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Abstract

This thesis focuses on two research directions within the field of Cosmology. It comprises
the main results of my work as a PhD student. Part I introduces new observables of
false vacuum decay derived from real-time numerical simulations. Part II describes a new
method to search for hidden-sector particles using information from Cosmic Microwave
Background (CMB) and Large Scale Structure (LSS) data.

The first part studies metastable ‘false’ vacuum decay in relativistic first order phase
transitions. It is a phenomenon with broad implications for Cosmology and is ubiquitous
in theories beyond the Standard Model. Describing the dynamics of a phase transition
out of a false vacuum via the nucleation of bubbles is essential for understanding vacuum
decay and the full spectrum of observables. We study vacuum decay by numerically evolv-
ing stochastic ensembles of field theories in 1+1 dimensions from an initially metastable
state. First, we demonstrate that bubble nucleation sites cluster by measuring correlation
functions in simulations. Next, we show that bubbles form with a Gaussian spread of
center-of-mass velocities for a field with an initial thermal spectrum. Finally, we show that
nucleation events are preceded by oscillons - long-lived, time-dependent, pseudo-stable field
configurations. We provide theoretical tools to model and generalize our findings.

In the second part, we introduce a new type of secondary CMB anisotropy: the patchy
screening induced by resonant conversion of CMB photons into dark-sector massive scalar
(axions) and vector (dark photons) bosons as they cross non-linear LSS. In two of the
simplest low-energy extensions to the SM, CMB photons can resonantly convert into either
dark photons or axions when their local plasma frequency matches the mass of the hidden
sector particle. For the axion, the resonance also requires the presence of an ambient
magnetic field. After the epoch of reionization, resonant conversion occurs in dark matter
halos if the hidden-sector particles have masses in the range 10−13 eV ≲ mA′ ≲ 10−11 eV.
This phenomenon leads to new CMB anisotropies correlated with LSS, which we refer to
as dark screening, in analogy with anisotropies from Thomson screening. Each process
has a unique frequency dependence, distinguishing both from the blackbody CMB. In this
thesis, we use a halo model-based approach to predict the imprint of dark screening on
the CMB temperature and polarization and their correlation with LSS. We then examine
n-point correlation functions of the dark-screened CMB and correlation functions between
CMB and LSS observables to project the sensitivity of future measurements to the dark
photon and axion coupling parameters.
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Chapter 1

Introduction

Cosmology is the branch of science dedicated to understanding the evolution and structure
of our Universe. Over the last century, this field has experienced remarkable growth thanks
to advancements in observational technologies. The discovery of the Cosmic Microwave
Background (CMB) radiation has revolutionized the field and led to the establishment of
the Standard Model in Cosmology known as Lambda Cold Dark Matter (ΛCDM). In its
standard form, ΛCDM is a seven-parameter theoretical model that has provided a con-
sistent explanation for various observational data, including the statistical properties of
the CMB and distribution of galaxies on large scales, as well as the Universe’s expansion
history. The values of these parameters have been measured to sub-percent level precision
by instruments such as the Planck satellite [10]. At the same time, on a different front
and guided by laboratory experiments searching for fundamental particles and their inter-
actions, the Standard Model of Particle Physics (SM) was developed. Experiments have
been testing the SM and ΛCDM predictions for decades and, combined, provide a robust
description of physics on all scales.

Today, Cosmology and Particle Physics are becoming increasingly intertwined, as the-
oretical and experimental progress in one area can inform and guide efforts in the other.
For example, ΛCDM provides concrete evidence that the SM is incomplete: cold dark
matter and dark energy, essential in ΛCDM, do not fall under the SM framework. Fur-
thermore, there are indications that ΛCDM itself is inconsistent with some experimental
observations [11, 12, 13]. In time, as more precise measurements will be made available,
the SM and ΛCDM will be under increasing pressure. In order to continue to provide a
comprehensive description of our observable Universe, they will need to be modified or
extended.

1



The collection of all phenomena and theories that do not lie under the standard frame-
work is termed physics Beyond the Standard Model (BSM) of Cosmology and Particle
Physics. The theoretical modelling of new BSM observables within the context of an ex-
tended framework is essential, as it can both facilitate the interpretation of upcoming data
and help identify promising experimental directions to follow in the future.

In this Thesis, we investigate two topics within BSM physics. In the first part, we
focus on bubble nucleation in relativistic first-order phase transitions – a process termed
false vacuum decay. We propose the first new observables of the phenomenon of bubble
nucleation introduced in decades. In the second half, we introduce a new type of CMB
secondary anisotropy sourced by two compelling candidates for particle species BSM –
dark photons and axions. We demonstrate that using available cosmological data from the
Planck satellite [14], we can place the strongest bounds to date on the coupling between
the SM photon and the dark photon for a mass range 10−11 − 1013 eV, stronger by two
orders of magnitude compared to the current best constraints [15]. We further show that
using upcoming CMB data, our method is sensitive to an additional order of magnitude
for the dark photon coupling, and for the axion, the sensitivity is one order of magnitude
above the current best constraints [16]. We elaborate in the following.

In first-order phase transitions, vacuum decay from a metastable configuration of a
quantum field theory (QFT) occurs via the formation of bubbles containing a lower en-
ergy state. Benchmark analytical methods, namely Euclidean instanton techniques, cannot
be used to describe the real-time dynamics of the field during the phase transition. In-
stead, they provide a framework for computing the decay rate of the false vacuum and
general properties of the critical solution, which is the most probable bubble to form from
quantum [17, 18] or finite temperature [19, 20] fluctuations. In our work, we employed a
real-time stochastic description introduced in [21] to study the formation and evolution of
bubbles.

First, we show that bubble nucleation sites cluster and measure the associated two-
point function. We argue that bubbles form from peaks in the field, which act as seeds for
nucleation. Since peaks in the background field cluster, bubble nucleation events inherit
this property, in the same way that galaxies act as tracers for the underlying dark matter
density field [22]. We also explore the case of a real scalar field with an initial Bose-Einstein
distribution of fluctuations and identify additional observables. We demonstrate that bub-
bles nucleate with a distribution of center-of-mass velocities that has a spread proportional
to the temperature of the false vacuum. Next, we show that the peaks from which bubbles
form are oscillons. These are long-lived, oscillatory, pseudo-stable field configurations and
can be understood as an intermediate state between the freely propagating field degree
of freedom and the emergent bubble [23, 24, 25]. Their role in vacuum decay has previ-
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ously been hypothesized in [26, 27, 28, 29, 30]. All of these observables are fundamentally
inaccessible via Euclidean instanton methods.

To obtain these new observables, we employ real-time lattice simulations. These enable
the dynamical exploration of the bubble nucleation process, albeit under a set of assump-
tions which are different from those of instanton theory (see e.g. [21, 31, 32, 33, 34, 35,
36, 37] for discussions). We see these new results as a first step towards bridging the gap
between field theoretical methods and observation. Furthermore, we find good agreement
between the simulation results and the instanton theory established theoretical predictions.
This validation motivates their use to extract additional observables, as we do in this The-
sis. The main focus of the work presented in Part I is to introduce new observables of
bubble nucleation that can only be accessed through a real-time approach. We model the
new observables using thermodynamic and statistical arguments and find good agreement
with simulation measurements.

There have been a variety of recent efforts to perform laboratory-based simulations
of false vacuum decay at low temperature using cold atom systems [38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50], quantum annealers [51], spin chains [52, 53], and (for the
related Schwinger process) quantum computers [54, 55]. Notably, a realization of vacuum
decay using cold atoms was performed in [50], with further results expected in the near
future [43]. Therefore, our new predictions can be tested in practice within the next few
years. These will provide the first tests of our assumptions related to real-time simulations
and potentially the first measurements for the observables which we introduce in this
Thesis. If confirmed, we will have introduced a new picture of the dynamics of vacuum
decay that can be applied to modelling phase transitions in the early Universe and whose
effects on cosmological observables could be targets for future cosmological surveys. Some
examples of possible cosmological observables from vacuum decay have been discussed in
works such as [56, 57, 58].

