13.75 15.95 6.6 1.65
objective

0.45 8.0 18.5 8.0 12.5 14.5 6.0 1.5
function

0.2 7.2 16.65 7.2 11.25 13.05 5.4 1.35 v

x x x x x x x

E z x x x x x x x

x x x x x x x

 − + + + + + −
 

= + − + + + + + − ≥ 
 + − + + + + + −   alue

constraints (8.1)�(8.24) and (8.26) 

(9.12) 

It is noted that the set of constraints for Risk Model I are the same as for the 

Deterministic Model. 

 

 

9.1.1 Computational Results for Risk Model I 

 

Table 9.4 tabulates the computational results for the implementation of Risk Model I on 

GAMS for a range of values of the target profit µ. Starting values of the first-stage 

deterministic decision variables have been initialized to the optimal solutions of the 

deterministic model presented earlier. From the raw computational results of Risk Model 

I, the standard deviation σ of profit is determined by taking the square root of the 

computed values of variance σ2 of profit as given by the objective values. The main 

reason standard deviation is considered to be more representative for direct interpretation 

is by virtue of it having the same dimension as the expected value term. Note that σ is 

calculated by taking the square root of the absolute values of variance, that is, with the 

negative sign of variance disregarded. (Recall that the negative sign is present essentially 

because we are dealing with an optimization problem of profit maximization, in which it 

is desirable to minimize the effect of variation in profit by subtracting it from the profit- 

or cost-related terms.) Subsequently, Table 9.5 presents representative detailed results for 

two values of target profit: one that is equals to the profit computed by the Deterministic 

Model (that is, $23 387.50/day) and the other, for target profit = $23 500, with the 
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intention of investigating and thereafter, inferring observable general behaviours of Risk 

Model I. 

 The problem size and the distribution of computational expense are noted in Table 9.6. 

Figure 9.1 then shows the efficient frontier (of Markowitz�s mean�variance model) plot 

of expected maximum profit for different levels of risk as represented by the profit risk 

parameter θ1 with standard deviation as the risk measure. 

 
Table 9.4. Computational results for Risk Model I 

 

vC σ=
µ

 

Deterministic 

Target 
profit 

µ 
($/day) 

Optimal 
objective 

value 
−V 

Standard 
deviation 

σ 
( )V=  

Crude oil, 
x1 (ton/day) 

Stochastic 
σ µ Cv 

15 000  −14 410 603.5083 3 796.130 07 4 606.231 0.253 0753 10 002.129 23 738.312 0.421 349 631 
16 000 −16 396 064.4361 4 049.205 408 4 913.313 0.253 0753 10 002.129 23 738.312 0.421 349 631 
17 000 −18 509 619.6173 4 302.280 746 5 220.395 0.253 0753 10 002.129 23 738.312 0.421 349 631 
18 000 −20 751 269.0519 4 555.356 084 5 527.477 0.253 0753 10 002.129 23 738.312 0.421 349 631 
19 000 −24 054 832.6088 4 904.572 622 5 970.926 0.258 1354 10 002.129 23 738.312 0.421 349 631 
20 000 −35 268 148.8569 5 938.699 256 7 348.858 0.296 935 10 002.129 23 738.312 0.421 349 631 
21 000 −49 062 075.3823 7 004.432 552 8 726.790 0.333 5444 10 002.129 23 738.312 0.421 349 631 
22 000 −65 436 612.1851 8 089.289 968 10 104.723 0.367 695 10 002.129 23 738.312 0.421 349 631 
23 000 −84 391 759.2651 9 186.498 749 11 482.655 0.399 413 10 002.129 23 738.312 0.421 349 631 

23 387.50 −92 430 619.3808 9 614.084 428 12 016.604 0.411 077 9 10 002.129 23 738.312 0.421 349 631 
23 400 −92 696 388.9748 9 627.896 394 12 033.828 0.411 448 6 10 002.129 23 738.312 0.421 349 631 
23 500 −94 837 061.6591 9 738.432 197 12 171.621 0.414 401 4 10 002.129 23 738.312 0.421 349 631 
23 600 −97 003 540.4462 9 849.037 539 12 309.415 0.417 332 1 10 002.129 23 738.312 0.421 349 631 
23 700 −99 195 825.3361 9 959.710 103 12 447.208 0.420 240 9 10 002.129 23 738.312 0.421 349 631 
23 730 −99 858 542.9931 9 992.924 647 12 488.546 0.421 109 3 10 002.129 23 738.312 0.421 349 631 
23 735 −99 969 221.7394 9 998.460 969 12 495.436 0.421 253 9 10 002.129 23 738.312 0.421 349 631 
23 736 −99 991 365.2304 9 999.568 252 12 496.814 0.421 282 8 10 002.129 23 738.312 0.421 349 631 
23 737 −100 013 511.3021 10 000.675 54 12 498.191 0.421 311 7 10 002.129 23 738.312 0.421 349 631 
23 738 −100 035 659.9544 10 001.782 84 12 499.569 0.421 340 6 10 002.129 23 738.312 0.421 349 631 

23 738.50 (infeasible solution) (infeasible solution) 
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Table 9.5. Detailed computational results for Risk Model I for (i) target profit = 
deterministic profit = $23 387.50/day and (ii) target profit = $23 500/day 

 
Stochastic Solution 
Target Profit ($/day) 

First-Stage Variable 23 387.50 23 500.00 
x1 12 016.604 12 171.621 
x2 1 922.657 1 947.459 
x3 600.830 608.581 
x4 1 802.491 1 825.743 
x5 1 700.000 1 700.000 
x6 5 870.461 5 968.122 
x7 1 562.159 1 582.311 
x8 2 643.653 2 677.757 
x9 2 403.321 2 434.324 
x10 3 604.981 3 651.486 
x11 961.328 973.730 
x12 1 275.000 1 275.000 
x13 1 368.653 1 402.757 
x14 2 403.321 2 434.324 
x15 0 0 
x16 961.328 973.730 
x17 1 321.826 1 338.878 
x18 425.000 425.000 
x19 896.826 913.878 
x20 120.166 121.716 

 

Table 9.6. Computational statistics for Risk Model I 
 

Solver 
Single continuous 

variables Constraints 
Resource usage/ 

CPU time (s) Iterations 
CONOPT 3 22 27 ≈ (0.01−0.02) 3 
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Figure 9.1. The efficient frontier plot of expected profit versus profit risk measured by standard deviation 
for Risk Model I 
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9.1.2 Analysis of Results for Risk Model I 

 

The risk�return curve in Figure 8.2 provides a graphical representation of the relation 

between the expected profit and its associated risk as computed by standard deviation. It 

depicts the range of possible levels of solution robustness. The trend follows the shape of 

the efficient frontier proposed by the Markowitz�s mean�variance model. Thus, as 

highlighted by Mulvey et al. (1995), the constructed efficient frontier provides an 

opportunity for the decision-maker to achieve a robust recommendation, which is not 

possible by means of traditional sensitivity analysis of the deterministic linear program 

presented previously. 

 Note also that it is of interest to know the amount of crude oil to be purchased by a 

refinery, as computed by the variable x1, in order to achieve the targeted expected profit. 

Naturally, higher throughputs of crude oil commensurate with higher profits as this 

translates to higher production volume, so long as the refining capacity is not exceeded. 

With availability of information on the current price of crude oil, a decision-maker will 

be in a good position to assess the trade-off between the raw material cost of purchasing 

crude oil and the expected profit to be gained from sales of the production volume. 

 From Table 8.6, for a target profit equivalent to the deterministic profit, Risk Model I 

computes a crude oil flow rate of 12 016.604 ton/day that is lower than the deterministic 

model crude oil flow rate of 12 500 ton/day of crude oil. This exemplifies that for a lower 

raw material purchasing cost for crude oil, the production plan proposed by the stochastic 

Risk Model I is able to achieve the same amount of profit. 

 

 

9.2 APPROACH 2: THE EXPECTATION MODELS I AND II 

 

In this stochastic model, it is assumed that there is no alternative source of production and 

hence, if there is a shortfall in production, the demand is actually lost. Thus, the 

corresponding model considers the case where the in-house production of the refinery has 

to be anticipated at the beginning of the planning horizon, that is, the production variables 

x are fixed (which is essentially the underlying principle in adopting the two-stage 



 

 171

stochastic programming framework.), no vendor production is allowed, and all unmet 

demand is lost. 

 

9.2.1 Two-Stage Stochastic Programming with Fixed Recourse Framework to Model 

Uncertainty in Product Demand 

 

For the purpose of utilizing the techniques of introducing slack variables and penalty 

functions in modelling randomness in the RHS coefficients of product demand 

constraints, consider the constraint for the production requirement of gasoline, x2 as given 

by inequality (8.20) to be uncertain: 

 

  x2 ≤ 2700 (8.20) 

 

As in the case of price uncertainty, three possible realizations are also equivalently 

considered for the RHS coefficient random variable of inequality (8.20), with each 

representing the demand scenario corresponding to the possibility of �average demand�, 

�above average demand�, and �below average demand�. Details of the scenarios 

constructed to model uncertainty in market demand for gasoline is depicted in Table 8.8. 

A five (5) percent standard deviation from the mean value of market demand for gasoline 

is assumed to be reasonable based on preliminary investigation of available historical 

data. 

 
Table 9.7. Attributes of the scenario construction example for modelling market demand uncertainty 

for gasoline 
 

Demand Uncertainty: Right-Hand-Side Coefficient of Constraints for Gasoline 
Demand (ton/day) 

Scenario 1 (s = 1) Scenario 2 (s = 2) Scenario 3 (s = 3)  

Above Average Demand Average Demand Below Average Demand 
Percentage of deviation 
from the expected value +5% 0 

(i.e., the expected value) −5% 

Gasoline demand 
(ton/day) di,s 

d2,1 = 2835 d2,2 = 2700 d2,3 = 2565 

Probability ps p1 = 0.35 p2 = 0.45 p3 = 0.20 
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Again, for the purpose of illustrating the validity and capability of the mathematical 

programming methods involved and improvised (with less emphasis on the actual 

feasibility of the data to capture the detailed aspects of the problem), the similar three 

possible scenarios assumed for price uncertainty are applied to describe uncertainty in the 

demands of naphtha, jet fuel, heating oil, and fuel oil as given by the maximum 

production requirements inequalities of (8.21) to (8.24), respectively. The resulting Table 

8.9 displays the three scenarios constructed for demand uncertainty for the five products 

considered, with their corresponding probabilities equivalent to the probabilities for the 

three scenarios generated to model price uncertainty. 

 Assuming that it costs 2ic c+ +=  = $25 per unit of gasoline to purchase in the open 

market to meet the production requirement demand if there is a shortfall, and that it costs 

2ic c− −=  = $20 per unit of gasoline to be stored in inventory if supply (production) 

exceeds demand, thus the expected recourse penalty for the second-stage cost due to 

uncertainty or randomness in gasoline demand is given by: 

 

 
( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

gasoline
,demand 1 2 21 2 21 2 2 22 2 22 3 2 23 2 23

Scenario 1 Scenario 2 Scenario 3

21 21 22 22 23 230.35 25 20 0.45 25 20 0.2 25 20

sE p c z c z p c z c z p c z c z

z z z z z z

+ + − − + + − − + + − −

+ − + − + −

= + + + + +

= + + + + +

144424443 144424443 144424443
 (9.13) 

 
Table 9.8. Representative scenarios of market demand uncertainty in the refinery planning under 

uncertainty problem 
 

Demand Uncertainty: Right-Hand Side Coefficient of Constraints (ton/day) 
Scenario 1 Scenario 2 Scenario 3 

Product (type i) 
Above Average Demand 

(+5%) 
Average Demand 

(Expected Value/Mean) 
Below Average Demand 

(−5%) 
Gasoline (2) 2835 2700 2565 
Naphtha (3) 1155 1100 1045 
Jet fuel (4) 2415 2300 2185 
Heating oil (5) 1785 1700 1615 
Fuel oil (6) 9975 9500 9025 
Probability ps 0.35 0.45 0.2 

 

 The penalty costs incurred due to shortfalls and surpluses in production for demand 

uncertainty in the five products considered are listed in Table 8.10. 
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Table 9.9. Penalty costs incurred due to shortfalls and surpluses in production under market demand 
uncertainty 

 
Penalty cost incurred per unit ($/ton) 

Product Type (i) Shortfall in production ( isc+ ) Surplus in production ( isc− ) 
Gasoline (2) 25 20 
Naphtha (3) 17 13 
Jet fuel (4)   5   4 
Heating oil (5)   6   5 
Fuel oil (6) 10   8 

 

Therefore, the overall expected recourse penalty for the second-stage costs due to 

uncertainty in market demand as represented by randomness in the right-hand-side 

coefficients of the related constraints is given by: 

 

  

( ) ( ) ( )

( ) ( )

( )

2 21 2 21 3 31 3 31 4 41 4 41

gasoline naphtha jet fuel
,demand 1

5 51 5 51 6 61 6 61

heating oil fuel oil

2 22 2 22
2

s

c z c z c z c z c z c z

E p
c z c z c z c z

c z c z
p

+ + − − + + − − + + − −

+ + − − + + − −

+ + − −

 + + + + +
 
 =  + + + + 
  

+
+

1442443 1442443 1442443

1442443 1442443

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

3 32 3 32 4 42 4 42

5 52 5 52 6 62 6 62

2 23 2 23 3 33 3 33 4 43 4 43
3

5 53 5 53 6 63 6 63

c z c z c z c z

c z c z c z c z

c z c z c z c z c z c z
p

c z c z c z c z

+ + − − + + − −

+ + − − + + − −

+ + − − + − − − + + − −

+ + − − + + − −

 + + + +
 
 + + + + 
 + + + + +
 +
 + + + + 

 (9.14) 

 

Substituting the probabilities and the penalty cost terms with their actual values give: 

 

  

( )
( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( )

( ) ( )

( )
( ) ( )

21 21 31 31 41 41
,demand

51 51 61 61

22 22 32 32 42 42

52 52 62 62

23 23 33 33 43

25 20 17 13 5 4
0.35

6 5 10 8

25 20 17 13 5 4
0.45

6 5 10 8

25 20 17 13 5
0.2

s

z z z z z z
E

z z z z

z z z z z z

z z z z

z z z z z

+ − + − + −

+ − + −

+ − + − + −

+ − + −

+ − − − +

 + + + + +
 =
 + + + + 
 + + + + +
 +
 + + + + 

+ + + +
+

( )
( ) ( )

43

53 53 63 63

4

6 5 10 8

z

z z z z

−

+ − + −

 +
 
 + + + + 

 (9.15) 
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The general compact representation for the above is given by: 

 

  
( ) ( )

{ } { }

6 3

,demand
2 1

random
demand

,

2,3, 4,5, 6 , 1, 2,3

s s i is i is s i is i is
i s i I s S

E p c z c z p c z c z

i I I s S

+ + − − + + − −

= = ∈ ∈
= + = +

= ∈ ⊆ = ∈

∑∑ ∑∑
 (9.16) 

 

 As highlighted in the general stochastic mode development, to ensure that the original 

information structure associated with the decision process sequence is honoured, three 

new constraints to model the three scenarios generated for each product with uncertain 

demand are added to the stochastic model in place of the original deterministic constraint. 

It is noted that out of the three new constraints, the one representing the �average� 

scenario, is identical to the deterministic constraint as it models the mean-value 

constraint. Altogether, this sums up to 3 × 5 = 15 new constraints in place of the five 

constraints in the deterministic model for those five products. The general form of the 

new constraints is given by: 

 

  { } { }random
demand, 2,3, 4,5,6 , 1, 2,3i is is isx z z d i I I s S+ −+ − = = ∈ ⊆ = ∈  (9.17) 

 

For the sake of completeness, the 15 constraints are listed below: 

for the demand uncertainty of gasoline: 

 

  2 21 21 21x z z d+ −+ − =  (9.18) 

  2 22 22 22x z z d+ −+ − =  (9.19) 

  2 23 23 23x z z d+ −+ − =  (9.20) 

 

for the demand uncertainty of naphtha: 

 

  3 31 31 31x z z d+ −+ − =  (9.21) 

  3 32 32 32x z z d+ −+ − =  (9.22) 
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  3 33 33 33x z z d+ −+ − =  (9.23) 

 

for the demand uncertainty of jet fuel: 

 

  4 41 41 41x z z d+ −+ − =  (9.24) 

  4 42 42 42x z z d+ −+ − =  (9.25) 

  4 43 43 43x z z d+ −+ − =  (9.26) 

 

for the demand uncertainty of heating oil: 

 

  5 51 51 51x z z d+ −+ − =  (9.27) 

  5 52 52 52x z z d+ −+ − =  (9.28) 

  5 53 53 53x z z d+ −+ − =  (9.29) 

 

for the demand uncertainty of fuel oil: 

 

  6 61 61 61x z z d+ −+ − =  (9.30) 

  6 62 62 62x z z d+ −+ − =  (9.31) 

  6 63 63 63x z z d+ −+ − =  (9.32) 

 

 

9.2.2 Two-Stage Stochastic Programming with Fixed Recourse Framework to Model 

Uncertainty in Product Yields 

 

For the purpose of utilizing the techniques of introducing slack variables and penalty 

functions in modelling randomness in the LHS technological coefficients of product 

yields, consider the mass balance given by equation (3) for the fixed yield of naphtha 

from crude oil in the primary distillation unit (PDU): 
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  1 70.13 0x x− + =  (8.3) 

 

To be consistent with the case of price and demand uncertainty, three possible scenarios 

are also considered for the LHS coefficient random variable of x1 in equation (8.3), that 

is, 0.13 (the minus sign is used to indicate inlet flow as pointed out in the presentation of 

the deterministic model), with each scenario corresponding to the depiction of �average 

product yield�, �above average product yield�, and �below average product yield�. The 

three scenarios constructed to model uncertainty in yield of naphtha from crude oil in the 

PDU are detailed in Table 9.10. A five (5) percent deviation from the mean value of 

naphtha yield is assumed to be reasonable based on preliminary investigation of available 

historical data. Then, by using a similar approach, all three scenarios accounting for 

uncertainty in the other product yields from crude oil (besides naphtha), comprising 

yields of naphtha, jet fuel, gas oil, and cracker feed in the PDU, are tabulated in Table 

9.11. As stressed in the previous section general model development, in ensuring that the 

material balances are satisfied, yields for residuum is determined by subtracting the 

summation of yields for the other four products from unity. As emphasized also, this does 

not mispresent the physical meaning of the problem as the yield of the residuum (or 

residual) is relatively negligible anyway in a typical atmospheric distillation unit. 