On the topic of dark matter phenomenology for Cosmology, we show that hidden sector
particles can induce new spectral distortions and anisotropies in the CMB. We modelled
the interaction of CMB photons with light vector bosons (dark photons) via a kinetic mix-
ing term and their resonant conversion into scalar bosons (axions) in the presence of an
ambient magnetic field. In both cases, the conversion happens in astrophysical environ-
ments where the dispersion relation of the CMB photon (plasma frequency) is naturally
scanned, causing it to acquire an effective mass. These processes act as a screen for CMB
radiation, leading to frequency-dependent anisotropies in temperature and polarization.
The screening traces the distribution of matter across the sky, and the signal morphology
depends on the properties of the hidden particle, such as its mass. Notably, both processes
carry unique frequency scalings that distinguish each individually from the blackbody.

3



The mass range accessible via this method is beyond the scope of laboratory experi-
mentation, so this method opens the exploration of a new region in the parameter space
for BSM. Using a halo model approach [59, 60], we construct two- and three-point corre-
lation functions of the dark-screened CMB, as well as correlation functions between CMB
and LSS observables and demonstrate that existing CMB data can improve upon current
constraints on the kinetic mixing parameter of the dark photon coupling by two orders
of magnitude, and up to three orders of magnitude for future surveys. In the case of the
axion, we show that an analysis using Planck data and a galaxy catalog would be sensitive
to couplings comparable to the most sensitive existing astrophysical axion searches. Ad-
ditionally, we show that future CMB data could improve the sensitivity by an additional
order of magnitude. This framework can be readily extended to include other tracers of
LSS besides galaxy surveys, which would further increase the range of masses that can be
probed. It can also be extended to search for other couplings to hidden-sector candidates.

The remainder of Chapter 1 reviews theoretical knowledge and background assumed
throughout the main Chapters. A brief review of Cosmology is covered in 1.1. Section 1.2
reviews the motivation to study vacuum decay for Cosmology and includes a summary of
basic concepts in instanton theory applied to vacuum transitions.

1.1 Cosmology Review

In this section, we summarize a list of general concepts in Cosmology that relate to the ma-
terial presented in the main Chapters of this Thesis. First, we introduce the language and
equations needed to talk quantitatively about the physics of an expanding Universe. Then,
we outline the main events in the thermal history, highlighting the role of phase transitions
in producing the particle content observed today. Next, we introduce the inhomogeneities
that lead to the formation of Large Scale Structure (LSS) and CMB anisotropies. We use
linear perturbation theory to explain why their statistics can be understood in terms of
growing density fluctuations in an expanding background. Finally, we motivate the search
for two of the most promising hidden particle candidates: the dark photon and the axion.

The upcoming review combines topics from several textbooks and lecture notes on
modern Cosmology, including [61, 62, 63, 64, 65, 66, 67], as well as various papers and
review articles which are highlighted throughout the text, where relevant.
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Conventions

For all cosmological quantities, the subscript 0 is used to label their present value, e.g. H0

is the value of the Hubble parameter today. Unless stated otherwise, we work in natural
units where ℏ = c = kB = 1. We use the (−,+,+,+) signature for the metric. Greek
indices (e.g. µ, ν ) refer to 4-dimensional spacetime quantities. The spatial dimension of
variables is usually clarified in the text. However, bold text notation is used when a vector
quantity is highlighted. For example, in integrals, the infinitesimal volume element states
the variable dimension, as does the superscript in Dirac delta functions – e.g. dnk is an
n-vector and δn(k) an n-dimensional distribution – but when denoting a vector product,
we usually use vector boldface notation – e.g. for two momenta we use q1 ·q2. Unit vectors
are denoted with a hat, e.g. n̂.

The convention used for Fourier transforms is the following:

φ(k) =

∫
d3χe−ik·χφ(χ), φ(χ) =

∫
d3k

(2π)3
eik·χφ(k), (1.1)

and for multipole expansions, we write

φ(n̂) =
∞∑

ℓ=0

m=ℓ∑

m=−ℓ
φℓmYlm(n̂), φℓm =

∫
d2n̂ Y ∗

ℓm(n̂)φ(n̂), (1.2)

where the Yℓm are the spherical harmonic functions, which are normalized as follows:
∫

d2n̂ Yℓm(n̂)Y
∗
ℓ′m′(n̂) = δℓℓ′δmm′ . (1.3)

The ‘∗’ superscript refers to complex conjugation.

1.1.1 Background Cosmology

The Universe is expanding. On average, it is spatially homogeneous and isotropic. These
are strong constraints that define the symmetry properties of the spacetime geometry. To
first order, this is given by the Friedmann–Lemâıtre-Robertson–Walker (FLRW) metric:

ds2 = −dt2 + a(t)2dS2
3 = a(η)2

(
−dη2 + dS3

3

)
, (1.4)

where η =
∫
dt/a(t) is the conformal time, a(t) is the scale factor and dS2

3 is the spatial
volume element. Depending on the geometry, in the most general case, it is:

dS2
3 =

dχ2

1− κχ2

χ2∗

+ χ2dΩ2, (1.5)
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where the curvature κ can take values κ ∈ {−1, 0,+1} corresponding to a closed (spheri-
cal), flat, and open (hyperbolic) Universe, respectively. The parameter χ∗ is an arbitrary
curvature radius and dΩ2 = dθ2 + sin θ2dϕ represents the volume element on the 2-sphere.

Most of the information we receive from space travels towards us in the form of light,
which follows null geodesics defined by the condition that ds2 = 0. As with any other length
scale, the wavelength of light increases along with the scale factor. This phenomenon
is called gravitational redshift. Formally, redshift is defined as the fractional change in
wavelength of a photon emitted by a distant source. In terms of the scale factor, this is
given by

z =
1

a(t)
− 1, 0 < a ≤ 1, (1.6)

where by convention the redshift today is z0 = 0 corresponding to a0 = 1. The proper
distance is the physical distance between any two points at a fixed moment in time, and
we denote it by r:

r = a(z)

∫
dχ′ =

χ(z)

1 + z
, (1.7)

where z is the redshift calculated at the source. Finally, the comoving distance χ to an
object at redshift z is the length of the path travelled by a photon along a null ray:

χ =

∫ χ

0

dχ′ =

∫ t0

t

dt

a
=

∫ 1

a

da

a2H
=

∫ z

0

dz

H
. (1.8)

The scale factor always increases with redshift in an expanding Universe like ours. Along
with the scale factor, they have a one-to-one relationship with time and are often used as
a proxy for the time parameter.

Notice that the comoving distance is constant with the expansion, while the physical
distance r increases monotonically. This is the Hubble flow. In the comoving coordinate
system defined by (1.4), all matter is on average at rest.

Our goal is to understand how matter evolves in the FLRW spacetime. To do so, we
now introduce some concepts from General Relativity. We can define the metric tensor gµν
in relation to the infinitesimal FLRW interval as:

ds2 = gµνdx
µdxν , (1.9)

where xµ = (x0, xi) ≡ (t, χ, θ, ϕ) are event coordinates, the 0 superscript denotes the time
index and i the spatial index i = 1, 2, 3. Usually, when we refer to spatial 3-vectors, we
use bold vector notation xi ≡ x.
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The differential equations which relate gµν to the matter distribution are the Einstein
equations

Rµν −
1

2
gµνR = 8πGTµν , (1.10)

where Rµν is the Ricci tensor and R the Ricci scalar, related to the metric and its first two
derivatives. G is Newton’s gravitational constant. The quantity Tµν is the stress-energy
tensor, which measures the relevant properties of matter, such as energy, momentum, or
shear density. For Cosmology, matter is usually modelled as an ideal fluid, defined by an
isotropic pressure p(xµ) and a rest-frame mass per unit volume ρ(xµ). The equation relating
a fluid’s energy density and pressure is called its equation of state e.g. p(xµ) = wρ(xµ),
where w is a constant. The stress-energy tensor of an ideal fluid has the following definition:

T µν = (ρ+ p)uµuν + pgµν , (1.11)

where uµ is its four-velocity. Measured by a comoving observer such that uµ = (1, 0, 0, 0),
the stress tensor reduces to T µν = diag (−ρ, p, p, p).

In general, one can start from the Einstein field equations (1.10), apply the FLRW
metric from (1.4) and enforce an equation of state in (1.11) to arrive at a set of equations
of motion relating the scale factor a(t) with the energy density ρ. It is then possible to
choose some initial conditions and solve for the dynamics of the relativistic fluid in the
smooth expanding background. For example, for the ideal fluid which has w = p/ρ, the
Einstein equations simplify to the Friedmann equations:

H2 +
κ

a2
=

8πG

3
ρ,

ä

a
= −4πG

3
(ρ+ 3p),

(1.12)

where H(t) ≡ da
dt

1
a
is the Hubble parameter. The first equation above comes from the

µ = 0, ν = 0 component of the Einstein equations, while the second one can be derived
from the trace.

In GR, the stress-energy tensor is covariantly conserved ∇µT
µν = 0. Imposing the

FLRW metric yields the continuity equation:

ρ̇ = −3H(ρ+ p), (1.13)

which describes the time evolution of density and pressure.

Some of the most important examples of perfect fluids are listed in Table 1.1, along
with their equation of state and relationship between energy density and expansion param-
eter a(t). These are dust (non-relativistic pressureless matter where p2 ≪ m2), radiation

7



(derived by treating relativistic matter with p2 ≫ m2 as a quantum photon gas), and dark
energy (negative pressure). If the spacetime has intrinsic curvature κ ̸= 0, this also has an
associated energy density, which grows linearly in time.

Component w ρ(a) a(t)

Dust 0 a−3 t2/3

Radiation 1/3 a−4 t1/2

Dark Energy −1 a0 eHt

Curvature −1/3 a−2 t

Table 1.1: Perfect Fluids in Cosmology.

Cosmological data is consistent with a flat FLRW model in which the energy density
is divided between dark energy, radiation and dust. Schematically, the total stress-energy
tensor in our Universe can be written as:

T µν = T µνradiation + T µνmatter + T µνdark energy. (1.14)

From now on, we will use the short-hand notation where ‘m’ stands for dust, ‘r’ for ra-
diation, and ‘Λ’ for dark energy. Each component individually satisfies the continuity
equation (1.13). The total energy density at a particular time is given by:

ρ = ρr + ρm + ρΛ. (1.15)

The scaling of each component with the expansion parameter a is listed in Table 1.1. De-
pending on the value of a, the relative importance of each term changes. In the beginning,
where a → 0, radiation dominated the energy density of the Universe. As a increases,
the magnitudes of the first and second terms become comparable. When the second term
dominates, we say that the Universe is in a period of matter domination, where in the
absence of radiation pressure and under the action of gravity, the expansion slows down.
Today, we live in an epoch where matter and dark energy take up a similar fraction of the
total energy density while radiation is strongly suppressed. In the future, the dynamics
will be dominated by Λ, and the Universe will undergo accelerated expansion because of
its negative pressure, behaving as if it were empty of matter particles.

To paint a quantitative picture of this story, it is useful to introduce the critical density

ρc(t) =
3H(t)2

8πG
(1.16)
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as the total density of the Universe at a given time t such that the total curvature is flat:
κ = 0. A density parameter is then defined by Ω ≡ ρ/ρc and we measure the relative
importance of each term compared to the total as a function of these time-dependent
dimensionless quantities:

Ω =
∑

i

Ωi =
∑

i

ρi
ρc

= Ωm + Ωr + ΩΛ. (1.17)

The Universe may have an intrinsic spacetime curvature κ ̸= 0. The associated density
parameter is then added as an offset from unity: Ωκ = Ω − 1. Modern instruments have
measured the present values of these parameters to sub-percent level accuracy [10]. Their
values are listed in Table 1.2. Given these numbers, it is possible to calculate several
notable times in expansion history. For example, the scale factor at which the density of
matter and radiation are equal, amr, and when the density of matter and Λ are equal, amΛ

:

amr =
Ωr

Ωm

, amΛ =

(
Ωm

ΩΛ

)1/3

. (1.18)

Other important redshifts are the listed in Table 1.3. We expand on the significance of
each era before the end of this Chapter.

We can also write the first Friedmann equation in terms of the current energy density
of all the main components present in our Universe:

H2

H2
0

=
Ωr

a4
+

Ωb + Ωc

a3
+

Ωk

a2
+ ΩΛ, (1.19)

Integrating this equation over the scale factor, we can calculate that the total age of the
Universe is tage = 13.78 Gyr.

total matter density Ωm = Ωc + Ωb = 0.315
dark matter density Ωc = 0.264
baryonic matter density Ωb = 0.0493
dark energy density ΩΛ = 0.685
total radiation density Ωr = 9.17× 10−5

dark energy equation of state |wΛ + 1| < 0.03
spatial curvature |Ωκ| < 0.0037
Hubble constant H0 = 67.4 km s−1Mpc−1

Table 1.2: Measured FLRW parameters based on the Planck 2018 best-fit Cosmology [10].
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Event Redshift z
Matter-radiation equality 3400
Recombination 1100− 6000
Last scattering surface 1100
Dark Ages 20− 1100
Reionization 6− 20
First galaxies 8− 12
Typical galaxy surveys 0.5− 2
Matter-dark energy equality 0.4

Table 1.3: Chronology of the Universe since matter domination.

1.1.2 Thermal History

Under the FLRW cosmological model and given state-of-the-art observation, our Universe
started from a flat, homogeneous, isotropic geometry and a hot, radiation-dominated state.
We think of this state as one where all particles in the Standard Model are in thermal
equilibrium. Inflation is the current best candidate for the process by which the Universe
arrived at this state. This topic is presented in a later section.

When particles exchange energy and momentum efficiently for a long enough time,
the system is said to be in equilibrium and has reached a state of maximum entropy.
Statistical mechanics arguments can be used to show that for a particle species with mass
m and temperature T , the distribution function, i.e. the number density in phase space, is
given by

f(q) =
1

eE(q)/T ± 1
, (1.20)

where the ‘+’ sign is satisfied by fermions and ‘−’ by bosons, and we omitted the chem-
ical potential. The distributions in each case are called Fermi-Dirac and Bose-Einstein,
respectively. Particle species that are in equilibrium share the same temperature. We refer
to the radiation fluid that dominates the energy density in this epoch as the primordial
plasma. Particles and anti-particles are free and exchange energy continuously in the form
of photons. Current LHC experiments can reach energies of order several TeV = 1012 eV,
momentarily reproducing the conditions of this era. So far, these are the largest scales we
can probe on Earth.

Because the plasma temperature at this time is well above any mass scale T ≫ mSM.
In such a system, the entropy per comoving volume is conserved. It can be shown that this
implies T ∝ a−1. Every time a particle species falls out of equilibrium, i.e. the temperature
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falls below its mass scale, the associated entropy is redistributed among the degrees of
freedom still coupled to the plasma, causing T to decrease slightly less slowly than a−1.