 
Table 9.10. Attributes of the scenario construction example for modelling uncertainty in yield of 

naphtha from crude oil in the primary distillation unit 
 

Yield Uncertainty: Left-Hand Side Coefficient of Mass Balance for Naphtha 
Yield from Crude Oil (unitless) 

Scenario 1 (s = 1) Scenario 2 (s = 2) Scenario 3 (s = 3)  

Above Average Yield Average Yield Below Average Yield 

Percentage of deviation 
from the expected value +10% 

0 
(i.e., the expected value 

or mean itself) 
−10% 

Yield of naphtha from 
crude oil  −0.143 −0.13 −0.117 

Probability ps p1 = 0.35 p2 = 0.45 p3 = 0.20 
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Table 9.11. Representative scenarios of uncertainty in product yields from crude oil in the primary 
distillation unit for the refinery planning under uncertainty problem 

 
Yield Uncertainty: Left-Hand Side Coefficient of Mass Balances for Fixed 

Yields (unitless) 
Scenario 1 (s = 1) Scenario 2 (s = 2) Scenario 3 (s = 3) 

Product Type (i) 
Above Average Yield 

(+1%) 
Average Yield 

(Expected Value/Mean) 
Below Average Yield 

(−1%) 
Naphtha (x7)   −0.1365  −0.13  −0.1235  
Jet fuel (x4)  −0.1575  −0.15  −0.1425  
Gas oil (x8)  −0.231  −0.22  −0.209  
Cracker feed (x9)  −0.21  −0.20  −0.19  
Residuum (x10)  −0.265  −0.30  −0.335  
Probability ps    0.35    0.45    0.20  

 

 It is further assumed that a penalty cost of iq+  is incurred per unit of shortage of crude 

oil yields ,i sy+  and a penalty cost of iq− for excess of crude oil yields ,i sy− . Thus, the 

expected recourse penalty for the second-stage cost due to uncertainty or randomness in 

crude oil yield to naphtha is given by: 

 

  ( ) ( ) ( )naphtha
,yield 1 2 21 2 21 2 2 22 2 22 3 2 23 2 23

Scenario 1 Scenario 2 Scenario 3

sE p q y q y p q y q y p q y q y+ + − − + + − − + + − −= + + + + +
144424443 144424443 144424443

 (9.33) 

 

 The associated penalty costs incurred due to deviations in product yields from crude 

oil are assumed to be as depicted in Table 9.12. 

 
Table 9.12. Penalty costs incurred due to uncertainty in product yields from crude oil 

 
Cost incurred per unit deviation ($/unit) 

Product Type (i) Yield decrement ( isq+ ) Yield increment ( isq− ) 
Naphtha (3) 5 3 
Jet fuel (4) 5 4 
Gas oil (x8) 5 3 
Cracker feed (x9) 5 3 
Residuum (x10) 5 3 

 

 Therefore, the expected recourse penalty for the second-stage costs due to uncertainty 

in product yields from crude oil as represented by randomness in the left-hand-side 

coefficients of the mass balances for fixed yields is given by: 
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( ) ( ) ( )

( ) ( )

3 31 3 31 4 41 4 41 8 81 8 81

naphtha jet fuel gas oil
,yield 1

9 91 9 91 10 10,1 10 10,1

cracker feed residuum

3 32
2

s

q y q y q y q y q y q y

E p
q y q y q y q y

q y
p

+ + − − + + − − + + − −

+ + − − + + − −

+ +

 + + + + +
 
 =  + + + + 
  

+
+

1442443 1442443 1442443

1442443 144424443

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

3 32 4 42 4 42 8 82 8 82

9 92 9 92 10 10,2 10 10,2

3 33 3 33 4 43 4 43 8 83 8 83
3

9 93 9 93 10 10,3 10 10,3

q y q y q y q y q y

q y q y q y q y

q y q y q y q y q y q y
p

q y q y q y q y

− − + + − − + + − −

+ + − − + + − −

+ + − − + + − − + + − −

+ + − − + + − −

 + + + +
 
 + + + + 
 + + + + +
 +
 + + + + 

 (9.34) 

 

Substituting the probabilities and the penalty cost terms with their actual values gives: 

 

  

( )
( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( )

21 21 31 31 41 41
,yield

51 51 61 61

22 22 32 32 42 42

52 52 62 62

23 23 33 33 43 43

53 5

5 3 5 4 5 3
0.35

5 3 5 3

5 3 5 4 5 3
0.45

5 3 5 3

5 3 5 4 5 3
0.2

5 3

s

y y y y y
E

y y y y

y y y y y y

y y y y

y y y y y y

y y

+ − + − + −

+ − + −

+ − + − + −

+ − + −

+ − − − + −

+

 + + + + +
 =
 + + + + 
 + + + + +
 +
 + + + + 

+ + + + +
+

+ +( ) ( )3 63 635 3y y− + −

 
 
 + + 

 (9.35) 

 

The general compact representation for the above is thus given by: 

 

  
( ) ( )

{ } { }

10 3

,yield , , , ,
3 1

random
yield

,

3, 4,8,9,10 , 1, 2,3

s s i i s i i s s i i s i i s
i s i I s S

E p q y q y p q y q y

i I I s S

+ + − − + + − −

= = ∈ ∈
= + = +

= ∈ ⊆ = ∈

∑∑ ∑∑
 (9.36) 

 

 To ensure that the original information structure associated with the decision process 

sequence is honoured, three new constraints to account for the three scenarios dealing 

with product yields uncertainty from crude oil are introduced for each affected product. 

The general form of the constraints is: 
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  { } { }random
1 , yield0, 3, 4,8,9,10 , 1, 2,3i i i s isT x x y y i I I s S+ −+ + − = = ∈ ⊆ = ∈  (9.37) 

 

For example, the three new constraints for the uncertainty in yield of naphtha from crude 

oil is given by: 

 

  1 7 31 310.143 0x x y y+ −− + + − =  (9.38) 

  1 7 32 320.13 0x x y y+ −− + + − =  (9.39) 

  1 7 33 330.117 0x x y y+ −− + + − =  (9.40) 

 

Again, for the purpose of completeness, the entire set of three new constraints for every 

product yield uncertainty from crude oil for the other products comprising jet fuel, gas 

oil, cracker feed, and residuum is listed below: 

for the randomness in jet fuel yield from crude oil: 

 

  1 4 41 410.165 0x x y y+ −− + + − =  (9.41) 

  1 4 42 420.15 0x x y y+ −− + + − =  (9.42) 

  1 4 43 430.135 0x x y y+ −− + + − =  (9.43) 

 

for the randomness in gas oil yield from crude oil: 

 

  1 8 81 810.242 0x x y y+ −− + + − =  (9.44) 

  1 8 82 820.22 0x x y y+ −− + + − =  (9.45) 

  1 8 83 830.198 0x x y y+ −− + + − =  (9.46) 

 

for the randomness in cracker feed yield from crude oil: 

 

  1 9 91 910.22 0x x y y+ −− + + − =  (9.47) 

  1 9 92 920.20 0x x y y+ −− + + − =  (9.48) 
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  1 9 93 930.18 0x x y y+ −− + + − =  (9.49) 

 

for the randomness in residuum yield from crude oil: 
 

  1 10 10,1 10,10.33 0x x y y+ −− + + − =  (9.50) 

  1 10 10,2 10,20.30 0x x y y+ −− + + − =  (9.51) 

  1 10 10,3 10,30.27 0x x y y+ −− + + − =  (9.52) 

 

 The complete scenario formulation to simultaneously handle uncertainties in 

commodity prices, product demand, and product yields is given by the combination of 

Tables 9.2, 9.8, and 9.11. As stressed in the general stochastic model development, the 

major assumption that enables the combination of the sub-scenarios is that demands, 

yields, and prices in each sub-scenario are highly-correlated. This means that for instance, 

the possibility of the scenario where prices are �average� with demands being �above 

average� and yields being �below average� (or any other combination of sub-scenarios) is 

not considered. The combined tables are presented as Table 9.13. 
 

Table 9.13. Complete scenario formulation for the refinery production planning under uncertainty in 
commodity prices, market demands for products, and product yields problem 

 
Scenario 1 Scenario 2 Scenario 3 

Product Type (i) 
Above 

Average 
Average 

(Expected Value/Mean) 
Below 

Average 
Price Uncertainty: Objective Function Coefficient of Prices ($/day) 

Crude oil (1) −8.8 −8.0 −7.2 
Gasoline (2) 20.35 18.5 16.65 
Naphtha (3) 8.8   8.0 7.2 
Jet fuel (4) 13.75 12.5 11.25 
Heating oil (5) 15.95 14.5 13.05 
Fuel oil (6) 6.6   6.0 5.4 
Cracker feed (14) −1.65 −1.5 −1.35 

Demand Uncertainty: 
Right-Hand-Side Coefficient of Constraints for Production Requirement (ton/day) 

Gasoline (2) 2835 2700 2565 
Naphtha (3) 1155 1100 1045 
Jet fuel (4) 2415 2300 2185 
Heating oil (5) 1785 1700 1615 
Fuel oil (6) 9975 9500 9025 

Yield Uncertainty: 
Left-Hand Side Coefficient of Mass Balances for Fixed Yields (unitless) 

Naphtha (7)  −0.1365 −0.13 −0.1235 
Jet fuel (4) −0.1575 −0.15 −0.1425 
Gas oil (8) −0.231 −0.22 −0.209 
Cracker feed (9) −0.21 −0.20 −0.19 
Residuum (10) −0.265 −0.30 −0.335 
Probability ps 0.35 0.45 0.20 
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 The corresponding expected recourse penalty for the second-stage costs due to 

uncertainties in both demands and yields is: 

 

  

( )

( ) ( ) ( )
( ) ( )
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 (9.53) 

 

The general compact representation for the above is given by: 

 

  ( ) ( ), , , ,s s i i s i i s i i s i i s
i I s S

E p c z c z q y q y+ + − − + + − −
′

∈ ∈

 = + + + ∑∑  (9.54) 

 

 Thus, Expectation Model I is represented as the following: 
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   +
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(9.55) 

s.t. deterministic constraints (first stage) (8.1), (8.2), (8.8)−(8.19), and (8.26), 

  stochastic constraints (second stage): (9.17)−(9.32) and (9.37)−(9.52). 

 

 The alternative Expectation Model II is given as follows: 
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(9.56) 

s.t

[ ]
( ) ( )
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( ) ( )

1 2 3 4 5 6 14

0 1 2 3 4 5 6 14

1 2 3 4 5 6 14

0.35 8.8 20.35 8.8 13.75 15.95 6.6 1.65 Target
0.45 8.0 18.5 8.0 12.5 14.5 6.0 1.5 objective

function 0.2 7.2 16.65 7.2 11.25 13.05 5.4 1.35

x x x x x x x

E z x x x x x x x

x x x x x x x

 − + + + + + −
 

= + − + + + + + − ≥ 
 + − + + + + + −   value

deterministic constraints (first stage) (8.1), (8.2), (8.8)−(8.19), and (8.26), 

stochastic constraints (second stage): (9.17)−(9.32) and (9.37)−(9.52). 
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9.2.3 Computational Results for Expectation Model I 

 

Table 9.14 tabulates the computational results and some analytical outputs for the 

implementation of Expectation Model I on GAMS for a range of values of the profit risk 

parameter θ1. Starting values of the first-stage deterministic decision variables have been 

initialized to the optimal solutions of the deterministic model. A representative detailed 

results for profit risk factor θ1 = 0.000 03 is presented Table 9.15. The problem size and 

the distribution of computational expense are noted in the ensuing Table 9.16. Figure 9.2 

then depicts the efficient frontier plot of expected profit versus profit risk as measured by 

variance while an alternative representation of the computed results by plotting expected 

profit against the profit risk factor θ1 (also with variance as the risk measure) is shown in 

Figure 9.3. 

 Note that the actual true expected profit that is of interest in a stochastic model is still 

the original equation or expression for the deterministic profit as given by equation (9.4). 

This fact extends to all other stochastic models as well. 

 

(Please turn the page over for Table 9.14.) 
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Table 9.15. Detailed computational results for Expectation Model I for θ1 = 0.000 03 
 

Production Shortfall ijz+  or Surplus ijz−  (t/d) 
Scenario 1 Scenario 2 Scenario 3 

First- 
Stage 

Variable 
Stochastic 
Solution Product (i) 1iz+  1iz−  2iz+  2iz−  3iz+  3iz−  

x1 15 000.000 Demands RHS Coefficients Randomness 
x2 2 000.000 Gasoline (2) 835.000 0 700.000 0 565.000 0
x3 1 155.000 Naphtha (3) 0 0 0 55.000 0 110.000 
x4 3 637.500 Jet Fuel (4) 0 1222.500 0 1337.500 0 1452.500 
x5 3 835.000 Heating Oil (5) 0 2050.000 0.00 2135.000 0 2220.000 
x6 9 500.000 Fuel Oil (6) 475.000 0 0 0 0 475.000 
x7 2 155.000       
x8 4 635.000 Production Yields LHS Coefficients Randomness 
x9 4 350.000 Naphtha (7) 0 107.500 0 205.000 0 302.500 
x10 5 475.000 Jet Fuel (4) 0 1275.000 0 1387.500 0 1500.000 
x11 1 000.000 Gas Oil (8) 0 1170.000 0 1335.000 0 1500.000 
x12 2 876.250 Cracker Feed (9) 0 1200.000 0 1350.000 0 1500.000 
x13 1 758.750 Residuum (10) 0 1500.000 0 975.000 0 450.000 
x14 2 500.000       
x15 1 850.000 E(Penalty Costs) 20 229.125 23 123.250 10 704.500 
x16 1 000.000 Etotal 54 056.875 
x17 1 375.000   
x18 958.750       
x19 416.250       
x20 125.000       

Expected Profit 
z0 ($/day) 

81 774.744       

 
Table 9.16. Computational statistics for Expectation Model I 

 

Solver 
Single continuous 

variables Constraints 
Resource usage/ 

CPU time (s) Iterations 
CONOPT 3 91 85 ≈ (0.03−0.11) 10 

 

 

9.2.4 Analysis of Results for Expectation Model I 

 

Note that since this is a profit maximization problem, larger values of  the risk factor θ1 

correspond to lower profits, in contrast with the general notion that higher profits are 

associated with higher risks, which is typically the case in cost minimization problems. The 

difference arise since a profit maximization problem is the negative of a cost minimization 

problem, hence the observed reverse in the trend of the relationship between risk (as 

computed by variance for this model) and expected profit. 
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 It is observed that reducing values of θ1 translate to increment in the expected profit, since 

this generally leads to a reduction in expected production shortfalls but with increasing 

production surpluses, in which the fixed penalty cost for the former is higher than the latter. 

Thus, this reflects high model feasibility although not in the absolute sense since there is 

increase in excess production. Nonetheless, this shows that a suitable operating range of θ1 

values ought to be selected in order to achieve optimality between expected profit and 

expected production feasibility. However, this observation appears to be somewhat 

contradictory to Mulvey et al. (1991) who reported that the more robustness desired, the 

higher is the cost or the lower is the profit. 
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Figure 9.2. The efficient frontier plot of expected profit versus profit risk measured by variance for Expectation 
Model I 
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Figure 9.3. Plot of expected profit for different levels of risk as represented by the profit risk factor θ1 with 
variance as the risk measure for Expectation Model I 
 

 

9.2.5 Computational Results for Expectation Model II 

 

Table 9.17 tabulates the computational results for the implementation of Expectation Model 

II on GAMS for a range of values of the target profit µ. Starting values of the first-stage 

deterministic decision variables have been initialized to the optimal solutions of the 

deterministic model. As in Risk Model I, a similar analytical procedure is adopted for 

Expectation Model II, in which the standard deviation σ of profit is determined by computing 

the square root of the absolute values of variance, obviating the negative sign. 

 Representative detailed results for the target profit equals to the deterministic profit of 

$23 387.50/day is shown in Table 9.18 that immediately follows. Table 9.19 then displays 

the associated problem size and the distribution of computational expense. Figure 9.4 is 

plotted to show the efficient frontier plot of expected maximum profit for different levels of 

risk as represented by the profit risk parameter θ1 with standard deviation as the risk measure. 
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Table 9.18. Detailed computational results for Expectation Model II for target profit = deterministic 
profit = $23 387.50 

 
Production Shortfall ijz+  or Surplus ijz−  (t/d) 

Scenario 1 Scenario 2 Scenario 3 
First- 
Stage 

Variable 
Stochastic 
Solution Product (i) 1iz+  1iz−  2iz+  2iz−  3iz+  3iz−  

x1 2792.531 Demands RHS Coefficients Randomness 
x2 647.867 Gasoline (2) 2187.133 0 2052.133 0 1917.133 0 
x3 300.197 Naphtha (3) 854.803 0 799.803 0 744.803 0 
x4 677.189 Jet Fuel (4)F 1737.811 0 1622.811 0 1507.811 0 
x5 1150.523 Heating Oil (5) 634.477 0 549.477 0 464.477 0 
x6 177.052 Fuel Oil (6) 8797.948 0 8322.948 0 7847.948 0 
x7 624.131      
x8 862.892 Production Yields LHS Coefficients Randomness 
x9 809.834 Naphtha (7) 0 242.950 0 261.102 0 279.253 
x10 1019.274 Jet Fuel (4) 0 237.365 0 258.309 0 279.253 
x11 323.934 Gas Oil (8) 0 217.817 0 248.535 0 279.253 
x12 862.892 Cracker Feed (9) 0 223.402 0 251.328 0 279.253 
x13 0 Residuum (10) 0 279.253 0 181.515 0 83.776 
x14 809.834      
x15 0 E(Penalty Costs) 60 733.785 73 530.470 30 655.398 
x16 323.934 Etotal 1.6492E+5 
x17 445.409  
x18 287.631      
x19 157.778      
x20 40.492      

Expected Profit 
Z ($/day) 

23 387.50      

 
Table 9.19. Computational statistics for Expectation Model II 

 

Solver 
Single continuous 

variables Constraints 
Resource usage/ 

CPU time (s) Iterations 
CONOPT 3 92 87 ≈ (0.07−0.081) 10−13 

 

 

9.2.6 Analysis of Results for Expectation Model II 

 

Table 9.17 shows that the maximum expected profit, with a corresponding (very) high 

risk taken, is proposed to be approximately $105 800/day. For a target profit equivalent to 

the deterministic profit of $23 387.5, the detailed computational results displayed in 

Table 9.18 for Expectation Model II propose a marginally lower raw material flow rate of 

2792.531 ton/day of crude oil compared to the flow rate of 12 500 ton/day proposed by 

the deterministic model. This augurs well for the stochastic model since for a lower 
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purchasing cost of crude oil, the same amount of profit can be achieved by executing the 

production plan proposed by Expectation Model II. 

 The value of the computed coefficient of variation is lower for Expectation Model II 

compared to the value for the corresponding deterministic case for a same target profit, 

indicating lower degree of uncertainty in the stochastic model, which is exactly what 

Expectation Model II is intended to demonstrate. 
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Figure 9.4. The efficient frontier plot of expected profit versus profit risk measured by standard deviation 
for Expectation Model II 
 

 

(Please turn the page over for the next section of 9.3: Approach 3: Risk Model II.) 
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9.3 APPROACH 3: RISK MODEL II 

 

9.3.1 Two-Stage Stochastic Programming with Fixed Recourse of Minimization of 

the Expected Value and the Variance of the Recourse Penalty Costs 

 

Variance for the expected recourse penalty for the second-stage costs Vs is given by: 

 

  
( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

2 2 2
1 1 2 2 3 3

2 2 2
1 2 30.35 0.45 0.2

s s s s

s s s s

V p E p E p E

V E E E

′ ′ ′

′ ′ ′

= ξ − + ξ − + ξ −

= ξ − + ξ − + ξ −
 (9.57) 

 

or in general representation: 

 

  
( )

( )
( )

( )

2

, , , ,

, , , ,

i i s i i s i i s i i s
s s s

i I s S i I s Si i s i i s i i s i i s

c z c z c z c z
V p p

q y q y q y q y

+ + − − + + − −

+ + − − + + − −∈ ∈ ∈ ∈

    + +    = −    + + + +     
∑∑ ∑∑  (9.58) 

 

where ξ1, ξ2, ξ3, and sE ′  is given by equation (9.53). 

 Therefore, Risk Model II is as follows: 

 

[ ]
( ) ( )

( )( )
( )

3 2

0 1 0

2
1 , , , , 2
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3 1

maximize
Var( )

( )
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s

s s

s i i i i s i i s i i s i i s i i s s
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p C x x V C p c z c z q y q y V
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z x
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∈ ∈ ∈ ∈ ∈

= −
= − θ − −

 = − θ − + + + − θ 

− + + + + + −

= + − +

∑∑ ∑ ∑∑

( )
( )( )

( ) ( ) ( ) ( ) ( )
( ) ( )

2 3 4 5 6 14

1 2 3 4 5 6 14

2 2 2 2 2
1 2 3 4 5

1 2 2
6 14

.5 8.0 12.5 14.5 6.0 1.5

0.2 7.2 16.65 7.2 11.25 13.05 5.4 1.35

0.352 1.882 375 0.352 0.859 375 1.156 375

0.198 0.012 375

s s

x x x x x x

x x x x x x x

x x x x x

x x

E V

 
 

+ + + + − 
 + − + + + + + −  

 + + + +
− θ  

+ +  
− −

(9.59) 

 s.t. deterministic constraints (first stage) (8.1), (8.2), (8.8)−(8.19), and (8.26), 

  stochastic constraints (second stage): (9.17)−(9.32) and (9.37)−(9.52). 
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9.3.2 Computational Results for Risk Model II 

 

Tables 9.20, 9.22, and 9.24 tabulate the computational results for the implementation of 

Risk Model II on GAMS for a range of values of the recourse penalty costs risk 

parameter θ2 for three distinct cases of the value of the profit risk parameter fixed at θ1 = 

0.000 000 000 1, 0.000 000 1, and 0.000 015 5, respectively. Starting values of the first-

stage deterministic decision variables have been initialized to the optimal solutions of the 

deterministic model. Representative detailed results are presented in Tables 9.21, 9.23, 

and 9.25 that immediately follow each of the three cases for suitable (or particular 

meaningful) values of θ2.A number of different parameters are of interest in observing the 

trends and patterns that contribute to robustness in the model and robustness in the 

computed solution, as extensively analyzed in the ensuing discussion. 

 

 

(Please turn the page over for Table 9.20.) 
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Table 9.25. Detailed computational results for Risk Model II for θ1 = 0.000 015 5, θ2 = 0.001 
 

Production Shortfall ijz+  or Surplus ijz−  (t/d) 
Scenario 1 Scenario 2 Scenario 3 

First- 
Stage 

Variable 
Stochastic 
Solution Product (i) 1iz+  1iz−  2iz+  2iz−  3iz+  3iz−  

x1 15 000.000 Demands RHS Coefficients Randomness 
x2 2 000.000 Gasoline (2) 835.000 0 700.000 0 565.000 0 
x3 1 155.000 Naphtha (3) 0 0 0 55.000 0 110.000 
x4 3 637.500 Jet Fuel (4) 0 1222.500 0 1337.500 0 1452.500 
x5 3 599.262 Heating Oil (5) 0 1814.262 0 1899.263 0 1984.262 
x6 9735.738 Fuel Oil (6) 239.262 0 0 235.738 0 710.738 
x7 2 155.000        
x8 4 635.000 Production Yields LHS Coefficients Randomness 
x9 4 350.000 Naphtha (7) 0 107.500 0 205.000 0 302.500 
x10 5 475.000 Jet Fuel (4) 0 1275.000 0 1387.500 0 1500.000 
x11 1 000.000 Gas Oil (8) 0 1170.000 0 1335.000 0 1500.000 
x12 2 699.447 Cracker Feed (9) 0 1200.000 0 1350.000 0 1500.000 
x13 1 935.553 Residuum (10) 0 1500.000 0 975.000 0 450.000 
x14 2 500.000        
x15 1 850.000 E(Penalty Costs) 18 991.502 24 003.364 10 845.943 
x16 1 000.000 Etotal 53 840.808 
x17 1 375.000  
x18 899.816        
x19 475.184        
x20 125.000        

Expected Profit 
Z ($/day) 

79 740.916        

 

The problem size and the efficient distribution of computational expense are depicted 

through the computational statistics shown in Table 8.30. Figure 8.6 then illustrates the 

relationship between expected profit and the various levels of risk as dependent on the 

tradeoff dictated by the profit risk factor θ1 and the recourse penalty costs risk factor θ2 

with variance as the risk measure. 

 
Table 9.26. Computational statistics for Risk Model II 

 

Solver 
Single continuous 

variables Constraints 
Resource usage/ 

CPU time (s) Iterations 
CONOPT 3 96 90 ≈ (0.07−0.081) 10−13 
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9.3.3 Analysis of Results for Risk Model II 

 

The values of θ1 and θ2 denotes the importance of risk in the model as contributed by 

variation in profit and variation in recourse penalty costs, respectively, in comparison 

with the corresponding expected values of the model�s objective. 

 Similar to the expected value models, smaller  values of θ1 correspond to higher 

expected profit, as shown in Figure 9.5. With increasingly larger θ1, the reduction in 

expected profit becomes almost constant as demonstrated for the cases of 

θ1 = 0.000 000 1 and θ1 = 0.000 000 000 1; the converse is true as well, that is, with 

increasingly smaller θ1, the increment in expected profit becomes roughly constant. 

 Although the pair of increasing θ2 with fixed value of θ1 corresponds to reduction 

expected profit, it generally leads to a reduction of expected production shortfalls and 

surpluses as well. Based on the conceptual definition of model robustness presented 

earlier for Expectation Model I, this reflects high model feasibility. Therefore, a suitable 

operating range of θ2 values ought to be selected in order to achieve optimality between 

expected profit and expected production feasibility. Increasing θ2 also reduces the 

expected variation or deviation in the recourse penalty costs under different realized 

scenarios. This in turn translates to increased solution robustness. It thus depends on the 

policy adopted by the decision maker, as characterized by the values of the factors θ1 and 

θ2 chosen, in reflecting whether these tradeoffs are acceptable based on the desired 

degree of model robustness and solution robustness, as reported by Bok et al. (1998). 

 In general, the coefficients of variation decrease with larger values of θ2. This is 

definitely a desirable behaviour since for higher expected profits, there is diminising 

uncertainty in the model, thus signifying model and solution robustness. It is also 

observed that for larger values of θ2 until approximately greater than 100, the coefficient 

of variation remain at a static value of 0.5237 (correct to four significant figures), 

therefore indicating stability and minimal degree of uncertainty in the model. 
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Figure 9.5. The efficient frontier plot of expected profit versus risk imposed by variations in both profit 
and the recourse penalty costs as measured by variance for Risk Model II. Note that the plot for θ1 = 0.000 
000 000 1 overlaps with the plot for θ1 = 0.000 000 1. 
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Figure 9.6. Plot of expected profit for different levels of risk as represented by the profit risk factor θ1 and 
the recourse penalty costs risk factor θ2 (with θ1 and θ2 in logarithmic scales due to wide range of values) 
with variance as the risk measure for Risk Model II. Note that the plot for θ1 = 0.000 000 000 1 overlaps 
with the plot for θ1 = 0.000 000 1. 
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Figure 9.7. Investigating model robustness via the plot of expected total unmet demand (due to production 
shortfall) versus the recourse penalty costs risk factor θ2 
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Figure 9.8. Investigating model robustness via the plot of expected total excess production (due to 
production surplus) versus the recourse penalty costs risk factor θ2 
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Figure 9.9. Investigating solution robustness via the plot of expected variation in the recourse penalty costs 
versus the recourse penalty costs risk factor θ2. Note that the plot for θ1 = 0.000 000 000 1 overlaps with the 
plot for θ1 = 0.000 000 1. 
 

 

9.3.4 Comparison of Performance between Expectation Model I and Risk Model II 

 

As emphasized, the motivation for employing Risk Model II is to account for the 

presence of risk in decision-making that is not considered by the risk-neutral Expectation 

Model I. Although a robust mathematical (or statistical) approach for direct comparison 

between the expected profit obtained by the proposed models of the two approach may 

not be conventionally available, from the general trend computed, it is apparent that Risk 

Model II consistently registers a higher expected profit, thus testifying to its superior 

robustness in the face of multitude uncertainties. In fact, the average expected profit 

registered by Risk Model II is a commendable $80 000/day for feasible pair of values of 

(θ1, θ2) whereas for Expectation Model I, the expected profit even dipped below the 

deterministic profit (of $23 387.50/day, for profit risk factor θ1 that are approximately 

larger than 0.0045), as evidenced from Table 9.14. 
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9.4 APPROACH 4: RISK MODEL III 

 

9.4.1 Two-Stage Stochastic Programming with Fixed Recourse for Minimization of 

the Expected Value and the Mean-Absolute Deviation (MAD) of the Variation in 

Recourse Penalty Costs 

 

The mean-absolute deviation (MAD) for the expected variation in the recourse penalty 

for the second-stage costs W(ps) is given by: 

 

  
( )
( ) ( ) ( ) ( )

1 1 2 2 3 3

1 2 30.35 0.45 0.2
s s s s

s s s s

W p p E p E p E

W p E E E
′ ′ ′

′ ′ ′

= ξ − + ξ − + ξ −

= ξ − + ξ − + ξ −
 (9.60) 

 

where ξ1, ξ2, ξ3, and sE ′  is given by equation (9.53). 

 

 Therefore, Risk Model III is presented as follows: 

 

( ) ( )

( ) ( ) ( )
( )

4 2 3

0 1 0 3

0 1 0

3

maximize ( )
( ) ( ) ( )

( ) ( )

s

s s

s i is i is i is i is
i I s S

i is i is
s i is i is i is i is s

i I s S i I s S i is i is

z z W p
E z V z E W p

E z V z p c z c z q y q y

c z c z
p c z c z q y q y p

q y q y

+ + − − + + − −

∈ ∈

+ + − −
+ + − − + + − −

+ + − −
∈ ∈ ∈ ∈

= − θ
= − θ − − θ

 = − θ − + + + 

 +
 − θ + + + −
 + + 

∑∑

∑∑ ∑∑

( )( )
( ) ( )
( ) ( )

( )

1 2 3 4 5 6 14

4 1 2 3 4 5 6 14

1 2 3 4 5 6 14

2
1

1

0.35 8.8 20.35 8.8 13.75 15.95 6.6 1.65

maximize 0.45 8.0 18.5 8.0 12.5 14.5 6.0 1.5

0.2 7.2 16.65 7.2 11.25 13.05 5.4 1.35

0.352 1.882 3

x x x x x x x

z x x x x x x x

x x x x x x x

x

 − + + + + + −
 

= + − + + + + + − 
 + − + + + + + −  

+
− θ

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( )
( )

2 2 2
2 3 4

2 2 2
5 6 14

3

75 0.352 0.859 375

1.156 375 0.198 0.012 375

s i is i is i is i is
i I s S

i is i is
s i is i is i is i is s

i I s S i is i is

x x x

x x x

p c z c z q y q y

c z c z
p c z c z q y q y p

q y q y

+ + − − + + − −

∈ ∈

+ + − −
+ + − − + + − −

+ + − −
∈ ∈

 + +
 
+ + +  

 − + + + 

 +
 − θ + + + −
 + + 

∑∑

∑∑
i I s S∈ ∈
∑∑

(9.61) 
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s.t. deterministic constraints (first stage) (8.1), (8.2), (8.8)−(8.19), and (8.26), 

  stochastic constraints (second stage): (9.17)−(9.32) and (9.37)−(9.52). 

where  θ1 < θ3. 

 

 

9.4.2 Comment on the Implementation of Risk Model III on GAMS 

 

Since the absolute deviation is not differentiable at the singularity occurring at the 

inflection point, this calls for the use of a solver within the GAMS environment that is 

able to execute local optimization of a nonlinear program (NLP) with nonsmooth 

functions (Rardin, accessed on September 30, 2005). The default solver stipulated in 

GAMS for this class of problem is CONOPT 3 (Drud, 1996, 

http://www.gams.com/solvers/conopt.pdf, accessed on January 10, 2006), which is also, 

incidentally, the GAMS default solver for NLP. Hence, the default solve statement in 

GAMS can be used without the need to specify the type of solver to be CONOPT 3. 

 

 

9.4.3 Computational Results for Risk Model III 

 

Table 9.27 records the computational results for the implementation of Risk Model III on 

GAMS for a range of values for θ1, the tradeoff factor for variability in profit measured 

by variance and for  θ3, the tradeoff factor for variability in the recourse penalty costs 

measured by the mean-absolute deviation (MAD). This is followed by a set of detailed 

results for which the case of θ1 = 0.000 8 and θ3 = 0.01 is considered to be representative, 

with a number of different parameters enumerated to investigate particular trends and 

patterns that potentially contribute to robustness in the proposed model and solution. The 

associated computational statistics describing the problem size and the efficient 

distribution of computational expense is summarized in Table 9.28. Figure 9.6 then 

depicts the Markowitz�s efficient frontier plot of expected profit versus risk imposed by 

deviations in both profit and the recourse penalty costs. Finally, the results are analyzed 

and discussed. 
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Table 9.28. Detailed computational results for Risk Model III for θ1 = 0.000 8, θ3 = 0.01 
 

Production Shortfall ijz+  or Surplus ijz−  (t/d) 
Scenario 1 Scenario 2 Scenario 3 

First- 
Stage 

Variable 
Stochastic 
Solution Product (i) 1iz+  1iz−  2iz+  2iz−  3iz+  3iz−  

x1 10 282.158 Demands RHS Coefficients Randomness 
x2 2 000.000 Gasoline (2) 835.000 0 700.000 0 565.000 0 
x3 1 155.000 Naphtha (3) 0 0 0 55.000 0 110.000 
x4 2 493.423 Jet Fuel (4) 0 78.423 0 193.423 0 308.423 
x5 1 700.000 Heating Oil (5) 85.000 0 0 0 0 85.000 
x6 7 087.001 Fuel Oil (6) 2887.999 0 2412.999 0 1937.999 0 
x7 2 155.000       
x8 3 177.187 Production Yields LHS Coefficients Randomness 
x9 2 981.826 Naphtha (7) 0 751.485 0 818.319 0 885.153 
x10 3 752.988 Jet Fuel (4) 0 873.983 0 951.100 0 1028.216 
x11 1 000.000 Gas Oil (8) 0 802.008 0 915.112 0 1028.216 
x12 1 275.000 Cracker Feed (9) 0 822.573 0 925.394 0 1028.216 
x13 1 902.187 Residuum (10) 0 1028.216 0 668.340 0 308.465 
x14 2 500.000       
x15 481.826 E(Penalty Costs) 22 500.614 25 607.063 10 091.340 
x16 1 000.000 Etotal 58 199.017 
x17 1 375.000  
x18 425.000       
x19 950.000       
x20 125.000       

Expected Profit 
Z ($/day) 

59 451.117       

 
Table 9.29. Computational statistics for Risk Model III 

 

Solver 
Single continuous 

variables Constraints 
Resource usage/ 

CPU time (s) Iterations 
CONOPT 3 96 91 ≈ (0.049−0.100) 14 

 

 

9.4.4 Analysis of Results for Risk Model III 

 

As is the case with Risk Model II, the values of θ1 and θ3 denotes the importance of risk 

in the model as contributed by variation in profit and variation in recourse penalty costs, 

respectively, in comparison with the corresponding expected values of the model�s 

objective. 

 From Table 8.31, similar trends with the expected value models are observed in which 

reducing  values of θ1 implicates higher expected profit. With increasingly smaller θ1, the 
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increment in expected profit becomes constant; the same constancy trend is also observed 

in the initially declining expected profit for increasing values of θ1. 

 One of the reasons the pair of reducing values of θ1 with fixed value of θ3 leads to 

increasing expected profit is attributable to the general decrement in production shortfalls 

but increasing production surpluses, in which the fixed penalty cost for the latter is lower 

than the former. Based on its conceptual definition (as mentioned earlier), it certainly 

augurs well to select a higher operating value of θ1 to achieve both high model feasibility 

as well as increased profit. Moreover, higher values of θ1 alto decreasing variation in the 

recourse penalty costs, which implies solution robustness. This argument is further 

strengthened by the decreasing values of the coefficient of variation, which indicates less 

uncertainty in the model on a whole. This again demonstrates that a proper selection of 

the operating range of θ1 and θ3 is crucial in varying the tradeoffs between the desired 

degree of model robustness and solution robustness, to ultimately obtain optimality 

between expected profit and expected production feasibility. 
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Figure 9.10. The efficient frontier plot of expected profit versus risk imposed by variations in both profit 
(measured by variance) and the recourse penalty costs (measured by mean-absolute deviation) for Risk 
Model III 
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9.5 SUMMARY OF RESULTS AND COMPARISON AGAINST RESULTS FROM 

THE FUZZY LINEAR FRACTIONAL GOAL PROGRAMMING APPROACH 

 

Ravi and Reddy (1998) adopted the fuzzy linear fractional goal programming approach to 

the same deterministic linear program for refinery operations planning by Allen (1971) 

that is used for the present numerical example. Based on their arguments that a decision 

maker is very often more interested in the optimization of ratios, they identified the ratios 

or the fractional goals to be treated as fuzzy goals for optimization as the following: 

 

  1 1
1 1

profit
capacity of the primary unit ( )

Zf f
x x

 
= ⇒ = 

 
 (9.62) 

 

  2 1
14 14

profit
capacity of the cracker ( )

Zf f
x x

 
= ⇒ = 

 
 (9.63) 

 

for which the deterministic model of Allen (1971) is then reformulated accordingly. 

Table 9.30 presents a summary of the results obtained from the base case deterministic 

model and the five different approaches adopted in applying the methods of stochastic 

optimization, to be compared against results from the fuzzy linear programming 

approach. 

 Ravi and Reddy (1998) advocated that their results, although registering 1.3 percent 

less profit than the linear programming approach of Allen (1971), yielded higher optimal 

fractional goal values, thus translating to better ratio values of profit/capacity of primary 

unit capacity f1 and profit/capacity of the cracker unit f2 simultaneously. Following the 

same premise, we conclude that the stochastic models, in addition to proposing midterm 

plans that consistently register higher expected profits than both the deterministic and the 

fuzzy programming models, assure the decision maker of good ratios for both f1 and f2. 

Maximization of these ratios lead to maximum or near maximum profit, with minimum 

or near minimum capacities of the respective units simultaneously. As petroleum refiners 

use the technology of fluidized bed catalytic crackers (FCC) to convert more crude oil to 

blending stocks for producing gasoline, which is unarguably the most commercially 
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attractive end product of the refining activity, it certainly augurs well for the stochastic 

models to have a good ratio of maximum profit with regards to a minimum capacity of 

the highly capital-intensive FCC unit. Moreover, about 45 percent of worldwide gasoline 

production is contributed by FCC processes and its ancillary unit. Thus, the overall 

economic performance of a refinery considerably hinges on a prudent investment in FCC 

due to its large throughput, high product-feed upgrade, and mercantile importance 

(Alvarez-Ramirez et al., 2004). 