Schematically, the reactions that occur at this time are b + b̄ ↔ 2γ. For example,
if T ≫ mb, the respective particle species b is relativistic with E ∝ q, and particle-
antiparticle pairs are created from the vacuum. The number density is similar to massless
photons, i.e. n ∝ T 3. As the Universe expands and cools, the temperature reaches the
mass scale T ∼ mb and the ‘←’ process becomes inefficient: bb̄ pairs only annihilate and
are no longer produced. For non-relativistic particles, E ≫ m, and if the temperature
continues to drop T ≪ m, the number density distribution becomes exponentially (or
Boltzmann) suppressed, i.e. f → e−m/T . One by one, in inverse order of mass, particles
are said to decouple from the heat bath, and their number density freezes out. An initial
imbalance in the number of matter particles versus anti-matter prevents complete mutual
annihilation. The extent of the observed imbalance can not be sourced within the SM.
However, mechanisms such as phase transitions could explain it.

The electroweak phase transition occurs once the temperature reaches the energy scale
of the Higgs mass mH ≈ 125 GeV. The Higgs mechanism reorganizes the degrees of free-
dom of the existing bosons, endowing SM particles with their masses. Until this point, the
temperature is still large enough that quarks escape confinement. This remains true until
the QCD phase transition, at T ≈ 150 MeV when quarks condense into bound hadrons:
three-quark baryons such as protons and neutrons and unstable two-quark mesons. Elec-
tron and positrons continue to remain in thermal equilibrium e−+e+ ↔ 2γ untilme− ≈ 0.5
MeV ≪ 150 MeV. They are the last matter species to decouple. Their annihilation pro-
cess produces additional photons, which heat the Universe by a fraction. This is the final
photon-producing process, so their number density is conserved from here onward.

Around 3 minutes after the Big Bang, the Universe is still mostly homogeneous, well
into radiation domination. All neutrons are either bound into atomic nuclei or have decayed
into protons to form the light elements: Hydrogen, Helium and traces of others such as
Lithium. The fraction of neutrons captured in each element depends on the ratios between
photons and baryons and of protons to neutrons at the time and on details of nuclear
stability and binding energies. All of these are well studied: nuclear physics provides a
detailed picture of the matter content at that time based on the observed abundances of
elements.

The next step is recombination. Absent of positrons and with the temperatures low
enough that the photon bath no longer ionizes atoms, electrons become trapped inside
neutral atoms via p+ e− → H+γ as similar reactions. Decoupling soon follows, where the
photons finally fall out of equilibrium with the electrons. The Universe has grown large
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Event age t temperature T
Planck scale 10−44 s 1028 eV
Inflation ? ?
GUT transition 10−36 1015 eV
Baryogenesis ? ?
EW phase transition 10−11 s 1011 eV
QCD phase transition 10−5 s 150 MeV
Electron-positron annihilation 6 s 500 keV
NucleosynThesis 3 min 100 keV
Recombination 260− 380 kyr 0.26− 0.33 eV
Decoupling 380 kyr 0.23− 0.28 eV
Reionization 100− 400 Myr 2.6− 7.0 meV
Present 13.8 Gyr T̄CMB = 0.24 meV

Table 1.4: Key events in the thermal history, together with a rough estimate for the age
of the Universe at that time and associated energy scales [65].

enough that the photon mean free path reaches the Hubble size. The Universe becomes
transparent as photons are free to propagate on cosmic distances. They contain much
information about the state of the Universe at that time from the properties that were
imprinted on them via scattering off the final electron around a redshift of z = 1100. We
refer to the surface we ‘see’ when we detect these photons today as the surface of last
scattering. This is the cosmic microwave background.

Since decoupling, the Universe has stayed neutral until the formation of the first stars in
a process called reionization. Since then, photons have been produced in nuclear processes
with large enough energies to re-ionize atoms. The characteristic timescale of reionization
defines another cosmological parameter called the average optical depth. Its current best-
fit value is τ̄Th = 0.054, provided by the Planck satellite. This places the reionization
redshift around z ≈ 7.7, much later than photon decoupling. The value of barτTh implies
that roughly 5% of the measured CMB photons have re-scattered since reionization. They
hold information about the distribution and properties of matter in the recent Universe.
The remaining 95% is a direct snapshot of the surface of last scattering.

We list the events defining the thermal history of the Universe Table 1.4. The corre-
sponding energy scales and the approximate time they took place are also shown.
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1.1.3 Inhomogeneities

The Universe, however, is not entirely homogeneous. On small scales, perturbations exist
in every density distribution we observe. For example, perturbations in the matter density
field are apparent in the distribution of galaxies. We also measure anisotropies in the relic
radiation field from the surface of the last scattering – the CMB.

Focusing on the cold dark matter (CDM) density field, we define the local perturbations
δρ(r, t) around a smooth time-dependent background ρ̄(t) in terms of the density contrast:

δ(r, t) ≡ δρ(r, t)

ρ̄(t)
=
ρ(r, t)− ρ̄(t)

ρ̄(t)
. (1.21)

We can model analytically the dynamics of inhomogeneities using perturbation theory,
valid as long as δ(r, t) ≪ 1. Once this approximation breaks, nonlinear effects, such
as gravitational collapse, become important. In practice, CMB temperature fluctuations
are of order δT/T ≈ 10−5, which is well within this margin. However, for the observed
matter distribution, on small scales, the fluctuations can be of order the mean density:
δ(r, t) ∼ O(1). Perturbation theory is therefore only valid on scales of order ∼ 10 Mpc
and above.

Statistical Description of Random Fields

Before moving on to perturbation theory, we summarize some important concepts and
properties of density contrast fields. Statistically, they are characterized by the collection
of all n-point functions, where n ≥ 1. These capture all relevant information and general
features of the distributions and represent the main observables in any experiment.

In real space, and suppressing the time-dependence, the correlation functions are de-
noted by:

⟨δ (r1) · · · δ (rn)⟩ ≡ ξn (r1, · · · , rn) . (1.22)

If all position vectors ri are equal, the correlation functions describe the moments of the
distribution. Given the definition of δ, its first moment is zero. The second moment defines
the power spectrum:

P (k) =

∫
d3reik·rξ(r) = 4π

∫
drr2

sin kr

kr
ξ(r), (1.23)

where here rotational invariance, or the fact that ξ(r ≡ |r1 − r2|) = ⟨δ (r1) δ (r2)⟩, are
consequences of isotropy. Working in Fourier space simplifies the structure of all correlation
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functions. Since δ is real, δ(−k) = δ∗(k) and we can write the two-point function in k-space
as: 〈

δ̃(k)δ̃∗ (k′)
〉
= (2π)3δ3 (k− k′)P (k). (1.24)

The simplification comes from the n-dimensional Dirac delta function, δn, which expresses
that the different wavenumbers k are uncorrelated in this expression. It is useful to define
the dimensionless contribution per logarithmic integral to the mean-square fluctuations:

∆2(k) = k3P (k)/
(
2π2
)
. (1.25)

This quantity measures the variance of density fluctuations on length scales χ ∼ 2π/k.
The Fourier transform of the three-point correlation function of density perturbations is
called the bispectrum. For real fields, this is:

〈
δ̃(k)δ̃ (k′) δ̃ (k′′)

〉
= (2π)3δ3 (k+ k′ + k′′)B (k,k′,k′′) . (1.26)

Higher-order functions are constructed similarly.

The second-order moments and the mean describe a Gaussian distribution entirely
because all higher moments are zero. Since linear theory does not mix the evolution of
different modes, if a distribution started as Gaussian, it remains so at a later time, although
the power spectrum can change. However, higher-order functions become relevant if the
initial conditions are non-Gaussian or the evolution is nonlinear.

Growth of Matter Perturbations

The following summarises the main ideas behind the perturbation theory applied to the
CDM density contrast. The first step is to consider linear corrections to the flat FLRW
metric:

gµν(x, t) = gFRWµν + δgµν . (1.27)

As a four-dimensional symmetric tensor, the metric perturbation δgµν has 10 degrees of
freedom. Four of these are fixed by the choice of gauge, leaving six dynamical variables.
Two more are vector quantities, which decay over time and do not affect the distribution
of matter. Two more are tensor degrees of freedom, representing transverse and traceless
gravitational waves, which we do not discuss besides mentioning that they couple to the
spatial part of the metric as hijdx

idxj. The remaining degrees of freedom are scalars and
couple directly to the density perturbations.
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The preferred gauge for studying the formation of LSS and CMB anisotropies is the
Newtonian gauge. Here, the metric takes the following form, with Φ and Ψ representing
scalar perturbations:

ds2 = −(1 + 2Φ)dt2 + a2(t)(1 + 2Ψ)δijdx
idxj, (1.28)

The free parameter Φ is identified with the Newtonian gravitational potential.

The matter sector receives linear corrections as well. Recall that the ideal fluid is de-
scribed to zeroth order by constant density ρ̄, pressure p̄ and four-velocity uµ = (1, 0, 0, 0).
In an expanding Universe, first-order corrections are added as

ρ = ρ̄(1 + δ), p = p̄+ δp, uµ =
(
1− Φ, ui

)
, (1.29)

where δ is the density contrast, δp are pressure fluctuations and ui ≡ u fluctuations in the
spatial comoving velocity. Meanwhile, the first-order correction to the stress-energy tensor
is:

δT µν = (δρ+ δp)ūµūν + (ρ̄+ p̄) (δuµūν + ūµδuν)− δp δµν . (1.30)

In the absence of anisotropic stress, i.e. all off-diagonal terms are zero as is the case for an
ideal fluid, we can replace Ψ = −Φ in the metric.

Similarly to how the Friedmann and continuity equations were derived, it is possible
to use the perturbed metric and conservation of the perturbed stress-energy tensor to
derive the linearized equations of motion for any ideal fluid, order by order. The perturbed
Friedmann equations will relate the density perturbation to the expansion. Furthermore,
since the stress-energy tensor is conserved independently for each component, they give
a set of coupled differential equations for their co-evolution. In general, one can simplify
equations by considering only contributions from a single component, which dominates
the energy density at that time. In particular, to describe both the linear growth of
perturbations leading to the formation of structure and the CMB, we need to consider the
matter-driven expansion of the background metric, as both processes occur during matter
domination.

There is one complication. Non-relativistic matter comprises baryonic and cold dark
matter, so we write Ωm ≡ Ωb+Ωc. This distinction is important for the following discussion,
as CDM only reacts to fluctuations in the gravitational potential Φ, while baryonic matter
also interacts additionally with electromagnetically. Qualitatively, the baryonic component
δb couples to δr to form the coupled photon-baryon fluid. The corresponding equation of
state is w ≈ 1/3 and evolves effectively as relativistic matter until recombination at redshift
z ≈ 1100, well into matter-domination.
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We now specialize to the case of non-relativistic matter in the Newtonian limit where
coordinates can be chosen such that locally, the fluid velocities are small (pressureless
dust δp ≪ δ, w = 0) and the spacetime metric is locally flat. This case is of interest for
understanding the formation and evolution of LSS. As mentioned above, it is a story about
CDM, and we ignore baryonic effects. From the 0-component of the Einstein equations,
we obtain the Poisson equation:

∇2Φ = 4πGa2ρ̄ δ, (1.31)

which states that the density perturbations source a gravitational potential (equivalently
spacetime curvature fluctuations) and vice-versa. The i-component gives the Euler equa-
tion for fluid dynamics, and from conservation of δT µν for δ, we get the continuity equation.
In the linear regime where δ ≪ 1, these may be combined to yield the following equation:

∂2δ

∂t2
+ 2H

∂δ

∂t
− 4πG ρ̄ δ = 0. (1.32)

Schematically, this reads:

δ̈ + (Pressure−Gravity) δ = 0. (1.33)

During the matter-dominationH ∝ 2/3 t. Using also that for the background 4πGρ̄ = 3
2
H2,

we simplify the equation above to δ̈ + 4
3t
δ̇ − 2

3t2
δ = 0. It has two independent solutions,

corresponding to modes that grow or decay with time. Parametrizing as δ ∝ tp, these are:

δ ∝
{
t−1 ∝ a−3/2,

t2/3 ∝ a.
(1.34)

Only the growing mode solution is relevant and says that dark matter fluctuations grow
as the scale factor during matter domination. The potential Φ is constant during matter
domination. We can plug this solution into the Fourier transform of the Poisson equation,
making the substitutions ∇2 → k2, Φ → Φ̃k and δ → δ̃k. The density contrast takes the
following form:

δ̃k(a) ∝
a k2 Φ̃k

H(a)2
. (1.35)

This scaling will be relevant later.

It can be shown that during a radiation-dominated era, the conservation of energy
and momentum produce similar equations of motion for the density contrast. However,
the gravitational potential is coupled to radiation and matter fields here. The solution
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for the δr fluctuations oscillates on small scales, and the time-averaged density contrast
is vanishingly small. In practice, it means that the time-averaged solution for Φ̃k is only
sourced by matter perturbations and the growing mode scales as

δ̃k(a) ∝ ln (ak) . (1.36)

Finally, for matter fluctuations evolving in a dark energy-dominated era, the expansion
is fast enough to suppress matter fluctuations. Dark energy does not cluster, so its density
contrast is zero. Without perturbations, the equation of motion for δ is just δ̈ + 2Hδ̇ ≈ 0,
where H ≈ constant. This equation has no growing solutions.

Doing this kind of analysis much more carefully, it can be shown that the growing mode
solutions for the density contrast at late times can be written in the following form:

δ̃k(a) = δ̃
(0)
k D(a)T (k), (1.37)

where δ̃
(0)
k represents the primordial perturbations (also known as the initial conditions),

T (k, a) is a transfer function and D(a) the growth factor. Both quantities are described
below. Notice that under linear theory, different modes do not couple.

The transfer function is usually defined for the gravitational potential Ψ; however, we
illustrate its purpose using the CDM density contrast we have been discussing so far. For
adiabatic perturbations, such as cold dark matter and scalar metric perturbations, the
transfer function in (1.37) is normalized as T (k = 0) = 1. Therefore, it becomes a measure

of how the primordial fluctuations δ̃
(0)
k have changed until a standardized late time. As

mentioned, departures are expected because the density contrast is subject to different
equations of motion depending on when a particular mode first started interacting with
the gravitational potential and the other fluids. The transfer function depends primarily on
how the scale k compares to the comoving Hubble size H−1 at the time of matter-radiation
equality. For example, a currently large-k mode entered the horizon early during radiation
domination and is subject to different evolution compared to small-k perturbations, which
only become relevant during matter domination. Interactions with other species, such as
dark energy or neutrinos, also affect the form of T (k). Therefore, the transfer function can
be used as a probe for physics on all scales.

The growth factor D(a) from (1.37) is a universal proportionality factor for all modes
relevant to structure formation. It describes the late-time evolution of the linear matter
perturbations. It is only a function of Cosmology and has the following definition:

D(a) ∝ H(a)

H0

∫ a

0

da′
[

H0

a′H (a′)

]3
, (1.38)
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It formalizes the qualitative discussion above on how the perturbations grow with the scale
factor in the linear regime, but taking into account the full matter content, as illustrated
in the Friedmann equation (1.19) with values from Table 1.2.

To summarize, equation (1.37) says that to linear order, we can use the transfer function
to modify the primordial perturbations according to the sum of all interactions until late
time, while the growth factor describes how cosmological evolution has driven each mode
since.

Of course, it is possible to repeat the exercise and find a similar parametrization for
radiation fluctuations or any other component. To make contact with observation for the
matter distribution and the CMB, it is necessary to evolve the complete system of cou-
pled partial differential equations, considering relativistic effects and allowing for spatially
varying density perturbations and interactions between sectors in thermal equilibrium at
various times. The latter is done by using a perturbed version of the Boltzmann equation.
The full machinery of perturbation theory is well developed at this point [68], and in prac-
tice, so-called cosmological Boltzmann codes such as CAMB [69] or CLASS [70] are used
to obtain numerical solutions. Confronting the output of these codes with experimental
data has allowed us to build the precise present-day picture of our cosmological model.