 
Table 9.30. Comparison of results obtained from the deterministic model, the stochastic models, and 

the fuzzy linear fractional goal program by Ravi and Reddy (1998) 
 

First- 
Stage 

Variable 

Deterministic 
Linear 

Program 

Stochastic 
Risk 

Model I 

Stochastic 
Expectation 

Model I 
(for 

θ1 = 0.000 03) 

Stochastic 
Expectation 

Model II 

Stochastic 
Risk 

Model II 
(for 

θ1 = 0.000 000 1, 
θ2 = 50) 

Stochastic 
Risk 

Model III 
(for 

θ1 = 0.000 8, 
θ3 = 0.01) 

Fuzzy 
Linear 

Fractional 
Goal 

Program* 
x1 12 500 12 171.621 15 000.000 2792.531 15 000.000 10 282.158 12 054.59 
x2 2 000 1 947.459 2 000.000 647.867 2 000.000 2 000.000 1 928.74 
x3 625 608.581 1 155.000 300.197 1 155.000 1 155.000 602.73 
x4 1 875 1 825.743 3 637.500 677.189 3 637.500 2 493.423 1 808.19 
x5 1 700 1 700.000 3 835.000 1150.523 3 597.500 1 700.000 1 700.00 
x6 6 175 5 968.122 9 500.000 177.052 9737.500 7 087.001 5 894.39 
x7 1 625 1 582.311 2 155.000 624.131 2 155.000 2 155.000 1 567.09 
x8 2 750 2 677.757 4 635.000 862.892 4 635.000 3 177.187 2 652.01 
x9 2 500 2 434.324 4 350.000 809.834 4 350.000 2 981.826 2 410.92 
x10 3 750 3 651.486 5 475.000 1019.274 5 475.000 3 752.988 3 616.38 
x11 1 000 973.730 1 000.000 323.934 1 000.000 1 000.000 964.37 
x12 1 275 1 275.000 2 876.250 862.892 2 698.125 1 275.000 1 275.00 
x13 1 475 1 402.757 1 758.750 0 1 936.875 1 902.187 1 377.01 
x14 2 500 2 434.324 2 500.000 809.834 2 500.000 2 500.000 2 410.92 
x15 0 0 1 850.000 0 1 850.000 481.826 0.0 
x16 1 000 973.730 1 000.000 323.934 1 000.000 1 000.000 964.38 
x17 1 375 1 338.878 1 375.000 445.409 1 375.000 1 375.000 1 326.01 
x18 425 425.000 958.750 287.631 899.375 425.000 425.00 
x19 950 913.878 416.250 157.778 475.625 950.000 901.01 
x20 125 121.716 125.000 40.492 125.000 125.000 120.55 

Profit ($/day) 23 387.50 23 500.000 81 774.744 23 387.50 79 725.713 59 451.117 23 069.06 
f1 1.871 1.931 5.452 8.375 5.315 5.782 1.914 
f2 9.355 9.654 32.710 28.879 31.890 23.780 9.569 

* Taken from the work of Ravi and Reddy (1998) 
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9.6 ADDITIONAL REMARKS 

 

In retrospect, we mildly caution the respected reader that this work primarily intends to 

demonstrate the validity of the stochastic concepts reviewed along with the methods 

developed and improvised by using a typical and realistic refinery planning problem 

under uncertainty. However, it is certainly not our claim that the model captures all 

detailed aspects of the problem but rather, it demonstrates the capabilities of the proposed 

tools. 
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CHAPTER 10 

Conclusions 
 

 

10.1 SUMMARY OF WORK 

 

This thesis research focuses on the methodology of developing effective yet 

straightforward stochastic optimization models for the midterm production planning of a 

petroleum refinery by accounting for three major factors of uncertainty simultaneously, 

namely commodities� prices, market demands, and product yields. In addition, we 

consider the importance of risk in decision-making under uncertainty in the proposed 

stochastic planning models by explicitly accounting for the tradeoffs between expected 

profit and variation in both profit and the recourse penalty costs. These measures of risk 

(in the form of variance for the price coefficients and variance or Mean-Absolute 

Deviation (MAD) for the recourse penalty costs, adopted in different models) are 

incorporated within the general framework of the proposed models with the aim of 

achieving robustness in decision-making activities especially in view of the highly 

volatile hydrocarbon industry in which the petroleum refineries operate. The following 

four approaches are implemented, resulting correspondingly in four decision-making 

models under uncertainty: 

1. the Markowitz�s mean�variance (MV) model to handle randomness in the 

objective function coefficients of prices by minimizing the variance of the 

expected value or mean of the random coefficients, subject to a target profit 

constraint; 

2. the two-stage stochastic programming with fixed recourse via scenario analysis 

approach to model randomness in the right-hand side and the left-hand side 

(technological) coefficients by minimizing the expected recourse penalty costs 

due to constraints� violations; 

3. incorporation of the Markowitz�s MV approach within the bilevel decision-

making framework developed in the preceding approach to minimize both the 

expectation and the variance of the recourse penalty costs; and 
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4. reformulation of the model developed in the third approach by utilizing the Mean�

Absolute Deviation (MAD) as the measure of risk imposed by the recourse 

penalty costs. 

An exposition for justifying the rationale for adopting each of the four stochastic 

modelling methods is undertaken in this work by comprehensively surveying past 

successes in employing such approaches in the open literature, but in the light of the 

limitations of the approaches. 

 As emphasized throughout, the novelty of these approaches lies in the explicit 

modelling and formulation of uncertainties considered for the large-scale optimization 

problem of petroleum refinery production planning. This has been accomplished through 

the utilization of slack variables to account for violations of the stochastic constraints of 

possible scenarios of product demands and product yields, primarily within a bilevel 

decision-making framework of two-stage stochastic programming that incorporates the 

Markowitz�s mean�variance model of portfolio selection optimization as a hedging tool 

against the presence of risk that arises due to variation in profit and the penalty costs of 

recourse actions. 

 

 

10.2 MAJOR CONTRIBUTIONS OF THIS RESEARCH 

 

The major contributions of this work are threefold. First, we formulate a slate of highly 

tractable stochastic optimization models through an explicit modelling of the presence of 

uncertainties for application in the production planning of petroleum refineries, primarily 

within a two-stage stochastic programming framework. This is accomplished via the 

systematic adoption of a hybrid of effective yet clear-cut stochastic optimization 

techniques that obviates the use of the conventional brute force approach of Monte Carlo-

based methods. 

 Second, we consider the incorporation of the concept of Mean-Absolute Deviation 

(MAD) as a measure of risk for the petroleum refining activities, instead of the traditional 

measure using variance. The numerous benefits of doing so are elucidated in Section 

5.8.1, with the most significant being the ability to linearize the MAD expression in the 
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objective function, thus producing an equivalent linear programming problem that can be 

solved accurately and competently by harnessing the combination of efficient algorithms 

with the power of today�s modern computing technology. 

 Additionally, in an effort to establish the effectiveness of the proposed stochastic 

models while simultaneously hedging against the various forms of uncertainties in 

commodity prices, market demands, and product yields, we carry out a series of extensive 

and rigorous computational experiments to investigate and interpret the behaviour and the 

overall robustness of the multiobjective optimization models. This is executed in light of 

similar methodologies that have been employed in previous works, notably the 

applications of Mulvey et al. (1995)�s robust optimization approach by Bok et al. (1998) 

for the capacity expansion of a petrochemicals processing network and by Malcolm and 

Zenios (1994) for the capacity expansion of power systems. Oftentimes, we also take into 

account many of the useful suggestions and guidelines that are offered by the now 

classical paper by Rardin and Lin (1982) on issues and techniques concerning test 

problems for computational experiments. Two performance metrics are thus considered, 

namely: (1) the concepts of solution robustness and model robustness as introduced by 

Mulvey et al. (1995) and (2) the coefficient of variation Cv, in order to gauge the 

performances of the four proposed stochastic models against each other, as well as 

against the deterministic model and the fuzzy programming approach of Ravi and Reddy 

(1998). 
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CHAPTER 11 

Recommendations for Future Work and Way Forward 
 

 

11.1 SUMMARY OF RECOMMENDATIONS FOR FUTURE WORK 

 

In this chapter, we intend to bring together and consolidate under one roof, the numerous 

recommendations scattered over the main content of the dissertation. We are also inclined 

to offer some personal thoughts and opinions on a promising research agenda for future 

undertakings in this exciting area of developing stochastic programming tools and 

applications, for petroleum refinery operations management in specific and the wider 

spectrum of business decision-making in general. To provide a compact discussion, the 

essence of the recommendations and suggestions for future work are enumerated as 

follows: 

 

1. to implement extensions to the present general deterministic midterm production 

planning model for petroleum refineries by considering the the following features: 

• rigorous modelling of advanced petroleum refining process unit such as the 

hydrotreating and hydrocracking units that are instrumental especially in the 

current drive towards clean fuels production; 

• capacity expansion through the installation of multiple number of processing 

units; an example with apparent economic value would be the installation of an 

additional piece of the fluidized bed catalytic cracker (FCCU) to increase the 

production of gasoline that is arguably the most profitable of refining end 

products; 

• modelling nonlinearities in blending operations as constraints for production of 

fuels in satisfying the following operating objectives, which are typically 

prioritized in this order as advocated by Bodington (19950: (i) quality 

specifications; (ii) shipment schedule; (iii) quality giveaway; (iv) blending cost; 

and () inventory targets; 
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• multiferinery modelling of a network of refineries, with consideration for inter-

refinery transfer or transportation of intermediates and products under 

subcontracting agreements, with the addition of production (supply) and 

distribution modelling; interactions with potential spin-off industries particularly 

petrochemicals processing will also be examined; 

• incorporation of complex economic instruments such as royalties, taxes, and 

tariffs in the objective function of net present value (van den Heever, 2001; van 

den Heever et al., 2000; 2001); 

 

2. improvements in methodology for dealing with uncertainty: 

• implementation of multi-stage stochastic programming framework with the stages 

corresponding to time periods, hence effectively formulating multiperiod models, 

which is an established alternative strategy in dealing with uncertainty; 

• incorporation of uncertainties in less-commonly considered but equally paramount 

and planning-sensitive factors such as (i) process variations as indicated by 

variable process parameters, for example, flow rates and temperatures; (ii) 

cancelled/rushed orders; (iii) equipment failure; (iv) technology obsolescence; and 

(v) sales uncertainty; 

• improvement in effective procedures of scenario selection and generation, which 

is a highly essential (if not the most essential) key component towards developing 

stochastic programming models that are truly robust in the face of uncertainties; in 

particular, we intend to pursue the incorporation of the scenario planning 

paradigm (van der Heijden, 2005; Godet, 1987; Schoemaker and van der Heijden, 

1992; Lindgren and Bandhold, 2003; Schwartz, 1991; Stokke et al., 1990; Huss 

and Honton, 1987) that has been so successfully practised at Royal Dutch/Shell, 

which is not only the leading oil-and-gas company worldwide but is even 

arguably, one of the most successful corporations of modern times, 

• improvement in the theory and procedure for specifying the weights for 

multiobjective optimization to account for the tradeoffs between expected profit 

and risk; 
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3. incorporation of advanced metrics for risk measurement and modelling since the 

conventional metric of variance is a symmetric risk measure that desirably penalizes 

profits below the target levels but also undesirably penalizes profits above the target 

levels, other than the mean-absolute deviation (MAD) that is considered in this work 

with much resulting promise; the alternative risk measures to be considered will 

include the expected downside risk (Eppen et al., 1989), the Value-at-Risk (VaR) 

(Barbaro and Bagajewicz, 2004a; Mulvey, 2001), and the Conditional Value-at-Risk 

(CVaR) (Rockafellar and Uryasev, 2002). 
 

 

11.2 FINAL REMARKS 
 

We are convinced that there is still a plethora of research opportunities in this field with 

directions of research problems themselves muddled with uncertainty (ironically) and 

multitude of questions unanswered, as widely acknowledged by both academics and 

practitioners of the field. In advancing this stand, we have the privilege of support from 

none other than George (Bernard) Dantzig himself, fondly dubbed as the father of linear 

programming (primarily for devising the simplex method) and one of the pioneers of 

stochastic programming, with the following truly inspiring quote from Dantzig, which 

has and will continue to serve to motivate researchers, both current and potential, in this 

remarkably rich and fascinating field of stochastic optimization: 

 �Planning under uncertainty. This, I feel, is the real field we should all be working 

on.� (http://www.e-optimization.com/directory/trailblazers/dantzig/ 

interview_planning.cfm, accessed on March 2, 2006; http://www2.informs.org/History/ 

dantzig/in_interview_irv10.htm, accessed on March 9, 2006). 

 Incidentally, to cap the wonderful journey of working on this thesis research, we take 

this opportunity to pay our utmost respect and homage to Dantzig (November 8, 1914�

May 13, 2005), whose recent demise last year would certainly carve a legacy that will 

long survive him in continuing to spur the area of mathematical 

programming/optimization/operations research towards attaining greater heights and 

meaning. (As an aside, �optimization� is the term strongly preferred and even advocated 

by George L. Nemhauser, truly one of the giants of the field and co-author with Laurence 

A. Wolsey of the biblical encyclopaedia of the discrete sub-area of this field entitled 

Integer and Combinatorial Optimization (Nemhauser, 1994).) 
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Appendices 
 

 

APPENDIX A 

A Review of the Markowitz�s Mean�Variance or Expected Returns−Variance of 

Returns (E−V) Rule Approach 

 

The following is a review of the widely-used Markowitz�s mean�variance model as 

found in Konno and Yamazaki (1991). Let Rj be a random variable representing the rate 

of return (per period) of the asset Sj, 

j = 1, �, n. Also let xj be the amount of money to be invested in Sj out of the total fund 

M0. 

 The expected return (per period) of this investment is given by 

 

  ( )1
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,...,
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 = =     
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where E[⋅] represents the expected value of the random variable in the bracket. An 

investor prefers to have ( )1,..., nr x x  as large as possible. At the same time, he wants to 

make the risk as small as possible. 

 Markowitz, in his seminal work (1959), employed the standard deviation of the (per 

period) return: 
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as the measure of risk and formulated the portfolio optimization problem as a parametric 

quadratic programming problem, as presented in the following: 
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∑
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 (A.3) 

 

where rj = E[Rj] and ( )( )ij i i j jE R r R r σ = − −   and ρ is a parameter representing the 

minimal rate of return required by an investor. Also, uj is the maximum amount of money 

that can be invested into Sj. This model is known to be valid if (i) Rj�s are multivariate 

normally distributed and/or (ii) an investor is risk averse in the sense that he prefers less 

standard deviation of the portfolio to more. 
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APPENDIX B2 

Weekly USA retail gasoline price (cents per gallon) for all grades and all 

formulations for the period of January 5, 2004�December 26, 2005 (Energy 

Information Administration (EIA), Retail Gasoline Historical Prices, 

http://www.eia.doe.gov/oil_gas/petroleum/data_publications/wrgp/ 

mogas_history.html, accessed on January 23, 2006) (Note: n.a. = not available) 

 

Date 
Gasoline price 
(cent/gallon) Date 

Gasoline price 
(cent/gallon) Date 

Gasoline price 
(cent/gallon) 

05/01/04 155.2 06/09/04 189.3 09/05/05 223.1 
12/01/04 160.3 13/09/04 188.9 16/05/05 220.6 
19/01/04 163.7 20/09/04 190.8 23/05/05 216.9 
26/01/04 166.4 27/09/04 195.9 30/05/05 214.1 
02/02/04 166 04/10/04 198 06/06/05 215.9 
09/02/04 168.1 11/10/04 203.5 13/06/05 217.3 
16/02/04 169 18/10/04 207.7 20/06/05 220.4 
23/02/04 173 25/10/04 207.4 27/06/05 225.7 
01/03/04 175.8 01/11/04 207.6 04/07/05 226.8 
08/03/04 178 08/11/04 204.5 11/07/05 236.9 
15/03/04 176.7 15/11/04 201.4 18/07/05 236 
22/03/04 178.5 22/11/04 199.2 25/07/05 233.3 
29/03/04 180 29/11/04 198.9 01/08/05 233.5 
05/04/04 182.2 06/12/04 195.6 08/08/05 241 
12/04/04 182.7 13/12/04 189.3 15/08/05 259.2 
19/04/04 185.3 20/12/04 186.1 22/08/05 265.4 
26/04/04 185.3 27/12/04 183.8 29/08/05 265.3 
03/05/04 188.4 03/01/05 182.4 05/09/05 311.7 
10/05/04 197.9 10/01/05 183.7 12/09/05 300.2 
17/05/04 205.5 17/01/05 186.3 19/09/05 283.5 
24/05/04 210.4 24/01/05 189.6 26/09/05 285.1 
31/05/04 209.2 31/01/05 195.3 03/10/05 297.5 
07/06/04 207.5 07/02/05 195.2 10/10/05 289.6 
14/06/04 202.9 14/02/05 194.1 17/10/05 277.5 
21/06/04 198.1 21/02/05 194.8 24/10/05 265.2 
28/06/04 196.5 28/02/05 196.9 31/10/05 252.8 
05/07/04 193.9 07/03/05 204 07/11/05 242.4 
12/07/04 195.9 14/03/05 209.8 14/11/05 234.2 
19/07/04 197.1 21/03/05 214.9 21/11/05 224.7 
26/07/04 194.8 28/03/05 219.4 28/11/05 220 
02/08/04 193 04/04/05 225.8 05/12/05 219.1 
09/08/04 192 11/04/05 232.1 12/12/05 222.8 
16/08/04 191.7 18/04/05 228 19/12/05 225.5 
23/08/04 192.6 25/04/05 227.9 26/12/05 224.1 
30/08/04 190.9 02/05/05 227.7   
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APPENDIX B4 

Weekly USA No. 2 heating oil residential price (cents per gallon excluding taxes) for 

the period of January 5, 2004�December 26, 2005 (Energy Information 

Administration (EIA), Heating Oil and Propane Update at 

http://tonto.eia.doe.gov/oog/info/hopu/hopu.asp, accessed on January 23, 2006) 

[Note: n.a. = not available. Also, there is no data available for the following periods: (i) 

between March 16, 2004 and October 3, 2004 and (ii) between March 15, 2005 and 

October 2, 2005.] 