For a multi-component Universe, if the matter density contrast has some spatial distri-
bution at time t, and this is the same as the perturbation field of another component at a
slightly different time t+ δt(r), it is said that the perturbations are adiabatic. The Poisson
equation (1.31) illustrates this idea for matter density and curvature perturbations. It
seems to be the case that all perturbations in the Universe are adiabatic [71]. Further-
more, on large scales, the linear matter power spectrum and the CMB are consistent with
Gaussian initial conditions [72, 73]. This means that statistically, inhomogeneities in the
cold dark matter distribution on large scales today are correlated with the anisotropies in
the CMB, formed 13.7 billion years ago, and both of their power spectra are related to a
primordial random Gaussian field.

Linear Matter Power Spectrum

The matter power spectrum describes the matter density contrast as a function of scale k.
It is one of the most important tools in Cosmology, and the fact that various observational
methods agree on the inferred shape and features in the power spectrum is an achievement
of the ΛCDM model [74].

It is defined as the square of the density perturbation δ̃k(a) defined in (1.37). We can
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write it as:

∆2(k, z) = δ2H

(
k

H0

)3+n

T 2(k, z)D2(z), (1.39)

where δH is a normalization factor equal to the amplitude of matter perturbations on the
scale of the Hubble parameter today. n represents the initial power spectrum index. A
perfectly scale-invariant initial power spectrum has n = 1, while n less than one is said to
be red-tilted, and n slightly above 1 is blue-tilted.

We showed in (1.35) that the amplitude scales as δk ∝ k2 for modes that become
relevant during matter domination. Therefore, the power spectrum on those scales grows
as follows:

k3P (k) ∝ δ2k, (1.40)

which implies that
P (k) ∝ k. (1.41)

Similarly, if perturbations grow as δk ∝ ln k during radiation domination, the modes which
were relevant at that time scale as

P (k) ∝ k−3 ln k2. (1.42)

Indeed, the linear matter power spectrum asymptotes to P (k) ∼ k1 for k small, and
P (k) ∼ k−3 ln k2 for large k, as predicted. The turning point where the two regimes
meet corresponds roughly to the matter-radiation equality scale, 1/keq ≈ 100Mpc. This is
the size of the comoving Hubble horizon at zeq. Large scales with k < keq correspond to
fluctuations that entered the horizon after zeq during matter domination, while small scales
k > keq correspond to modes which crossed during radiation domination. In Fig. 1.1, we
show the linear and nonlinear matter power spectra corresponding to the best-fit Planck
2018 cosmological parameters [10]. The data was produced using CAMB [69].

There are many additional features in the matter power spectrum, all of which hold
information about the dynamics that took place on different scales. For example, the
modes that crossed the horizon before recombination show an oscillatory pattern. This is
produced by baryon-photon sound waves known as the baryon-acoustic oscillations (BAO).
They measure the characteristic scale of propagation of fluctuations in the baryon-photon
fluid until decoupling. The BAO scale corresponds today to 100 Mpc and provides a
standard ruler to measure cosmological parameters, and is also a dominant feature in the
CMB.

Structures grow according to linear theory on large scales where the gravitational poten-
tial competes with the cosmic expansion, i.e. k < keq. The power spectrum on these scales
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Figure 1.1: The matter power spectrum today. Modes k that crossed the horizon af-
ter matter-radiation equality follow P (k) ∝ k. The modes which crossed before fol-
low P (k) ∝ k−3 ln k2. The peak corresponds to the scale at matter-radiation equality
keq ≈ 10−2Mpc−1. Also shown for comparison is the nonlinear matter power spectrum,
calculated with CAMB [69]. Large scales agree with the linear approximation, but on small
scales additional power is due to nonlinear collapse.

provides an important constraint on the non-Gaussianity present in the initial conditions.
In the opposite limit, where gravitational collapse is strongly nonlinear, interactions in-
troduce higher-order correlations in the matter distribution, and the linear approximation
fails to reproduce the measured values. A comparison between the numerically obtained
linear and nonlinear matter power spectra is shown in Fig. 1.1.

For completeness, we mention that perturbation theory can still be used to model
the primordial contributions to higher-order functions of the matter distribution, such as
the bispectrum, but only when including second-order corrections. To lowest order in
perturbation theory, it is scale-free and time-independent. Schematically, it scales as the
square of the power spectrum: B (k, k′, k′′) = ∑cyc f (k, k

′)P (k)P (k′), where f depends
weakly on Ωm.

Large Scale Structure

The spherical collapse model was proposed as a simple framework to explain the formation
of nonlinear structures on scales below keq. In this model, a region of space with an initially
small but uniform density profile δ ≪ 1 within a finite region of space collapses under its

20



self-gravity in the presence of an expanding FLRW background. The differential equation
governing the evolution of the perturbation is [60, 59]

δ̈ + 2Hδ̇ − 4

3

δ̇2

1 + δ
=

3

2
Ωm(a)H

2δ(1 + δ), (1.43)

which linearized gives exactly the equation of motion for the matter density contrast during
matter domination. A typical solution to the equation above initially grows until it reaches
a maximum amplitude, then collapses to an infinite-density singularity. The turn-around
value is independent of the mass inside the region but is a function of Cosmology. In our
Universe, it is given by δc(z) ≈ 1.68/D(z) and represents the critical overdensity at red-
shift z. If the density within a finite region is above this threshold, it will collapse despite
the expansion. However, angular momentum prevents the formation of a singularity, and
instead, the collapsed structure reaches a steady state where its kinetic and gravitational
potential energies are equal. This equilibrium configuration represents a virialized spher-
ical structure, termed a halo, with a finite radius – the virial radius. The overdensity at
the boundary can be shown to be ≈ 178 times greater than the background ρ̄. By con-
vention, the boundary is sometimes defined at 200ρ̄, slightly below the virial radius scale.
It is important to recognize that realistic collapse processes often deviate from spherical
symmetry, and the estimation of the virial density is somewhat arbitrary. Nonetheless,
this is a useful model in practice.

The spherical collapse model is the basis and precursor of a more sophisticated frame-
work called the halo model [60, 59]. It is a statistical approach to model nonlinear structure
formation and demonstrates good agreement with numerical results derived from simula-
tions. It characterizes the dark matter field as a collection of halos. Baryonic matter,
organized in the form of galaxies, populates the density profile of each sphere according
to a halo occupation distribution function (HOD). This approach allows us to construct
n-point functions to characterize the galaxy and matter distributions as a function of only
two parameters: the redshift and mass of each halo at virialization. Other properties –
such as the halo mass function (their number density distribution), the amplitude of the
density profile per halo, and bias relative to the background density field – are studied
using analytical models and numerical simulations. Halo-based calculations accurately re-
produce the power spectra, while uncertainties in higher-order correlations largely stem
from assumptions such as the spherical collapse model or the substructure model.

Over the years, many statistical tools have been developed to link theory and observa-
tion in Cosmology. As an example, it is well known that a Gaussian random field can be
characterized by the properties of its maxima (or other extrema) [22, 75]. In particular,
these maxima – or peaks – tend to be spatially correlated. Since the dark matter field is
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Gaussian, its maxima represent regions with greater matter density. Therefore, there is a
higher chance of collapse within these regions. So, peaks in the density field are expected
to coincide with locations of galaxies. Therefore, measuring the abundance and clustering
of galaxies is a proxy for the statistical properties of the underlying dark matter field. This
observation forms the starting point for the study described in Chapter 2.