 

Date 
Heating oil price 

(cent/gallon) Date 
Heating oil price 

(cent/gallon) 
05/01/04 149.797 03/01/05 195.116 
12/01/04 156.176 10/01/05 194.56 
19/01/04 158.444 17/01/05 196.386 
26/01/04 162.162 24/01/05 198.994 
02/02/04 162.521 31/01/05 201.789 
09/02/04 161.531 07/02/05 199.034 
16/02/04 161.116 14/02/05 198.119 
23/02/04 160.947 21/02/05 198.377 
01/03/04 160.256 28/02/05 204.27 
08/03/04 160.13 07/03/05 208.85 
15/03/04 159.122 14/03/05 211.85 
04/10/04 182.787 03/10/05 269.159 
11/10/04 190.849 10/10/05 264.83 
18/10/04 199.156 17/10/05 265.007 
25/10/04 206.028 24/10/05 262.298 
01/11/04 205.961 31/10/05 257.725 
08/11/04 202.824 07/11/05 250.824 
15/11/04 201.673 14/11/05 246.556 
22/11/04 202.522 21/11/05 243.124 
29/11/04 202.964 28/11/05 241.72 
06/12/04 197.013 05/12/05 241.035 
13/12/04 194.709 12/12/05 241.403 
20/12/04 199.344 19/12/05 243.803 
27/12/04 197.757 26/12/05 243.3 
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APPENDIX B5 

Monthly USA residual fuel oil retail sales by all sellers (cents per gallon) for the 

period of January 5, 2004�November 30, 2005 (Energy Information Administration 

(EIA), Residual Fuel Oil Prices by Sales Type, 

http://tonto.eia.doe.gov/dnav/pet/pet_pri_resid_dcu_nus_m.htm, accessed on 

January 24, 2006) (Note: n.a. = not available) 

 

 

Date 
Fuel oil price 
(cent/gallon) 

Jan-2004 70.6 
Feb-2004 69.1 
Mar-2004 65.8 
Apr-2004 67.6 
May-2004 72.6 
Jun-2004 73.4 
Jul-2004 70.2 

Aug-2004 72 
Sep-2004 74.1 
Oct-2004 81.3 

Nov-2004 80.3 
Dec-2004 74.4 
Jan-2005 77.3 
Feb-2005 81.4 
Mar-2005 88.1 
Apr-2005 96.5 
May-2005 99.6 
Jun-2005 99.5 
Jul-2005 103.2 

Aug-2005 109.6 
Sep-2005 122.9 
Oct-2005 126.7 

Nov-2005 120.5 
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APPENDIX C 

The Mean-Absolute Deviation (MAD) Model for Portfolio Optimization (Konno and 

Yamazaki,1991; Konno and Wijayanayake, 2002) 

 

Let Rj be the rate of return of jth asset (j = 1, �, n) and let x = (x1, �, xn) be a portfolio, a 

vector of proportion of investments into each asset. Let X be an investable set, i.e., a set 

of feasible portfolios. For simplicity, it is assumed that X is a set defined below: 

 

  X = {x ( )1
1

, , 1, 0 , 1, ,
n

n j j j
j

x x x x j n
=

= = ≤ ≤α =∑L L } (C.1) 

 

 The rate of return R(x) of the portfolio x is given by 

 

  R(x) = 
1

n

j j
j

R x
=
∑  (C.2) 

 

 Let rj be the expected value of the rate of return Rj of the jth asset. The absolute 

deviation W(x) of the rate of return R(x) of the portfolio x is given by 

 

  W(x) = E[|R(x) � E[R(x)]|] (C.3) 

 

 It is assumed that R = (R1, �, Rn) is distributed over a finite set of points {(r1t,L , rnt), 

t = 1,L ,T} and that the probability of occurrence of (r1t,L , xnt) is given by pt, t = 1, 

L ,T. Then: 

 

  
1

T

j t jt
t

r p r
=

=∑  (C.4) 

 

and 
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  W(x) = ( )
1 1

T n

t jt j j
t j

p r r x
= =

−∑ ∑  (C.5) 

 

 The mean-absolute deviation (MAD) portfolio optimization model is defined as 

follows: 

 

  

( )
1 1

1

minimize ( )

subject to ,

,

T n

t jt j j
t j

n

j j
j

W x p r r x

r x

x X

= =

=

≡ −

= ρ

∈

∑ ∑

∑  (C.6) 

 

where ρ is a given constant representing the expected rate of return of the portfolio. The 

MAD model can be formulated in an alternative way: 

 

  ( )
1

1 1

maximize

subject to

n

j j
j

T n

t jt j j
t j

r x

p r r x w

x X

=

= =
− ≤

∈

∑

∑ ∑  (C.7) 

 

where w is a given constant representing the tolerable level of risk. Both (C.6) and (C.7) 

can be used interchangeably to generate an efficient frontier. 

 By standard results in linear programming, the problem (C.7) can be converted to a 

linear system of inequalities as follows: 
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APPENDIX D 

GAMS Program Codes for the Numerical Example 

 

Appendix D1: The Deterministic Midterm Refinery Production Planning Model 

 
$TITLE Deterministic Model 
 
 
Variables 
 
Z; 
 
 
Positive Variables 
 
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20; 
 
 
Equations 
 
OBJ, CON1, CON2, EQN3, EQN4, EQN5, EQN6, EQN7, EQN8, EQN9, EQN10, EQN11, EQN12, EQN13, 
EQN14, EQN15, EQN16, EQN17, EQN18, EQN19, CON20, CON21, CON22, CON23, CON24; 
OBJ.. Z =E= -8.0*x1 + 18.5*x2 + 8.0*x3 + 12.5*x4 + 14.5*x5 + 6.0*x6 - 1.5*x14; 
CON1.. x1 =L= 15000; 
CON2.. x14 =L= 2500; 
EQN3.. -0.13*x1 + x7 =E= 0; 
EQN4.. -0.15*x1 + x4 =E= 0; 
EQN5.. -0.22*x1 + x8 =E= 0; 
EQN6.. -0.20*x1 + x9 =E= 0; 
EQN7.. -0.30*x1 + x10 =E= 0; 
EQN8.. -0.05*x14 + x20 =E= 0; 
EQN9.. -0.40*x14 + x16 =E= 0; 
EQN10.. -0.55*x14 + x17 =E= 0; 
EQN11.. 0.5*x2 - x11 =E= 0; 
EQN12.. 0.5*x2 - x16 =E= 0; 
EQN13.. 0.75*x5 - x12 =E= 0; 
EQN14.. 0.25*x5 - x18 =E= 0; 
EQN15.. -x7 + x3 +x11 =E= 0; 
EQN16.. -x8 + x12 +x13 =E= 0; 
EQN17.. -x9 + x14 +x15 =E= 0; 
EQN18.. -x17 + x18 +x19 =E= 0; 
EQN19.. -x10 - x13 - x15 - x19 + x6 =E= 0; 
CON20.. x2 =L= 2700; 
CON21.. x3 =L= 1100; 
CON22.. x4 =L= 2300; 
CON23.. x5 =L= 1700; 
CON24.. x6 =L= 9500; 
 
Model Refinery / all /; 
 
Solve Refinery using LP maximizing Z; 
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Appendix D2: Approach 1�Risk Model I Based on the Markowitz�s Mean�

Variance (E�V or MV) Approach to Handle Randomness in the Objective Function 

Coefficients of Prices 

 
$TITLE Approach 1: Risk Model I Based on the Markowitz's Mean-Variance Approach to Handle 
Randomness in the Objective Function Coefficients of Prices 
 
 
Sets 
 
i product type /1*21/ 
s scenarios /1*3/ 
 
 
Table pc(i,s) price of product type i per realization s 
         1         2        3 
1        8.8       8.0      7.2 
2        20.35     18.5     16.65 
3        8.8       8.0      7.2 
4        13.75     12.5     11.25 
5        15.95     14.5     13.05 
6        6.6       6        5.4 
14       1.65      1.5      1.35; 
 
 
Variables 
 
Z1; 
 
 
Positive Variables 
 
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, 
Ep; 
 
 
Scalars 
 
p1 "probability for scenario 1" /0.35/ 
p2 "probability for scenario 2" /0.45/ 
p3 "probability for scenario 3" /0.2/ 
 
v1 variance of price of crude oil /0.352/ 
v2 variance of price of gasoline /1.882375/ 
v3 variance of price of naphtha /0.352/ 
v4 variance of price of jet fuel /0.859375/ 
v5 variance of price of heating oil /1.156375/ 
v6 variance of price of crude oil /0.198/ 
v14 variance of price of cracker feed /0.012375/ 
 
 
Equations 
 
OBJ, CON0, CON1, CON2, EQN3, EQN4, EQN5, EQN6, EQN7, EQN8, EQN9, EQN10, EQN11, EQN12, 
EQN13, EQN14, EQN15, EQN16, EQN17, EQN18, EQN19, CON20, CON21, CON22, CON23, CON24, 
Eprofit; 
 
OBJ.. 
Z1 =E= -((v1*SQR(x1)) + (v2*SQR(x2)) + (v3*SQR(x3)) + (v4*SQR(x4)) + (v5*SQR(x5)) + 
(v6*SQR(x6)) + (v14*SQR(x14))); 
 
CON0.. 
[p1*(-pc('1','1')*x1 + pc('2','1')*x2 + pc('3','1')*x3 + pc('4','1')*x4 + pc('5','1')*x5 + 
pc('6','1')*x6 - pc('14','1')*x14)] 
+ [p2*(-pc('1','2')*x1 + pc('2','2')*x2 + pc('3','2')*x3 + pc('4','2')*x4 + pc('5','2')*x5 
+ pc('6','2')*x6 - pc('14','2')*x14)] 
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+ [p3*(-pc('1','3')*x1 + pc('2','3')*x2 + pc('3','3')*x3 + pc('4','3')*x4 + pc('5','3')*x5 
+ pc('6','3')*x6 - pc('14','3')*x14)] =G= 23500; 
 
CON1.. x1 =L= 15000; 
CON2.. x14 =L= 2500; 
EQN3.. -0.13*x1 + x7 =E= 0; 
EQN4.. -0.15*x1 + x4 =E= 0; 
EQN5.. -0.22*x1 + x8 =E= 0; 
EQN6.. -0.20*x1 + x9 =E= 0; 
EQN7.. -0.30*x1 + x10 =E= 0; 
EQN8.. -0.05*x14 + x20 =E= 0; 
EQN9.. -0.40*x14 + x16 =E= 0; 
EQN10.. -0.55*x14 + x17 =E= 0; 
EQN11.. 0.5*x2 - x11 =E= 0; 
EQN12.. 0.5*x2 - x16 =E= 0; 
EQN13.. 0.75*x5 - x12 =E= 0; 
EQN14.. 0.25*x5 - x18 =E= 0; 
EQN15.. -x7 + x3 +x11 =E= 0; 
EQN16.. -x8 + x12 +x13 =E= 0; 
EQN17.. -x9 + x14 +x15 =E= 0; 
EQN18.. -x17 + x18 +x19 =E= 0; 
EQN19.. -x10 - x13 - x15 - x19 + x6 =E= 0; 
CON20.. x2 =L= 2700; 
CON21.. x3 =L= 1100; 
CON22.. x4 =L= 2300; 
CON23.. x5 =L= 1700; 
CON24.. x6 =L= 9500; 
 
Eprofit.. Ep =E= [p1*(-pc('1','1')*x1 + pc('2','1')*x2 + pc('3','1')*x3 + pc('4','1')*x4 + 
pc('5','1')*x5 + pc('6','1')*x6 - pc('14','1')*x14)] 
+ [p2*(-pc('1','2')*x1 + pc('2','2')*x2 + pc('3','2')*x3 + pc('4','2')*x4 + pc('5','2')*x5 
+ pc('6','2')*x6 - pc('14','2')*x14)] 
+ [p3*(-pc('1','3')*x1 + pc('2','3')*x2 + pc('3','3')*x3 + pc('4','3')*x4 + pc('5','3')*x5 
+ pc('6','3')*x6 - pc('14','3')*x14)]; 
 
 
Model Refinery / all /; 
 
Solve Refinery Using NLP Maximizing Z1; 
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Appendix D3: Approach 2.1�Expectation Model I as a Combination of the 

Markowitz�s Mean�Variance Approach and the Two-Stage Stochastic 

Programming with Fixed Recourse Framework 

 
$TITLE Approach 2: Expectation Model I as a Combination of the Markowitz's Mean-Variance 
Approach and the Two-Stage Stochastic Programming with Fixed Recourse Framework 
 
 
Sets 
i product type /1*21/ 
s scenarios /1*3/ 
k production shortfall and surplus or yield decrement or increment /1, 2/ 
 
 
Table pc(i,s) price of product type i per realization j 
         1         2        3 
1        8.8       8.0      7.2 
2        20.35     18.5     16.65 
3        8.8       8.0      7.2 
4        13.75     12.5     11.25 
5        15.95     14.5     13.05 
6        6.6       6        5.4 
14       1.65      1.5      1.35; 
 
 
Table d(i,s) demand of product type i per realization j 
      1        2        3 
2     2835     2700     2565 
3     1155     1100     1045 
4     2415     2300     2185 
5     1785     1700     1615 
6     9975     9500     9025; 
 
 
Table y(i,s) yield of product type i per realization j 
      1           2         3 
3     -0.1365     -0.13     -0.1235 
4     -0.1575     -0.15     -0.1425 
8     -0.231      -0.22     -0.209 
9     -0.21       -0.20     -0.19 
10    -0.265      -0.30     -0.335; 
 
 
Table c(i,k) penalty cost for product type i due to production shortfall or surplus 
      1     2 
1     55    50 
2     25    20 
3     17    13 
4     5     4 
5     6     5 
6     10    8; 
 
 
Table q(i,k) penalty cost for product type i due to yield decrement or increment 
      1     2 
3     5     3 
4     5     4 
8     5     3 
9     5     3 
10    5     3 
 
 
Positive Variables 
 
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, 
z211, z212, z221, z222, z231, z232, 
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z311, z312, z321, z322, z331, z332, 
z411, z412, z421, z422, z431, z432, 
z511, z512, z521, z522, z531, z532, 
z611, z612, z621, z622, z631, z632, 
y311, y312, y321, y322, y331, y332, 
y411, y412, y421, y422, y431, y432, 
y811, y812, y821, y822, y831, y832, 
y911, y912, y921, y922, y931, y932, 
y1011, y1012, y1021, y1022, y1031, y1032 
; 
 
 
Variables 
 
Es1, Es2, Es3, 
Z2, 
Vp, Tshortfall, Tsurplus, Es, Vpsq, Ep, Ecv 
; 
 
 
Scalars 
 
v1 "variance of price of crude oil" /0.352/ 
v2 "variance of price of gasoline" /1.882375/ 
v3 "variance of price of naphtha" /0.352/ 
v4 "variance of price of jet fuel" /0.859375/ 
v5 "variance of price of heating oil" /1.156375/ 
v6 "variance of price of crude oil" /0.198/ 
v14 "variance of price of cracker feed" /0.012375/ 
 
p1 "probability for scenario 1" /0.35/ 
p2 "probability for scenario 2" /0.45/ 
p3 "probability for scenario 3" /0.2/ 
 
 
Equations 
 
OBJ "maximize profit", 
CON1, CON2, EQN8, EQN9, EQN10, EQN11, EQN12, EQN13, EQN14, EQN15, EQN16, EQN17, EQN18, 
EQN19, 
Escenario, Escenario1, Escenario2, Escenario3, 
CONgas1, CONgas2, CONgas3, 
CONnap1, CONnap2, CONnap3, 
CONjf1, CONjf2, CONjf3, 
CONho1, CONho2, CONho3, 
CONfo1, CONfo2, CONfo3, 
CONlhsnap1, CONlhsnap11, CONlhsnap12, 
CONlhsnap2, CONlhsnap21, CONlhsnap22, 
CONlhsnap3, CONlhsnap31, CONlhsnap32, 
CONlhsjf1, CONlhsjf11, CONlhsjf12, 
CONlhsjf2, CONlhsjf21, CONlhsjf22, 
CONlhsjf3, CONlhsjf31, CONlhsjf32, 
CONlhsgo1, CONlhsgo11, CONlhsgo12, 
CONlhsgo2, CONlhsgo21, CONlhsgo22, 
CONlhsgo3, CONlhsgo31, CONlhsgo32, 
CONlhscf1, CONlhscf11, CONlhscf12, 
CONlhscf2, CONlhscf21, CONlhscf22, 
CONlhscf3, CONlhscf31, CONlhscf32, 
CONlhsr1, CONlhsr11, CONlhsr12, 
CONlhsr2, CONlhsr21, CONlhsr22, 
CONlhsr3, CONlhsr31, CONlhsr32, 
Eprofit, Vprofit, Totalshortfall, Totalsurplus, Vpsqrt, Ecvar; 
 
 
OBJ.. Z2 =E= 
[p1*(-pc('1','1')*x1 + pc('2','1')*x2 + pc('3','1')*x3 + pc('4','1')*x4 + pc('5','1')*x5 + 
pc('6','1')*x6 - pc('14','1')*x14)] 
+ [p2*(-pc('1','2')*x1 + pc('2','2')*x2 + pc('3','2')*x3 + pc('4','2')*x4 + pc('5','2')*x5 
+ pc('6','2')*x6 - pc('14','2')*x14)] 
+ [p3*(-pc('1','3')*x1 + pc('2','3')*x2 + pc('3','3')*x3 + pc('4','3')*x4 + pc('5','3')*x5 
+ pc('6','3')*x6 - pc('14','3')*x14)] 
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- 0.0000000001*Vp 
- Es; 
 
Vprofit.. Vp =E= (v1*SQR(x1)) + (v2*SQR(x2)) + (v3*SQR(x3)) + (v4*SQR(x4)) + (v5*SQR(x5)) 
+ (v6*SQR(x6)) + (v14*SQR(x14)); 
 
CON1.. x1 =L= 15000; 
CON2.. x14 =L= 2500; 
*EQN3.. -0.13*x1 + x7 =E= 0; 
*EQN4.. -0.15*x1 + x4 =E= 0; 
*EQN5.. -0.22*x1 + x8 =E= 0; 
*EQN6.. -0.20*x1 + x9 =E= 0; 
*EQN7.. -0.30*x1 + x10 =E= 0; 
EQN8.. -0.05*x14 + x20 =E= 0; 
EQN9.. -0.40*x14 + x16 =E= 0; 
EQN10.. -0.55*x14 + x17 =E= 0; 
EQN11.. 0.5*x2 - x11 =E= 0; 
EQN12.. 0.5*x2 - x16 =E= 0; 
EQN13.. 0.75*x5 - x12 =E= 0; 
EQN14.. 0.25*x5 - x18 =E= 0; 
EQN15.. -x7 + x3 +x11 =E= 0; 
EQN16.. -x8 + x12 +x13 =E= 0; 
EQN17.. -x9 + x14 +x15 =E= 0; 
EQN18.. -x17 + x18 +x19 =E= 0; 
EQN19.. -x10 - x13 - x15 - x19 + x6 =E= 0; 
*CON20.. x2 =L= 2700; 
*CON21.. x3 =L= 1100; 
*CON22.. x4 =L= 2300; 
*CON23.. x5 =L= 1700; 
*CON24.. x6 =L= 9500; 
 
Escenario1.. Es1 =E= p1*(((c('2','1')*z211 + c('2','2')*z212) + (c('3','1')*z311 + 
c('3','2')*z312) + (c('4','1')*z411 + c('4','2')*z412) + (c('5','1')*z511 + 
c('5','2')*z512) + (c('6','1')*z611 + c('6','2')*z612)) 
+ ((q('3','1')*y311 + q('3','2')*y312) + (q('4','1')*y411 + q('4','2')*y412) + 
(q('8','1')*y811 + q('8','2')*y812) + (q('9','1')*y911 + q('9','2')*y912) + 
(q('10','1')*y1011 + q('10','2')*y1012))); 
 
CONgas1.. x2 + z211 - z212 =E= d('2','1'); 
CONnap1.. x3 + z311 - z312 =E= d('3','1'); 
CONjf1.. x4 + z411 - z412 =E= d('4','1'); 
CONho1.. x5 + z511 - z512 =E= d('5','1'); 
CONfo1.. x6 + z611 - z612 =E= d('6','1'); 
CONlhsnap1.. y('3','1')*x1 + x7 + y311 - y312 =E= 0; 
         CONlhsnap11.. y311 =L= 0.1*x1; 
         CONlhsnap12.. y312 =L= 0.1*x1; 
CONlhsjf1.. y('4','1')*x1 + x4 + y411 - y412 =E= 0; 
         CONlhsjf11.. y411 =L= 0.1*x1; 
         CONlhsjf12.. y412 =L= 0.1*x1; 
CONlhsgo1.. y('8','1')*x1 + x8 + y811 - y812 =E= 0; 
         CONlhsgo11.. y811 =L= 0.1*x1; 
         CONlhsgo12.. y812 =L= 0.1*x1; 
CONlhscf1.. y('9','1')*x1 + x9 + y911 - y912 =E= 0; 
         CONlhscf11.. y911 =L= 0.1*x1; 
         CONlhscf12.. y912 =L= 0.1*x1; 
CONlhsr1.. y('10','1')*x1 + x10 + y1011 - y1012 =E= 0; 
         CONlhsr11.. y1011 =L= 0.1*x1; 
         CONlhsr12.. y1012 =L= 0.1*x1; 
 
Escenario2.. Es2 =E= p2*(((c('2','1')*z221 + c('2','2')*z222) + (c('3','1')*z321 + 
c('3','2')*z322) + (c('4','1')*z421 + c('4','2')*z422) + (c('5','1')*z521 + 
c('5','2')*z522) + (c('6','1')*z621 + c('6','2')*z622)) 
+ ((q('3','1')*y321 + q('3','2')*y322) + (q('4','1')*y421 + q('4','2')*y422) + 
(q('8','1')*y821 + q('8','2')*y822) + (q('9','1')*y921 + q('9','2')*y922) + 
(q('10','1')*y1021 + q('10','2')*y1022))); 
CONgas2.. x2 + z221 - z222 =E= d('2','2'); 
CONnap2.. x3 + z321 - z322 =E= d('3','2'); 
CONjf2.. x4 + z421 - z422 =E= d('4','2'); 
CONho2.. x5 + z521 - z522 =E= d('5','2'); 
CONfo2.. x6 + z621 - z622 =E= d('6','2'); 
CONlhsnap2.. y('3','2')*x1 + x7 + y321 - y322 =E= 0; 
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         CONlhsnap21..y321 =L= 0.1*x1; 
         CONlhsnap22.. y322 =L= 0.1*x1; 
CONlhsjf2.. y('4','2')*x1 + x4 + y421 - y422 =E= 0; 
         CONlhsjf21.. y421 =L= 0.1*x1; 
         CONlhsjf22.. y422 =L= 0.1*x1; 
CONlhsgo2.. y('8','2')*x1 + x8 + y821 - y822 =E= 0; 
         CONlhsgo21.. y821 =L= 0.1*x1; 
         CONlhsgo22.. y822 =L= 0.1*x1; 
CONlhscf2.. y('9','2')*x1 + x9 + y921 - y922 =E= 0; 
         CONlhscf21.. y921 =L= 0.1*x1; 
         CONlhscf22.. y922 =L= 0.1*x1; 
CONlhsr2.. y('10','2')*x1 + x10 + y1021 - y1022 =E= 0; 
         CONlhsr21.. y1011 =L= 0.1*x1; 
         CONlhsr22.. y1012 =L= 0.1*x1; 
 
Escenario3.. Es3 =E= p3*(((c('2','1')*z231 + c('2','2')*z232) + (c('3','1')*z331 + 
c('3','2')*z332) + (c('4','1')*z431 + c('4','2')*z432) + (c('5','1')*z531 + 
c('5','2')*z532) + (c('6','1')*z631 + c('6','2')*z632)) 
+ ((q('3','1')*y331 + q('3','2')*y332) + (q('4','1')*y431 + q('4','2')*y432) + 
(q('8','1')*y831 + q('8','2')*y832) + (q('9','1')*y931 + q('9','2')*y932) + 
(q('10','1')*y1031 + q('10','2')*y1032))); 
CONgas3.. x2 + z231 - z232 =E= d('2','3'); 
CONnap3.. x3 + z331 - z332 =E= d('3','3'); 
CONjf3.. x4 + z431 - z432 =E= d('4','3'); 
CONho3.. x5 + z531 - z532 =E= d('5','3'); 
CONfo3.. x6 + z631 - z632 =E= d('6','3'); 
CONlhsnap3.. y('3','3')*x1 + x7 + y331 - y332 =E= 0; 
         CONlhsnap31..y331 =L= 0.1*x1; 
         CONlhsnap32.. y332 =L= 0.1*x1; 
CONlhsjf3.. y('4','3')*x1 + x4 + y431 - y432 =E= 0; 
         CONlhsjf31.. y431 =L= 0.1*x1; 
         CONlhsjf32.. y432 =L= 0.1*x1; 
CONlhsgo3.. y('8','3')*x1 + x8 + y831 - y832 =E= 0; 
         CONlhsgo31.. y831 =L= 0.1*x1; 
         CONlhsgo32.. y832 =L= 0.1*x1; 
CONlhscf3.. y('9','3')*x1 + x9 + y931 - y932 =E= 0; 
         CONlhscf31.. y931 =L= 0.1*x1; 
         CONlhscf32.. y932 =L= 0.1*x1; 
CONlhsr3.. y('10','3')*x1 + x10 + y1031 - y1032 =E= 0; 
         CONlhsr31.. y1031 =L= 0.1*x1; 
         CONlhsr32.. y1032 =L= 0.1*x1; 
 
Escenario.. Es =E= Es1 + Es2 + Es3; 
 
Eprofit.. Ep =E= 
[p1*(-pc('1','1')*x1 + pc('2','1')*x2 + pc('3','1')*x3 + pc('4','1')*x4 + pc('5','1')*x5 + 
pc('6','1')*x6 - pc('14','1')*x14)] 
+ [p2*(-pc('1','2')*x1 + pc('2','2')*x2 + pc('3','2')*x3 + pc('4','2')*x4 + pc('5','2')*x5 
+ pc('6','2')*x6 - pc('14','2')*x14)] 
+ [p3*(-pc('1','3')*x1 + pc('2','3')*x2 + pc('3','3')*x3 + pc('4','3')*x4 + pc('5','3')*x5 
+ pc('6','3')*x6 - pc('14','3')*x14)]; 
 
 
Totalshortfall.. Tshortfall =E= z211 + z221 + z231 + z311 + z321 + z331 + z411 + z421 + 
z431 + z511 + z521 + z531 + z611 + z621 + z631 
+ y311 + y321 + y331 + y411 + y421 + y431 + y811 + y821 + y831 + y911 + y921 + y931 + 
y1011 + y1021 + y1031; 
 
Totalsurplus.. Tsurplus =E= z212 + z222 + z232 + z312 + z322 + z332 + z412 + z422 + z432 + 
z512 + z522 + z532 + z612 + z622 + z632 
+ y312 + y322 + y332 + y412 + y422 + y432 + y812 + y822 + y832 + y912 + y922 + y932 + 
y1012 + y1022 + y1032; 
 
 
*Vprofit2.. Vp2 =E= (v1*SQR(x1)) + (v2*SQR(x2)) + (v3*SQR(x3)) + (v4*SQR(x4)) + 
(v5*SQR(x5)) + (v6*SQR(x6)) + (v14*SQR(x14)); 
 
Vpsqrt.. Vpsq =E= SQRT((v1*SQR(x1)) + (v2*SQR(x2)) + (v3*SQR(x3)) + (v4*SQR(x4)) + 
(v5*SQR(x5)) + (v6*SQR(x6)) + (v14*SQR(x14))); 
Ecvar.. Ecv =E= Ep - Es; 
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*Covar.. Cv =E= Vpsq/(Ep - Es); 
 
 
Model REFINERY / ALL /; 
 
* Starting values 
x1.l = 12500; 
x2.l = 2000; 
x3.l = 625; 
x4.l = 1875; 
x5.l = 1700; 
x6.l = 6175; 
x7.l = 1625; 
x8.l = 2750; 
x9.l = 2500; 
x10.l = 3750; 
x11.l = 1000; 
x12.l = 1275; 
x13.l = 1475; 
x14.l = 2500; 
x15.l = 0; 
x16.l = 1000; 
x17.l = 1375; 
x18.l = 425; 
x19.l = 950; 
x20.l = 125; 
 
Option NLP = conopt3; 
 
Solve Refinery Using NLP Maximizing Z2; 
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Appendix D4: Approach 2.2�Expectation Model II as a Combination of the 

Markowitz�s Mean�Variance Approach and the Two-Stage Stochastic 

Programming with Fixed Recourse Framework 

 
$TITLE Approach 3: Expectation Model II as a Combination of the Markowitz's Mean-Variance 
Approach and the Two-Stage Stochastic Programming with Fixed Recourse Framework 
 
 
Sets 
 
i product type /1*21/ 
s scenarios /1*3/ 
k production shortfall and surplus or yield decrement or increment /1, 2/ 
 
 
Table pc(i,s) price of product type i per realization s 
         1         2        3 
1        8.8       8.0      7.2 
2        20.35     18.5     16.65 
3        8.8       8.0      7.2 
4        13.75     12.5     11.25 
5        15.95     14.5     13.05 
6        6.6       6        5.4 
14       1.65      1.5      1.35; 
 
 
Table d(i,s) demand of product type i per realization s 
      1        2        3 
2     2835     2700     2565 
3     1155     1100     1045 
4     2415     2300     2185 
5     1785     1700     1615 
6     9975     9500     9025; 
 
 
Table y(i,s) yield of product type i per realization s 
      1           2         3 
3     -0.1365     -0.13     -0.1235 
4     -0.1575     -0.15     -0.1425 
8     -0.231      -0.22     -0.209 
9     -0.21       -0.20     -0.19 
10    -0.265      -0.30     -0.335; 
 
 
Table c(i,k) penalty cost for product type i due to production shortfall or surplus 
      1     2 
1     55    50 
2     25    20 
3     17    13 
4     5     4 
5     6     5 
6     10    8; 
 
 
Table q(i,k) penalty cost for product type i due to yield decrement or increment 
      1     2 
3     5     3 
4     5     4 
8     5     3 
9     5     3 
10    5     3 
 
 
Variables 
 
Z2, 
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x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, 
z211, z212, z221, z222, z231, z232, 
z311, z312, z321, z322, z331, z332, 
z411, z412, z421, z422, z431, z432, 
z511, z512, z521, z522, z531, z532, 
z611, z612, z621, z622, z631, z632, 
y311, y312, y321, y322, y331, y332, 
y411, y412, y421, y422, y431, y432, 
y811, y812, y821, y822, y831, y832, 
y911, y912, y921, y922, y931, y932, 
y1011, y1012, y1021, y1022, y1031, y1032, 
Es1, Es11, Es2, Es21, Es3, Es31, 
Vpsq, x1, Tshortfall, Tsurplus, Es, Ep, Ecv; 
 
 
Positive Variables 
 
x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, 
z211, z212, z221, z222, z231, z232, 
z311, z312, z321, z322, z331, z332, 
z411, z412, z421, z422, z431, z432, 
z511, z512, z521, z522, z531, z532, 
z611, z612, z621, z622, z631, z632, 
y311, y312, y321, y322, y331, y332, 
y411, y412, y421, y422, y431, y432, 
y811, y812, y821, y822, y831, y832, 
y911, y912, y921, y922, y931, y932, 
y1011, y1012, y1021, y1022, y1031, y1032, 
Es1, Es11, Es2, Es21, Es3, Es31, 
Vpsq, x1, Tshortfall, Tsurplus, Es, Ep; 
 
 
Scalars 
 
v1 variance of price of crude oil /0.352/ 
v2 variance of price of gasoline /1.882375/ 
v3 variance of price of naphtha" /0.352/ 
v4 variance of price of jet fuel" /0.859375/ 
v5 variance of price of heating oil" /1.156375/ 
v6 variance of price of crude oil" /0.198/ 
v14 variance of price of cracker feed" /0.012375/ 
 
p1 probability for scenario 1 /0.35/ 
p2 probability for scenario 2 /0.45/ 
p3 probability for scenario 3 /0.2/ 
 
 
Equations 
 
OBJ "maximize profit", 
CON0, CON1, CON2, EQN8, EQN9, EQN10, EQN11, EQN12, EQN13, EQN14, EQN15, EQN16, EQN17, 
EQN18, EQN19, 
Escenario, Escenario1, Escenario11, 
Escenario2, Escenario21, 
Escenario3, Escenario31, 
CONgas1, CONgas2, CONgas3, 
CONnap1, CONnap2, CONnap3, 
CONjf1, CONjf2, CONjf3, 
CONho1, CONho2, CONho3, 
CONfo1, CONfo2, CONfo3, 
CONlhsnap1, CONlhsnap11, CONlhsnap12, 
CONlhsnap2, CONlhsnap21, CONlhsnap22, 
CONlhsnap3, CONlhsnap31, CONlhsnap32, 
CONlhsjf1, CONlhsjf11, CONlhsjf12, 
CONlhsjf2, CONlhsjf21, CONlhsjf22, 
CONlhsjf3, CONlhsjf31, CONlhsjf32, 
CONlhsgo1, CONlhsgo11, CONlhsgo12, 
CONlhsgo2, CONlhsgo21, CONlhsgo22, 
CONlhsgo3, CONlhsgo31, CONlhsgo32, 
CONlhscf1, CONlhscf11, CONlhscf12, 
CONlhscf2, CONlhscf21, CONlhscf22, 
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CONlhscf3, CONlhscf31, CONlhscf32, 
CONlhsr1, CONlhsr11, CONlhsr12, 
CONlhsr2, CONlhsr21, CONlhsr22, 
CONlhsr3, CONlhsr31, CONlhsr32, 
Totalshortfall, Totalsurplus, Eprofit, Vpsqrt, Ecvar; 
*Ecvar; 
 
OBJ.. 
Z2 =E= -((v1*SQR(x1)) + (v2*SQR(x2)) + (v3*SQR(x3)) + (v4*SQR(x4)) + (v5*SQR(x5)) + 
(v6*SQR(x6)) + (v14*SQR(x14))) - Es; 
 
Vpsqrt.. Vpsq =e= SQRT((v1*SQR(x1)) + (v2*SQR(x2)) + (v3*SQR(x3)) + (v4*SQR(x4)) + 
(v5*SQR(x5)) + (v6*SQR(x6)) + (v14*SQR(x14))); 
 
CON0.. 
[p1*(-pc('1','1')*x1 + pc('2','1')*x2 + pc('3','1')*x3 + pc('4','1')*x4 + pc('5','1')*x5 + 
pc('6','1')*x6 - pc('14','1')*x14)] 
+ [p2*(-pc('1','2')*x1 + pc('2','2')*x2 + pc('3','2')*x3 + pc('4','2')*x4 + pc('5','2')*x5 
+ pc('6','2')*x6 - pc('14','2')*x14)] 
+ [p3*(-pc('1','3')*x1 + pc('2','3')*x2 + pc('3','3')*x3 + pc('4','3')*x4 + pc('5','3')*x5 
+ pc('6','3')*x6 - pc('14','3')*x14)] =G= 23387.50; 
 
*Ecvar.. Ecv =E= Ep - Es; 
 
CON1.. x1 =L= 15000; 
CON2.. x14 =L= 2500; 
*EQN3.. -0.13*x1 + x7 =E= 0; 
*EQN4.. -0.15*x1 + x4 =E= 0; 
*EQN5.. -0.22*x1 + x8 =E= 0; 
*EQN6.. -0.20*x1 + x9 =E= 0; 
*EQN7.. -0.30*x1 + x10 =E= 0; 
EQN8.. -0.05*x14 + x20 =E= 0; 
EQN9.. -0.40*x14 + x16 =E= 0; 
EQN10.. -0.55*x14 + x17 =E= 0; 
EQN11.. 0.5*x2 - x11 =E= 0; 
EQN12.. 0.5*x2 - x16 =E= 0; 
EQN13.. 0.75*x5 - x12 =E= 0; 
EQN14.. 0.25*x5 - x18 =E= 0; 
EQN15.. -x7 + x3 +x11 =E= 0; 
EQN16.. -x8 + x12 +x13 =E= 0; 
EQN17.. -x9 + x14 +x15 =E= 0; 
EQN18.. -x17 + x18 +x19 =E= 0; 
EQN19.. -x10 - x13 - x15 - x19 + x6 =E= 0; 
*CON20.. x2 =L= 2700; 
*CON21.. x3 =L= 1100; 
*CON22.. x4 =L= 2300; 
*CON23.. x5 =L= 1700; 
*CON24.. x6 =L= 9500; 
 
Escenario1.. Es1 =E= p1*Es11; 
Escenario11.. Es11 =E= (((c('2','1')*z211 + c('2','2')*z212) + (c('3','1')*z311 + 
c('3','2')*z312) + (c('4','1')*z411 + c('4','2')*z412) + (c('5','1')*z511 + 
c('5','2')*z512) + (c('6','1')*z611 + c('6','2')*z612)) 
+ ((q('3','1')*y311 + q('3','2')*y312) + (q('4','1')*y411 + q('4','2')*y412) + 
(q('8','1')*y811 + q('8','2')*y812) + (q('9','1')*y911 + q('9','2')*y912) + 
(q('10','1')*y1011 + q('10','2')*y1012))); 
 
CONgas1.. x2 + z211 - z212 =E= d('2','1'); 
CONnap1.. x3 + z311 - z312 =E= d('3','1'); 
CONjf1.. x4 + z411 - z412 =E= d('4','1'); 
CONho1.. x5 + z511 - z512 =E= d('5','1'); 
CONfo1.. x6 + z611 - z612 =E= d('6','1'); 
CONlhsnap1.. y('3','1')*x1 + x7 + y311 - y312 =E= 0; 
         CONlhsnap11.. y311 =L= 0.1*x1; 
         CONlhsnap12.. y312 =L= 0.1*x1; 
CONlhsjf1.. y('4','1')*x1 + x4 + y411 - y412 =E= 0; 
         CONlhsjf11.. y411 =L= 0.1*x1; 
         CONlhsjf12.. y412 =L= 0.1*x1; 
CONlhsgo1.. y('8','1')*x1 + x8 + y811 - y812 =E= 0; 
         CONlhsgo11.. y811 =L= 0.1*x1; 
         CONlhsgo12.. y812 =L= 0.1*x1; 



 

 275

CONlhscf1.. y('9','1')*x1 + x9 + y911 - y912 =E= 0; 
         CONlhscf11.. y911 =L= 0.1*x1; 
         CONlhscf12.. y912 =L= 0.1*x1; 
CONlhsr1.. y('10','1')*x1 + x10 + y1011 - y1012 =E= 0; 
         CONlhsr11.. y1011 =L= 0.1*x1; 
         CONlhsr12.. y1012 =L= 0.1*x1; 
 
Escenario2.. Es2 =E= p2*Es21; 
Escenario21.. Es21 =E= (((c('2','1')*z221 + c('2','2')*z222) + (c('3','1')*z321 + 
c('3','2')*z322) + (c('4','1')*z421 + c('4','2')*z422) + (c('5','1')*z521 + 
c('5','2')*z522) + (c('6','1')*z621 + c('6','2')*z622)) 
+ ((q('3','1')*y321 + q('3','2')*y322) + (q('4','1')*y421 + q('4','2')*y422) + 
(q('8','1')*y821 + q('8','2')*y822) + (q('9','1')*y921 + q('9','2')*y922) + 
(q('10','1')*y1021 + q('10','2')*y1022))); 
CONgas2.. x2 + z221 - z222 =E= d('2','2'); 
CONnap2.. x3 + z321 - z322 =E= d('3','2'); 
CONjf2.. x4 + z421 - z422 =E= d('4','2'); 
CONho2.. x5 + z521 - z522 =E= d('5','2'); 
CONfo2.. x6 + z621 - z622 =E= d('6','2'); 
CONlhsnap2.. y('3','2')*x1 + x7 + y321 - y322 =E= 0; 
         CONlhsnap21..y321 =L= 0.1*x1; 
         CONlhsnap22.. y322 =L= 0.1*x1; 
CONlhsjf2.. y('4','2')*x1 + x4 + y421 - y422 =E= 0; 
         CONlhsjf21.. y421 =L= 0.1*x1; 
         CONlhsjf22.. y422 =L= 0.1*x1; 
CONlhsgo2.. y('8','2')*x1 + x8 + y821 - y822 =E= 0; 
         CONlhsgo21.. y821 =L= 0.1*x1; 
         CONlhsgo22.. y822 =L= 0.1*x1; 
CONlhscf2.. y('9','2')*x1 + x9 + y921 - y922 =E= 0; 
         CONlhscf21.. y921 =L= 0.1*x1; 
         CONlhscf22.. y922 =L= 0.1*x1; 
CONlhsr2.. y('10','2')*x1 + x10 + y1021 - y1022 =E= 0; 
         CONlhsr21.. y1011 =L= 0.1*x1; 
         CONlhsr22.. y1012 =L= 0.1*x1; 
 