1.1.4 Anisotropies

The CMB is characterized by the temperature and polarization fluctuations imprinted on
the background photon distribution from the last scattering surface. Their distribution
depends not just on coordinates (t,x) and energy E, but also on the direction of propaga-
tion q̂, i.e. momentum. A photon travelling in direction q̂ is observed in direction n̂ = −q̂.
By integrating the geodesic equation of a primordial photon along a line of sight, we can
relate the observed CMB temperature anisotropies to the fluctuations at recombination.
In the synchronous gauge, the fractional temperature perturbation is given by [65]:

δT

T
(t∗, n̂) ≡ Θ(t∗, n̂) ∝

(
1

4

δργ
ργ

+ Φ

)

∗
− (n̂ · ve−)∗ +

∫

t∗

dt
(
Φ̇ + Ψ̇

)
, (1.44)

where ‘∗’ subscript denotes the time of last scattering – although note that not all photons
in the CMB frequency range and temperature were scattered into our line of sight at the
time of decoupling. Hence, this equation receives additional terms in its most general
form. The first term is a function of the radiation energy density ργ ∼ T 4 at the last
scattering surface. It is proportional to a blackbody. The second term, Φ, arises from the
gravitational redshift that the photons experience when climbing out of a potential well
at that time. The combination

(
1
4
δγ +Ψ

)
is called the Sachs-Wolfe (SW) term. The next

term is the relative Doppler shift between the photon – or equivalently the observer – and
a matter particle moving with velocity ve− , i.e. the motion of the electrons at the surface of
last-scattering. The last term is the integrated Sachs-Wolfe (ISW) effect. Considering only
contributions up to the surface of the last scattering, the ISW is subdominant, and the SW
and Doppler terms mostly determine the shape of the power spectrum. All three terms
in (1.44) can be thought of as small perturbations, which is why the CMB temperature
fluctuations are treated as a linearized functional of the initial density perturbations δγ.
The full solution is obtained numerically from general relativity and the full perturbed
Boltzmann equation.

As the CMB is a two-dimensional spherical surface, the mathematics simplifies not in
Fourier space but in multipole space. Projecting the fluctuations into spherical harmonics,
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we find:

Θ (χ, n̂) =
∞∑

ℓ=0

+ℓ∑

m=−ℓ
aℓm(χ)Yℓm(n̂), aℓm =

∫
d2n̂Θ(χ, n̂)Y ∗

ℓm(n̂), (1.45)

where we chose to parametrize as a function of comoving distance χ instead of conformal
time to last scattering. Statistical isotropy implies that correlation functions on the sky
are only a function of the angular separation n̂1 · n̂2 = cos θ. Therefore, the power spectrum
is

⟨Θ(n̂1)Θ(n̂2)⟩ = C(θ), (1.46)

or, in multipole space
⟨aℓma∗ℓ′m′⟩ = Cℓ δℓℓ′δmm′ , (1.47)

where δℓℓ′ is the Kronecker delta function and Cℓ is known as the angular power spectrum.
The real and angular two-point functions are related by

C(θ) =
∑

ℓ

2ℓ+ 1

4π
CℓPℓ(cos θ), (1.48)

where Pℓ is a Legendre polynomial. The power spectrum is then again related to the initial
conditions δ̃

(0)
k as

Cℓ =

∫
dk T 2

ℓ (k)|δ̃(0)k |2 ≡
∫

dk T 2
ℓ (k)P

(0)(k), (1.49)

where the radiation transfer function captures both the evolution of the fluctuations in the
primordial plasma and the projection of the anisotropies onto the sky.

The temperature auto-power spectrum produced using CAMB [69] is illustrated in
Fig. 1.2 for the Planck 2018 best-fit Cosmology [10]. Below, we give qualitative explanations
for the processes that give rise to the main features in the CMB angular power spectrum,
relating to the master equation that determines its phenomenology (1.44).

The SW term represents the balance between the intrinsic temperature fluctuation at
last scattering and gravitational redshift. Decoupling occurs during matter domination,
where the potentials satisfy Φ = Ψ and are constant in time. According to the relativistic
Poisson equation, we have −Φ ∝ δb, δγ on large scales where SW dominates. This means
over-densities where δγ > 0 correspond to under-densities in Φ < 0. Redshifting out of
these potential wells leads to cold spots in the CMB map Θ < 0. Conversely, hot spots
correspond to under-densities at last scattering.

Thomson scattering is the dominant scattering effect around the time and energy scale
of decoupling. This is a fully elastic interaction between photons and free electrons in the
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Figure 1.2: The CMB temperature angular power-spectrum obtained from CAMB [69].
The dominant features are the peaks sourced by acoustic oscillations. Due to Silk damp-
ing, these attenuate on small scales ℓ > 1000. On the largest scales where ℓ < 30, we
see the Sachs-Wolfe plateau. We illustrate the lensed and unlensed spectra to showcase
the magnitude of the effect on the primary CMB of an important source of secondary
anisotropies.
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plasma. It does not change the energy of photons, only their momentum, which leads to
the Doppler distortion above. For an isotropic and initially unpolarized photon flux, the
differential Thomson cross-section averaged over the outgoing polarization is proportional
to the Thomson cross-section σT ≈ 6.65 × 10−29m2 and depends on the inverse of the
electron mass. Scattering with protons and neutrons can be ignored since me− ≪ mp.
The quantity Γ ≡ an̄e−σT is the Thomson scattering interaction rate function of scale
factor, where ne− is the number density of free electrons. Its inverse is proportional to the
mean free path of CMB photons. Thomson scattering at the surface of last scattering also
induces a small polarization in the CMB radiation field [76].

The ISW term models the redshift due to the time-varying gravitational potentials along
the line-of-sight between emission and until observation. As mentioned, the two terms are
equal and constant during matter domination, so the ISW term vanishes. During radiation
domination, the oscillating radiation density induces a non-zero fluctuating potential. This
is called the early ISW effect. At late times, once dark energy begins to dominate, it sources
once again time-varying Φ and Ψ fields. This leads to the late ISW effect that adds power
to the CMB spectrum on the largest scales.

The angular variations in the CMB power spectrum result from the dynamics of sound
waves in the photon-baryon fluid. The sound horizon rs is defined as the product between
the speed of sound in the plasma and conformal time: rs ≃ csη. Photon fluctuations in
the early Universe remain constant until they cross the sound horizon, then oscillate in the
plasma. These oscillations are captured in the CMB angular power spectrum at the last
scattering, which fixes rs∗. The positions of the peaks in the CMB spectrum depend on
the projected size of the maxima in these oscillations, characterized by the harmonic series
kn = nπ/rs∗ with n = 1, 2, . . . . Cosmological parameters control these scales. For example,
the relative ratio between matter contents Ωb and Ωc can dampen or drive the oscillations,
changing the relative peak amplitudes. Also, the curvature parameter Ωκ influences the
relationship between angular scale and distance between an observer and the surface of
last scattering. Thus, the CMB has provided the most substantial proof for CDM – a
component of matter that does not react electromagnetically — and that the Universe is
flat. On scales larger than the first acoustic peak, the photon perturbations never entered
their sound horizon and have remained constant. The CMB on these scales is a direct
probe of the characteristics of the primordial power spectrum. We develop this in the next
section.

The coupling strength between electrons and photons depends on the balance between
the Thomson cross-section and the mean free path between electrons. At early times,
when the separation between particles is small, photons scatter efficiently, and the photon
baryon fluid is said to be in a tight coupling regime. Around the end of recombination, the
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ionization fraction ne−/nb drops, and the Thomson interaction rate Γ−1 is comparable to
the electron mean free path. This effect dampens small-scale fluctuations, where k ≳ 2πΓ∗.
For the modes in this regime, the transfer function receives an exponential suppression
called Silk or diffusion damping.

As mentioned several times in this text, CMB phenomenology has provided a highly
accurate probe of our cosmological model. In the paragraphs below, we summarize a few
promising directions of interest for the future of CMB science.