Escenario3.. Es3 =E= p3*Es31; 
Escenario31.. Es31 =E= (((c('2','1')*z231 + c('2','2')*z232) + (c('3','1')*z331 + 
c('3','2')*z332) + (c('4','1')*z431 + c('4','2')*z432) + (c('5','1')*z531 + 
c('5','2')*z532) + (c('6','1')*z631 + c('6','2')*z632)) 
+ ((q('3','1')*y331 + q('3','2')*y332) + (q('4','1')*y431 + q('4','2')*y432) + 
(q('8','1')*y831 + q('8','2')*y832) + (q('9','1')*y931 + q('9','2')*y932) + 
(q('10','1')*y1031 + q('10','2')*y1032))); 
CONgas3.. x2 + z231 - z232 =E= d('2','3'); 
CONnap3.. x3 + z331 - z332 =E= d('3','3'); 
CONjf3.. x4 + z431 - z432 =E= d('4','3'); 
CONho3.. x5 + z531 - z532 =E= d('5','3'); 
CONfo3.. x6 + z631 - z632 =E= d('6','3'); 
CONlhsnap3.. y('3','3')*x1 + x7 + y331 - y332 =E= 0; 
         CONlhsnap31..y331 =L= 0.1*x1; 
         CONlhsnap32.. y332 =L= 0.1*x1; 
CONlhsjf3.. y('4','3')*x1 + x4 + y431 - y432 =E= 0; 
         CONlhsjf31.. y431 =L= 0.1*x1; 
         CONlhsjf32.. y432 =L= 0.1*x1; 
CONlhsgo3.. y('8','3')*x1 + x8 + y831 - y832 =E= 0; 
         CONlhsgo31.. y831 =L= 0.1*x1; 
         CONlhsgo32.. y832 =L= 0.1*x1; 
CONlhscf3.. y('9','3')*x1 + x9 + y931 - y932 =E= 0; 
         CONlhscf31.. y931 =L= 0.1*x1; 
         CONlhscf32.. y932 =L= 0.1*x1; 
CONlhsr3.. y('10','3')*x1 + x10 + y1031 - y1032 =E= 0; 
         CONlhsr31.. y1031 =L= 0.1*x1; 
         CONlhsr32.. y1032 =L= 0.1*x1; 
 
Escenario.. Es =E= Es1 + Es2 + Es3; 
 
Eprofit.. Ep =E= 
[p1*(-pc('1','1')*x1 + pc('2','1')*x2 + pc('3','1')*x3 + pc('4','1')*x4 + pc('5','1')*x5 + 
pc('6','1')*x6 - pc('14','1')*x14)] 
+ [p2*(-pc('1','2')*x1 + pc('2','2')*x2 + pc('3','2')*x3 + pc('4','2')*x4 + pc('5','2')*x5 
+ pc('6','2')*x6 - pc('14','2')*x14)] 
+ [p3*(-pc('1','3')*x1 + pc('2','3')*x2 + pc('3','3')*x3 + pc('4','3')*x4 + pc('5','3')*x5 
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+ pc('6','3')*x6 - pc('14','3')*x14)]; 
 
Totalshortfall.. Tshortfall =E= z211 + z221 + z231 + z311 + z321 + z331 + z411 + z421 + 
z431 + z511 + z521 + z531 + z611 + z621 + z631 
+ y311 + y321 + y331 + y411 + y421 + y431 + y811 + y821 + y831 + y911 + y921 + y931 + 
y1011 + y1021 + y1031; 
 
Totalsurplus.. Tsurplus =E= z212 + z222 + z232 + z312 + z322 + z332 + z412 + z422 + z432 + 
z512 + z522 + z532 + z612 + z622 + z632 
+ y312 + y322 + y332 + y412 + y422 + y432 + y812 + y822 + y832 + y912 + y922 + y932 + 
y1012 + y1022 + y1032; 
 
Ecvar.. Ecv =E= Ep - Es; 
 
*display Eprofit; 
*display Escenario; 
*display x1.l; 
 
 
Model Refinery / all /; 
 
Option NLP = conopt3; 
 
Solve Refinery Using NLP Maximizing Z2; 
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Appendix D5: Approach 3�Risk Model II with Variance as the Measure of Risk of 

the Recourse Penalty Costs 

 
$TITLE Approach 3, Risk Model II for Two-Stage Stochastic Programming with Fixed Recourse 
of Minimization of the Expected Value and the Variance of the Recourse Penalty Costs 
 
 
Sets 
 
i "product type" /1*21/ 
s "scenarios" /1*3/ 
k "production shortfall and surplus or yield decrement or increment" /1, 2/ 
 
 
Table pc(i,s) "price of product type i per realization s" 
         1         2        3 
1        8.8       8.0      7.2 
2        20.35     18.5     16.65 
3        8.8       8.0      7.2 
4        13.75     12.5     11.25 
5        15.95     14.5     13.05 
6        6.6       6        5.4 
14       1.65      1.5      1.35; 
 
 
Table d(i,s) "demand of product type i per realization s" 
      1        2        3 
2     2835     2700     2565 
3     1155     1100     1045 
4     2415     2300     2185 
5     1785     1700     1615 
6     9975     9500     9025; 
 
 
Table y(i,s) "yield of product type i per realization s" 
      1           2         3 
3     -0.1365     -0.13     -0.1235 
4     -0.1575     -0.15     -0.1425 
8     -0.231      -0.22     -0.209 
9     -0.21       -0.20     -0.19 
10    -0.265      -0.30     -0.335; 
 
 
Table c(i,k) "penalty cost for product type i due to production requirement shortfall or 
surplus compared against market demand" 
      1     2 
1     55    50 
2     25    20 
3     17    13 
4     5     4 
5     6     5 
6     10    8; 
 
Table q(i,k) "penalty cost for product type i due to yield decrement or increment" 
      1     2 
3     5     3 
4     5     4 
8     5     3 
9     5     3 
10    5     3 
 
 
Variables 
 
Z2, Ecv; 
 
Positive Variables 
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x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, 
z211, z212, z221, z222, z231, z232, 
z311, z312, z321, z322, z331, z332, 
z411, z412, z421, z422, z431, z432, 
z511, z512, z521, z522, z531, z532, 
z611, z612, z621, z622, z631, z632, 
y311, y312, y321, y322, y331, y332, 
y411, y412, y421, y422, y431, y432, 
y811, y812, y821, y822, y831, y832, 
y911, y912, y921, y922, y931, y932, 
y1011, y1012, y1021, y1022, y1031, y1032, 
Es1, Es11, Es2, Es21, Es3, Es31, 
Vp, Tshortfall, Tsurplus, Es, Vs, Vpsq, Ep; 
 
 
Parameters 
 
p(s)  probability of the realization of scenario  /1 0.35, 2 0.45, 3 0.2/ 
 
 
Scalars 
 
V1 variance of price of crude oil /0.352/ 
V2 variance of price of gasoline /1.882375/ 
V3 variance of price of naphtha /0.352/ 
V4 variance of price of jet fuel /0.859375/ 
V5 variance of price of heating oil /1.156375/ 
V6 variance of price of crude oil /0.198/ 
V14 variance of price of cracker feed /0.012375/ 
 
 
Equations 
 
OBJ "maximize profit", 
CON1, CON2, EQN8, EQN9, EQN10, EQN11, EQN12, EQN13, EQN14, EQN15, EQN16, EQN17, EQN18, 
EQN19, 
Escenario, Escenario1, Escenario11, Escenario2, Escenario21, Escenario3, Escenario31, 
Vscenario, 
CONgas1, CONgas2, CONgas3, 
CONnap1, CONnap2, CONnap3, 
CONjf1, CONjf2, CONjf3, 
CONho1, CONho2, CONho3, 
CONfo1, CONfo2, CONfo3, 
CONlhsnap1, CONlhsnap11, CONlhsnap12, 
CONlhsnap2, CONlhsnap21, CONlhsnap22, 
CONlhsnap3, CONlhsnap31, CONlhsnap32, 
CONlhsjf1, CONlhsjf11, CONlhsjf12, 
CONlhsjf2, CONlhsjf21, CONlhsjf22, 
CONlhsjf3, CONlhsjf31, CONlhsjf32, 
CONlhsgo1, CONlhsgo11, CONlhsgo12, 
CONlhsgo2, CONlhsgo21, CONlhsgo22, 
CONlhsgo3, CONlhsgo31, CONlhsgo32, 
CONlhscf1, CONlhscf11, CONlhscf12, 
CONlhscf2, CONlhscf21, CONlhscf22, 
CONlhscf3, CONlhscf31, CONlhscf32, 
CONlhsr1, CONlhsr11, CONlhsr12, 
CONlhsr2, CONlhsr21, CONlhsr22, 
CONlhsr3, CONlhsr31, CONlhsr32, 
Eprofit, Vprofit, Totalshortfall, Totalsurplus, Ecvar; 
 
OBJ.. 
Z2 =E= 
[p('1')*(-pc('1','1')*x1 + pc('2','1')*x2 + pc('3','1')*x3 + pc('4','1')*x4 + 
pc('5','1')*x5 + pc('6','1')*x6 - pc('14','1')*x14)] 
+ [p('2')*(-pc('1','2')*x1 + pc('2','2')*x2 + pc('3','2')*x3 + pc('4','2')*x4 + 
pc('5','2')*x5 + pc('6','2')*x6 - pc('14','2')*x14)] 
+ [p('3')*(-pc('1','3')*x1 + pc('2','3')*x2 + pc('3','3')*x3 + pc('4','3')*x4 + 
pc('5','3')*x5 + pc('6','3')*x6 - pc('14','3')*x14)] 
- 0.0000000001*Vp 
- Es - 50*Vs; 
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Vprofit.. Vp =E= ((V1*SQR(x1)) + (V2*SQR(x2)) + (V3*SQR(x3)) + (V4*SQR(x4)) + (V5*SQR(x5)) 
+ (V6*SQR(x6)) + (V14*SQR(x14))); 
 
Vscenario.. Vs =E= ((p('1')*SQR(Es11 - Es)) + (p('2')*SQR(Es21 - Es)) + (p('3')*SQR(Es31 - 
Es))); 
 
CON1.. x1 =L= 15000; 
CON2.. x14 =L= 2500; 
*EQN3.. -0.13*x1 + x7 =E= 0; 
*EQN4.. -0.15*x1 + x4 =E= 0; 
*EQN5.. -0.22*x1 + x8 =E= 0; 
*EQN6.. -0.20*x1 + x9 =E= 0; 
*EQN7.. -0.30*x1 + x10 =E= 0; 
EQN8.. -0.05*x14 + x20 =E= 0; 
EQN9.. -0.40*x14 + x16 =E= 0; 
EQN10.. -0.55*x14 + x17 =E= 0; 
EQN11.. 0.5*x2 - x11 =E= 0; 
EQN12.. 0.5*x2 - x16 =E= 0; 
EQN13.. 0.75*x5 - x12 =E= 0; 
EQN14.. 0.25*x5 - x18 =E= 0; 
EQN15.. -x7 + x3 +x11 =E= 0; 
EQN16.. -x8 + x12 +x13 =E= 0; 
EQN17.. -x9 + x14 +x15 =E= 0; 
EQN18.. -x17 + x18 +x19 =E= 0; 
EQN19.. -x10 - x13 - x15 - x19 + x6 =E= 0; 
*CON20.. x2 =L= 2700; 
*CON21.. x3 =L= 1100; 
*CON22.. x4 =L= 2300; 
*CON23.. x5 =L= 1700; 
*CON24.. x6 =L= 9500; 
 
*Scenario 1: High demand 
Escenario1.. Es1 =E= p('1')*Es11;; 
Escenario11.. Es11 =E= (((c('2','1')*z211 + c('2','2')*z212) + (c('3','1')*z311 + 
c('3','2')*z312) + (c('4','1')*z411 + c('4','2')*z412) + (c('5','1')*z511 + 
c('5','2')*z512) + (c('6','1')*z611 + c('6','2')*z612)) 
+ ((q('3','1')*y311 + q('3','2')*y312) + (q('4','1')*y411 + q('4','2')*y412) + 
(q('8','1')*y811 + q('8','2')*y812) + (q('9','1')*y911 + q('9','2')*y912) + 
(q('10','1')*y1011 + q('10','2')*y1012))); 
 
CONgas1.. x2 + z211 - z212 =E= d('2','1'); 
CONnap1.. x3 + z311 - z312 =E= d('3','1'); 
CONjf1.. x4 + z411 - z412 =E= d('4','1'); 
CONho1.. x5 + z511 - z512 =E= d('5','1'); 
CONfo1.. x6 + z611 - z612 =E= d('6','1'); 
CONlhsnap1.. y('3','1')*x1 + x7 + y311 - y312 =E= 0; 
         CONlhsnap11.. y311 =L= 0.1*x1; 
         CONlhsnap12.. y312 =L= 0.1*x1; 
CONlhsjf1.. y('4','1')*x1 + x4 + y411 - y412 =E= 0; 
         CONlhsjf11.. y411 =L= 0.1*x1; 
         CONlhsjf12.. y412 =L= 0.1*x1; 
CONlhsgo1.. y('8','1')*x1 + x8 + y811 - y812 =E= 0; 
         CONlhsgo11.. y811 =L= 0.1*x1; 
         CONlhsgo12.. y812 =L= 0.1*x1; 
CONlhscf1.. y('9','1')*x1 + x9 + y911 - y912 =E= 0; 
         CONlhscf11.. y911 =L= 0.1*x1; 
         CONlhscf12.. y912 =L= 0.1*x1; 
CONlhsr1.. y('10','1')*x1 + x10 + y1011 - y1012 =E= 0; 
         CONlhsr11.. y1011 =L= 0.1*x1; 
         CONlhsr12.. y1012 =L= 0.1*x1; 
 
*Scenario 2: Medium demand 
Escenario2.. Es2 =E= p('2')*Es21; 
Escenario21.. Es21 =E= (((c('2','1')*z221 + c('2','2')*z222) + (c('3','1')*z321 + 
c('3','2')*z322) + (c('4','1')*z421 + c('4','2')*z422) + (c('5','1')*z521 + 
c('5','2')*z522) + (c('6','1')*z621 + c('6','2')*z622)) 
+ ((q('3','1')*y321 + q('3','2')*y322) + (q('4','1')*y421 + q('4','2')*y422) + 
(q('8','1')*y821 + q('8','2')*y822) + (q('9','1')*y921 + q('9','2')*y922) + 
(q('10','1')*y1021 + q('10','2')*y1022))); 
CONgas2.. x2 + z221 - z222 =E= d('2','2'); 
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CONnap2.. x3 + z321 - z322 =E= d('3','2'); 
CONjf2.. x4 + z421 - z422 =E= d('4','2'); 
CONho2.. x5 + z521 - z522 =E= d('5','2'); 
CONfo2.. x6 + z621 - z622 =E= d('6','2'); 
CONlhsnap2.. y('3','2')*x1 + x7 + y321 - y322 =E= 0; 
         CONlhsnap21..y321 =L= 0.1*x1; 
         CONlhsnap22.. y322 =L= 0.1*x1; 
CONlhsjf2.. y('4','2')*x1 + x4 + y421 - y422 =E= 0; 
         CONlhsjf21.. y421 =L= 0.1*x1; 
         CONlhsjf22.. y422 =L= 0.1*x1; 
CONlhsgo2.. y('8','2')*x1 + x8 + y821 - y822 =E= 0; 
         CONlhsgo21.. y821 =L= 0.1*x1; 
         CONlhsgo22.. y822 =L= 0.1*x1; 
CONlhscf2.. y('9','2')*x1 + x9 + y921 - y922 =E= 0; 
         CONlhscf21.. y921 =L= 0.1*x1; 
         CONlhscf22.. y922 =L= 0.1*x1; 
CONlhsr2.. y('10','2')*x1 + x10 + y1021 - y1022 =E= 0; 
         CONlhsr21.. y1011 =L= 0.1*x1; 
         CONlhsr22.. y1012 =L= 0.1*x1; 
 
*Scenario 3: Low demand 
Escenario3.. Es3 =E= p('3')*Es31; 
Escenario31.. Es31 =E= (((c('2','1')*z231 + c('2','2')*z232) + (c('3','1')*z331 + 
c('3','2')*z332) + (c('4','1')*z431 + c('4','2')*z432) + (c('5','1')*z531 + 
c('5','2')*z532) + (c('6','1')*z631 + c('6','2')*z632)) 
+ ((q('3','1')*y331 + q('3','2')*y332) + (q('4','1')*y431 + q('4','2')*y432) + 
(q('8','1')*y831 + q('8','2')*y832) + (q('9','1')*y931 + q('9','2')*y932) + 
(q('10','1')*y1031 + q('10','2')*y1032))); 
CONgas3.. x2 + z231 - z232 =E= d('2','3'); 
CONnap3.. x3 + z331 - z332 =E= d('3','3'); 
CONjf3.. x4 + z431 - z432 =E= d('4','3'); 
CONho3.. x5 + z531 - z532 =E= d('5','3'); 
CONfo3.. x6 + z631 - z632 =E= d('6','3'); 
CONlhsnap3.. y('3','3')*x1 + x7 + y331 - y332 =E= 0; 
         CONlhsnap31..y331 =L= 0.1*x1; 
         CONlhsnap32.. y332 =L= 0.1*x1; 
CONlhsjf3.. y('4','3')*x1 + x4 + y431 - y432 =E= 0; 
         CONlhsjf31.. y431 =L= 0.1*x1; 
         CONlhsjf32.. y432 =L= 0.1*x1; 
CONlhsgo3.. y('8','3')*x1 + x8 + y831 - y832 =E= 0; 
         CONlhsgo31.. y831 =L= 0.1*x1; 
         CONlhsgo32.. y832 =L= 0.1*x1; 
CONlhscf3.. y('9','3')*x1 + x9 + y931 - y932 =E= 0; 
         CONlhscf31.. y931 =L= 0.1*x1; 
         CONlhscf32.. y932 =L= 0.1*x1; 
CONlhsr3.. y('10','3')*x1 + x10 + y1031 - y1032 =E= 0; 
         CONlhsr31.. y1031 =L= 0.1*x1; 
         CONlhsr32.. y1032 =L= 0.1*x1; 
 
Escenario.. Es =E= Es1 + Es2 + Es3; 
 
 
Eprofit.. Ep =E= 
[p('1')*(-pc('1','1')*x1 + pc('2','1')*x2 + pc('3','1')*x3 + pc('4','1')*x4 + 
pc('5','1')*x5 + pc('6','1')*x6 - pc('14','1')*x14)] 
+ [p('2')*(-pc('1','2')*x1 + pc('2','2')*x2 + pc('3','2')*x3 + pc('4','2')*x4 + 
pc('5','2')*x5 + pc('6','2')*x6 - pc('14','2')*x14)] 
+ [p('3')*(-pc('1','3')*x1 + pc('2','3')*x2 + pc('3','3')*x3 + pc('4','3')*x4 + 
pc('5','3')*x5 + pc('6','3')*x6 - pc('14','3')*x14)]; 
 
Totalshortfall.. Tshortfall =E= z211 + z221 + z231 + z311 + z321 + z331 + z411 + z421 + 
z431 + z511 + z521 + z531 + z611 + z621 + z631 
+ y311 + y321 + y331 + y411 + y421 + y431 + y811 + y821 + y831 + y911 + y921 + y931 + 
y1011 + y1021 + y1031; 
 
Totalsurplus.. Tsurplus =E= z212 + z222 + z232 + z312 + z322 + z332 + z412 + z422 + z432 + 
z512 + z522 + z532 + z612 + z622 + z632 
+ y312 + y322 + y332 + y412 + y422 + y432 + y812 + y822 + y832 + y912 + y922 + y932 + 
y1012 + y1022 + y1032; 
 
*Vprofit2.. Vp2 =E= (v1*SQR(x1)) + (v2*SQR(x2)) + (v3*SQR(x3)) + (v4*SQR(x4)) + 
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(v5*SQR(x5)) + (v6*SQR(x6)) + (v14*SQR(x14)); 
 
*Vpsqrt.. Vpsq =E= SQRT(Vp + Vs); 
 
Ecvar.. Ecv =E= Ep - Es; 
*Covar.. Cv =E= Vpsq/(Ep - Es); 
 
 
Model Refinery / all /; 
 
* Starting values 
x1.up = 15000;          x1.l = 12500; 
x2.up = 2700;           x2.l = 2000; 
x3.up = 1100;           x3.l = 625; 
x4.up = 2300;           x4.l = 1875; 
x5.up = 1700;           x5.l = 1700; 
x6.up = 9500;           x6.l = 6175; 
x7.up = 1950;           x7.l = 1625; 
x8.up = 3300;           x8.l = 2750; 
x9.up = 3000;           x9.l = 2500; 
x10.up = 3000;          x10.l = 3750; 
x11.up = 1350;          x11.l = 1000; 
x12.up = 1275;          x12.l = 1275; 
x13.up = 3300;          x13.l = 1475; 
x14.up = 3000;          x14.l = 2500; 
x15.up = 3000;          x15.l = 0; 
x16.up = 1200;          x16.l = 1000; 
x17.up = 1650;          x17.l = 1375; 
x18.up = 425;           x18.l = 425; 
x19.up = 1650;          x19.l = 950; 
x20.up = 150;           x20.l = 125; 
 
Options nlp = conopt3; 
 
Solve REFINERY USING NLP MAXIMIZING Z2; 
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Appendix D6: Approach 4�Risk Model III with Mean-Absolute Deviation (MAD) 

as the Measure of Risk Imposed by the Recourse Penalty Costs 

 
$TITLE Approach 4: Risk Model III of Two-Stage Stochastic Programming with Fixed Recourse 
for Minimization of the Expected Value and the Mean-Absolute Deviation (MAD) of the 
Variation in Recourse Penalty Costs 
 
 
Sets 
 
i "product type" /1*21/ 
s "scenarios" /1*3/ 
k "production shortfall and surplus or yield decrement or increment" /1, 2/ 
 
 
Table pc(i,s) "price of product type i per realization j" 
         1         2        3 
1        8.8       8.0      7.2 
2        20.35     18.5     16.65 
3        8.8       8.0      7.2 
4        13.75     12.5     11.25 
5        15.95     14.5     13.05 
6        6.6       6        5.4 
14       1.65      1.5      1.35; 
 
 
Table d(i,s) "demand of product type i per realization j" 
      1        2        3 
2     2835     2700     2565 
3     1155     1100     1045 
4     2415     2300     2185 
5     1785     1700     1615 
6     9975     9500     9025; 
 
 
Table y(i,s) "yield of product type i per realization j" 
      1           2         3 
3     -0.1365     -0.13     -0.1235 
4     -0.1575     -0.15     -0.1425 
8     -0.231      -0.22     -0.209 
9     -0.21       -0.20     -0.19 
10    -0.265      -0.30     -0.335; 
 
 
Table c(i,k) "penalty cost for product type i due to production shortfall or surplus" 
      1     2 
1     55    50 
2     25    20 
3     17    13 
4     5     4 
5     6     5 
6     10    8; 
 
 
Table q(i,k) "penalty cost for product type i due to yield decrement or increment" 
      1     2 
3     5     3 
4     5     4 
8     5     3 
9     5     3 
10    5     3 
 
 
Variables 
 
Z2, Ecv; 
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Positive variables 
 
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, 
z211, z212, z221, z222, z231, z232, 
z311, z312, z321, z322, z331, z332, 
z411, z412, z421, z422, z431, z432, 
z511, z512, z521, z522, z531, z532, 
z611, z612, z621, z622, z631, z632, 
y311, y312, y321, y322, y331, y332, 
y411, y412, y421, y422, y431, y432, 
y811, y812, y821, y822, y831, y832, 
y911, y912, y921, y922, y931, y932, 
y1011, y1012, y1021, y1022, y1031, y1032, 
Es1, Es11, Es2, Es21, Es3, Es31, 
MADs, MADs1, 
Vp, Tshortfall, Tsurplus, Es, Ep; 
 
 
Parameters 
 
p(s)   probability of the realization of scenario   /1 0.35, 2 0.45, 3 0.2/ 
 
 
Scalars 
 
V1 variance of price of crude oil /0.352/ 
V2 variance of price of gasoline /1.882375/ 
V3 variance of price of naphtha /0.352/ 
V4 variance of price of jet fuel /0.859375/ 
V5 variance of price of heating oil /1.156375/ 
V6 variance of price of crude oil /0.198/ 
V14 variance of price of cracker feed /0.012375/ 
 
 
Equations 
 
OBJ "maximize profit", 
CON1, CON2, EQN8, EQN9, EQN10, EQN11, EQN12, EQN13, EQN14, EQN15, EQN16, EQN17, EQN18, 
EQN19, 
Escenario, Escenario1, Escenario11, 
Escenario2, Escenario21, 
Escenario3, Escenario31, 
CONgas1, CONgas2, CONgas3, 
CONnap1, CONnap2, CONnap3, 
CONjf1, CONjf2, CONjf3, 
CONho1, CONho2, CONho3, 
CONfo1, CONfo2, CONfo3, 
CONlhsnap1, CONlhsnap11, CONlhsnap12, 
CONlhsnap2, CONlhsnap21, CONlhsnap22, 
CONlhsnap3, CONlhsnap31, CONlhsnap32, 
CONlhsjf1, CONlhsjf11, CONlhsjf12, 
CONlhsjf2, CONlhsjf21, CONlhsjf22, 
CONlhsjf3, CONlhsjf31, CONlhsjf32, 
CONlhsgo1, CONlhsgo11, CONlhsgo12, 
CONlhsgo2, CONlhsgo21, CONlhsgo22, 
CONlhsgo3, CONlhsgo31, CONlhsgo32, 
CONlhscf1, CONlhscf11, CONlhscf12, 
CONlhscf2, CONlhscf21, CONlhscf22, 
CONlhscf3, CONlhscf31, CONlhscf32, 
CONlhsr1, CONlhsr11, CONlhsr12, 
CONlhsr2, CONlhsr21, CONlhsr22, 
CONlhsr3, CONlhsr31, CONlhsr32, 
MADscenario, MADcon1, MADcon2, MADcon3, 
Eprofit, Vprofit, Totalshortfall, Totalsurplus, Ecvar; 
 
OBJ.. 
Z2 =e= 
[p('1')*(-pc('1','1')*x1 + pc('2','1')*x2 + pc('3','1')*x3 + pc('4','1')*x4 + 
pc('5','1')*x5 + pc('6','1')*x6 - pc('14','1')*x14)] 
+ [p('2')*(-pc('1','2')*x1 + pc('2','2')*x2 + pc('3','2')*x3 + pc('4','2')*x4 + 
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pc('5','2')*x5 + pc('6','2')*x6 - pc('14','2')*x14)] 
+ [p('3')*(-pc('1','3')*x1 + pc('2','3')*x2 + pc('3','3')*x3 + pc('4','3')*x4 + 
pc('5','3')*x5 + pc('6','3')*x6 - pc('14','3')*x14)] 
- 0.0008*Vp 
- Es - 0.01*MADs; 
 
Vprofit.. Vp =E= ((V1*SQR(x1)) + (V2*SQR(x2)) + (V3*SQR(x3)) + (V4*SQR(x4)) + (V5*SQR(x5)) 
+ (V6*SQR(x6)) + (V14*SQR(x14))); 
 
CON1.. x1 =L= 15000; 
CON2.. x14 =L= 2500; 
*EQN3.. -0.13*x1 + x7 =E= 0; 
*EQN4.. -0.15*x1 + x4 =E= 0; 
*EQN5.. -0.22*x1 + x8 =E= 0; 
*EQN6.. -0.20*x1 + x9 =E= 0; 
*EQN7.. -0.30*x1 + x10 =E= 0; 
EQN8.. -0.05*x14 + x20 =E= 0; 
EQN9.. -0.40*x14 + x16 =E= 0; 
EQN10.. -0.55*x14 + x17 =E= 0; 
EQN11.. 0.5*x2 - x11 =E= 0; 
EQN12.. 0.5*x2 - x16 =E= 0; 
EQN13.. 0.75*x5 - x12 =E= 0; 
EQN14.. 0.25*x5 - x18 =E= 0; 
EQN15.. -x7 + x3 +x11 =E= 0; 
EQN16.. -x8 + x12 +x13 =E= 0; 
EQN17.. -x9 + x14 +x15 =E= 0; 
EQN18.. -x17 + x18 +x19 =E= 0; 
EQN19.. -x10 - x13 - x15 - x19 + x6 =E= 0; 
*CON20.. x2 =L= 2700; 
*CON21.. x3 =L= 1100; 
*CON22.. x4 =L= 2300; 
*CON23.. x5 =L= 1700; 
*CON24.. x6 =L= 9500; 
 
*Scenario 1: High demand 
Escenario1.. Es1 =E= p('1')*Es11; 
Escenario11.. Es11 =E= (((c('2','1')*z211 + c('2','2')*z212) + (c('3','1')*z311 + 
c('3','2')*z312) + (c('4','1')*z411 + c('4','2')*z412) + (c('5','1')*z511 + 
c('5','2')*z512) + (c('6','1')*z611 + c('6','2')*z612)) 
+ ((q('3','1')*y311 + q('3','2')*y312) + (q('4','1')*y411 + q('4','2')*y412) + 
(q('8','1')*y811 + q('8','2')*y812) + (q('9','1')*y911 + q('9','2')*y912) + 
(q('10','1')*y1011 + q('10','2')*y1012))); 
 
CONgas1.. x2 + z211 - z212 =E= d('2','1'); 
CONnap1.. x3 + z311 - z312 =E= d('3','1'); 
CONjf1.. x4 + z411 - z412 =E= d('4','1'); 
CONho1.. x5 + z511 - z512 =E= d('5','1'); 
CONfo1.. x6 + z611 - z612 =E= d('6','1'); 
CONlhsnap1.. y('3','1')*x1 + x7 + y311 - y312 =E= 0; 
         CONlhsnap11.. y311 =L= 0.1*x1; 
         CONlhsnap12.. y312 =L= 0.1*x1; 
CONlhsjf1.. y('4','1')*x1 + x4 + y411 - y412 =E= 0; 
         CONlhsjf11.. y411 =L= 0.1*x1; 
         CONlhsjf12.. y412 =L= 0.1*x1; 
CONlhsgo1.. y('8','1')*x1 + x8 + y811 - y812 =E= 0; 
         CONlhsgo11.. y811 =L= 0.1*x1; 
         CONlhsgo12.. y812 =L= 0.1*x1; 
CONlhscf1.. y('9','1')*x1 + x9 + y911 - y912 =E= 0; 
         CONlhscf11.. y911 =L= 0.1*x1; 
         CONlhscf12.. y912 =L= 0.1*x1; 
CONlhsr1.. y('10','1')*x1 + x10 + y1011 - y1012 =E= 0; 
         CONlhsr11.. y1011 =L= 0.1*x1; 
         CONlhsr12.. y1012 =L= 0.1*x1; 
 
*Scenario 2: Medium demand 
Escenario2.. Es2 =E= p('2')*Es21; 
Escenario21.. Es21 =E= (((c('2','1')*z221 + c('2','2')*z222) + (c('3','1')*z321 + 
c('3','2')*z322) + (c('4','1')*z421 + c('4','2')*z422) + (c('5','1')*z521 + 
c('5','2')*z522) + (c('6','1')*z621 + c('6','2')*z622)) 
+ ((q('3','1')*y321 + q('3','2')*y322) + (q('4','1')*y421 + q('4','2')*y422) + 
(q('8','1')*y821 + q('8','2')*y822) + (q('9','1')*y921 + q('9','2')*y922) + 
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(q('10','1')*y1021 + q('10','2')*y1022))); 
CONgas2.. x2 + z221 - z222 =E= d('2','2'); 
CONnap2.. x3 + z321 - z322 =E= d('3','2'); 
CONjf2.. x4 + z421 - z422 =E= d('4','2'); 
CONho2.. x5 + z521 - z522 =E= d('5','2'); 
CONfo2.. x6 + z621 - z622 =E= d('6','2'); 
CONlhsnap2.. y('3','2')*x1 + x7 + y321 - y322 =E= 0; 
         CONlhsnap21..y321 =L= 0.1*x1; 
         CONlhsnap22.. y322 =L= 0.1*x1; 
CONlhsjf2.. y('4','2')*x1 + x4 + y421 - y422 =E= 0; 
         CONlhsjf21.. y421 =L= 0.1*x1; 
         CONlhsjf22.. y422 =L= 0.1*x1; 
CONlhsgo2.. y('8','2')*x1 + x8 + y821 - y822 =E= 0; 
         CONlhsgo21.. y821 =L= 0.1*x1; 
         CONlhsgo22.. y822 =L= 0.1*x1; 
CONlhscf2.. y('9','2')*x1 + x9 + y921 - y922 =E= 0; 
         CONlhscf21.. y921 =L= 0.1*x1; 
         CONlhscf22.. y922 =L= 0.1*x1; 
CONlhsr2.. y('10','2')*x1 + x10 + y1021 - y1022 =E= 0; 
         CONlhsr21.. y1011 =L= 0.1*x1; 
         CONlhsr22.. y1012 =L= 0.1*x1; 
 
*Scenario 3: Low demand 
Escenario3.. Es3 =E= p('3')*Es31; 
Escenario31.. Es31 =E= (((c('2','1')*z231 + c('2','2')*z232) + (c('3','1')*z331 + 
c('3','2')*z332) + (c('4','1')*z431 + c('4','2')*z432) + (c('5','1')*z531 + 
c('5','2')*z532) + (c('6','1')*z631 + c('6','2')*z632)) 
+ ((q('3','1')*y331 + q('3','2')*y332) + (q('4','1')*y431 + q('4','2')*y432) + 
(q('8','1')*y831 + q('8','2')*y832) + (q('9','1')*y931 + q('9','2')*y932) + 
(q('10','1')*y1031 + q('10','2')*y1032))); 
CONgas3.. x2 + z231 - z232 =E= d('2','3'); 
CONnap3.. x3 + z331 - z332 =E= d('3','3'); 
CONjf3.. x4 + z431 - z432 =E= d('4','3'); 
CONho3.. x5 + z531 - z532 =E= d('5','3'); 
CONfo3.. x6 + z631 - z632 =E= d('6','3'); 
CONlhsnap3.. y('3','3')*x1 + x7 + y331 - y332 =E= 0; 
         CONlhsnap31..y331 =L= 0.1*x1; 
         CONlhsnap32.. y332 =L= 0.1*x1; 
CONlhsjf3.. y('4','3')*x1 + x4 + y431 - y432 =E= 0; 
         CONlhsjf31.. y431 =L= 0.1*x1; 
         CONlhsjf32.. y432 =L= 0.1*x1; 
CONlhsgo3.. y('8','3')*x1 + x8 + y831 - y832 =E= 0; 
         CONlhsgo31.. y831 =L= 0.1*x1; 
         CONlhsgo32.. y832 =L= 0.1*x1; 
CONlhscf3.. y('9','3')*x1 + x9 + y931 - y932 =E= 0; 
         CONlhscf31.. y931 =L= 0.1*x1; 
         CONlhscf32.. y932 =L= 0.1*x1; 
CONlhsr3.. y('10','3')*x1 + x10 + y1031 - y1032 =E= 0; 
         CONlhsr31.. y1031 =L= 0.1*x1; 
         CONlhsr32.. y1032 =L= 0.1*x1; 
 
Escenario.. Es =E= Es1 + Es2 + Es3; 
MADscenario.. MADs =E= (p('1')*abs(Es11 - Es)) + (p('2')*abs(Es21 - Es)) + 
(p('3')*abs(Es31 - Es)); 
MADcon1.. MADs1 =G= -MADs; 
MADcon2.. MADs1 =G= MADs; 
MADcon3.. MADs1 =G= 0; 
*Vscenario.. Vs =E= (p1*SQR(Es11 - Es)) + (p2*SQR(Es21 - Es)) + (p3*SQR(Es31 - Es)); 
 
 
Eprofit.. Ep =E= 
[p('1')*(-pc('1','1')*x1 + pc('2','1')*x2 + pc('3','1')*x3 + pc('4','1')*x4 + 
pc('5','1')*x5 + pc('6','1')*x6 - pc('14','1')*x14)] 
+ [p('2')*(-pc('1','2')*x1 + pc('2','2')*x2 + pc('3','2')*x3 + pc('4','2')*x4 + 
pc('5','2')*x5 + pc('6','2')*x6 - pc('14','2')*x14)] 
+ [p('3')*(-pc('1','3')*x1 + pc('2','3')*x2 + pc('3','3')*x3 + pc('4','3')*x4 + 
pc('5','3')*x5 + pc('6','3')*x6 - pc('14','3')*x14)]; 
 
Totalshortfall.. Tshortfall =E= z211 + z221 + z231 + z311 + z321 + z331 + z411 + z421 + 
z431 + z511 + z521 + z531 + z611 + z621 + z631 
+ y311 + y321 + y331 + y411 + y421 + y431 + y811 + y821 + y831 + y911 + y921 + y931 + 
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y1011 + y1021 + y1031; 
 
Totalsurplus.. Tsurplus =E= z212 + z222 + z232 + z312 + z322 + z332 + z412 + z422 + z432 + 
z512 + z522 + z532 + z612 + z622 + z632 
+ y312 + y322 + y332 + y412 + y422 + y432 + y812 + y822 + y832 + y912 + y922 + y932 + 
y1012 + y1022 + y1032; 
 
*Vpsqrt.. Vpsq =E= SQRT(Vp + MADs); 
 
Ecvar.. Ecv =E= Ep - Es; 
 
Model Refinery / all /; 
 
* Starting values 
x1.up = 15000;          x1.l = 12500; 
x2.up = 2700;           x2.l = 2000; 
x3.up = 1100;           x3.l = 625; 
x4.up = 2300;           x4.l = 1875; 
x5.up = 1700;           x5.l = 1700; 
x6.up = 9500;           x6.l = 6175; 
x7.up = 1950;           x7.l = 1625; 
x8.up = 3300;           x8.l = 2750; 
x9.up = 3000;           x9.l = 2500; 
x10.up = 3000;          x10.l = 3750; 
x11.up = 1350;          x11.l = 1000; 
x12.up = 1275;          x12.l = 1275; 
x13.up = 3300;          x13.l = 1475; 
x14.up = 3000;          x14.l = 2500; 
x15.up = 3000;          x15.l = 0; 
x16.up = 1200;          x16.l = 1000; 
x17.up = 1650;          x17.l = 1375; 
x18.up = 425;           x18.l = 425; 
x19.up = 1650;          x19.l = 950; 
x20.up = 150;           x20.l = 125; 
 
Option dnlp = conopt3; 
 
Solve REFINERY USING DNLP MAXIMIZING Z2; 
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Final Remarks 

 

Manuscript on parts of this dissertation have been submitted for publication as indicated 

in the following: 
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uncertainty. Chemical Engineering and Processing (submitted for publication and 

under review), 63 pages. 
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