The monopole or spectral distribution was measured by the FIRAS instrument on
the COBE satellite [77] to follow a nearly perfect blackbody with a current temperature
T̄CMB = 2.725 K and a peak blackbody frequency of 160.4 GHz. The blackbody nature is
explained by the fact that during most of their history before the last scattering, photons
were in thermal equilibrium and obeyed Maxwell-Boltzmann statistics. Deviations from
the blackbody are termed spectral distortions and are expected to occur in any process
that changes the photon energy, e.g. inelastic scattering or interactions away from thermal
equilibrium. These can be used as probes for the physics of recombination but also physics
BSM [78, 79, 80] – for example as a probe of primordial non-Gaussianity, alternative models
for dark matter, primordial black holes, and, as we discuss in Chapters 4 and 5, to search
for hidden-sector particles.

The primary CMB anisotropies originate directly from the conditions present at the sur-
face of last scattering. The sum of all fluctuations or modulations that appeared since the
last scattering and are due to the intervening structure are called secondary anisotropies. A
significant source of secondary anisotropies is the Sunyaev-Zel’dovich (SZ) effect due to the
interaction of photons with free electrons since reionization. Another example is lensing,
where gravitational potentials of collapsed LSS change the propagation direction of CMB
photons. Both of these secondaries modify the CMB power spectrum in a deterministic
way and are correlated with LSS. The changes on the CMB power spectrum caused by
secondaries are typically orders of magnitude less than its peak amplitude. However, they
can significantly modify the signal on small scales of order ℓ ≫ 1000 – as illustrated in
Fig. 1.2. Improving precision on small scales is a central focus of future CMB experiments.
These hold valuable information about the initial conditions and the formation and growth
of structure [81, 82, 83, 84, 85, 86, 87, 88].

Polarization is generated through the anisotropic scattering of the radiation field. It is
typically decomposed into zero curl (E-modes) and zero divergence (B-modes) components.
The first category can be used as a probe for the distribution of charged electrons in the late
Universe and for measuring the primordial scalar power spectrum. The second category is
only produced by parity-violating processes. Scalar density fluctuations can not create such
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modes; however, tensor metric fluctuations can. These can be sourced by astrophysics (e.g.
gravitational lensing produces B-modes on small scales), or by primordial gravitational
waves, which may generate B-modes on the largest scales. Studying the polarization
background is another key focus of next-generation CMB experiments. Measuring B-
modes is a primary goal, as they can reveal the energy scale of inflation and place significant
constraints on the physics driving it [89, 71].

1.1.5 Inflation

Several open questions come from the cosmological picture we have derived so far:

• In the first part of this section, we explained that 13.8 billion years ago, the observed
Universe started from a nearly flat, homogeneous, isotropic radiation-dominated
state. How did this state originate?

• Inhomogeneities in both the matter and radiation distribution are adiabatic, meaning
they are related to the same primordial perturbations. Indirect measurements are
consistent with a Gaussian distribution and a nearly scale-invariant power spectrum,
with a slight preference for long wavelength fluctuations, i.e. negative tilt. What
sourced these specific initial conditions?

• Across the Hubble horizon, the CMB has the same blackbody temperature. An
expansion history based on radiation and matter domination alone can not explain
this. Given the measured cosmological parameters, the age of our Universe and the
estimated age at decoupling imply that patches on the sky with angular size greater
than 1◦ would have never been in causal contact. How did these regions thermalize?

Inflation is a simple mechanism developed to answer these questions [90, 91, 92, 93, 94,
95]. Through the years, it has suffered many iterations, and to date, it is the preferred
paradigm that explains the origin of the hot Universe. In many models, it is realized
through a phase transition – we come back to this point later when introducing vacuum
decay. Although alternatives to it exist, they require additional assumptions and have yet
to gain much momentum in comparison.

Inflation represents a period of exponential growth of the scale factor – similar to a
dark energy-dominated era – that took place before the radiation-dominated epoch. In the
simplest model, it is realized by a single scalar field – the inflaton – evolving in a non-linear
potential. The inflaton lies initially in a metastable vacuum, where it exhibits fluctuations
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associated with its zero-point energy. As it evolves in time, it rolls down a positive and
nearly flat potential, slowly accelerating as potential energy is exchanged for kinetic. As
it relaxes, the inflaton sources an energy-momentum tensor that drives a cosmic period of
exponential expansion.

In the same way that ρΛ ∝ a0 dominates the energy density at late times, inflation
quickly dilutes any other existing components besides the inflaton field. During this period,
H ≈ constant, while the volume increases by a factor of eHδt ≈ e100. The temperature
decreases by the inverse amount. The exponential expansion ensures that the final state is
virtually independent of the properties of the initial state while also preserving the fact that
all particles currently within our comoving Hubble volume have been in causal contact.

The inflaton dynamics is fully determined by the shape of the potential it evolves under.
In single field inflation, the inflaton only couples to Einstein gravity:

S =

∫
d4x
√−g

[
M2

pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (1.50)

where gµν is the metric, R the Ricci curvature and g is the metric determinant. The
primordial state before inflation is unknown, but in general, it could not have been above
the Planck scale, beyond which quantum gravity effects become important. The first term
in the action above symbolizes the energy density associated with the spacetime curvature
at the Planck scale.

Inflation ends naturally when the potential energy is below the kinetic energy, as the
expansion time becomes longer than the oscillation period of the field around the minimum
of the potential, i.e. H−1 ≫ m−1

φ , where the curvature of the potential gives the inflaton
mass mφ at a point. The equation of state evolves into that for pressureless matter. At
this stage, the inflaton is coupled to the standard model particles. Reheating is the process
by which the potential energy that is used to drive the expansion is converted into SM
particles [96]. The inverse reaction is frozen out. The new, lighter particles reach thermal
equilibrium to form the primordial plasma, and the radiation-dominated era begins.

Primordial Power Spectrum

We can write the inflaton field as the sum of a classical background and the vacuum
fluctuations:

φ = φ̄+ δφ, (1.51)

where φ is the inflaton field, φ̄ stands for its mean (or classical expectation value) and δφ
represents the quantum fluctuations. For the free vacuum state, δφ fluctuations are, by
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definition, Gaussian and certainly in the perturbative regime. As the background expands,
it can be shown that they evolve with an amplitude proportional to the Hubble parameter:

⟨δφ̃kδφ̃k′⟩ = (2π)3δ3 (k+ k′)
H2

2k3
, (1.52)

where H ≈ constant during inflation. This means that the amplitude of the inflaton
perturbations is the same on every scale. In a suitable choice of gauge, the scalar curvature
fluctuations can be related to the fluctuations in the inflaton field to show that (1.52)
produces a scale-invariant power spectrum [65].

The CMB constrains the primordial power spectrum for scalar metric fluctuations to
be nearly scale-invariant, consistent with the above prediction. Such a power spectrum
can be parametrized as:

P (0)(k) ≡ As

(
k

k∗

)ns−1

, (1.53)

The parameters ns and As are the scalar spectral index and the amplitude of scalar fluc-
tuations when the pivot scale k∗ is fixed. A similar expression can be derived for tensor
fluctuations ∝ AT (k/k∗)

nT that are produced if the inflaton couples to tensor metric per-
turbations. The tensor-to-scalar ratio is defined as r = AT/As and, together with ns and
As, they represent standard cosmological parameters that describe the initial conditions.
All of them are related to the shape of the inflaton potential V (φ). The best constraints
on their values come from Planck satellite data and are ns = 0.965, ln(1010As) = 3.047
and r < 0.11 when k∗ = 0.002Mpc−1 [10, 71]. The measured values of these parameters
help to greatly constrain the enormous parameter space spanned by theories of inflation:
from deformations of V (φ) to introducing additional fields and interactions in the inflaton
action.

1.1.6 The Hidden Sector

Searching for a comprehensive understanding of the evolution of the Universe and its
fundamental constituents, the limitations of the SM have become increasingly apparent
over the years. Although it successfully describes the known fundamental particles and
their interactions, several key phenomena remain unexplained, such as the origin of the
initial conditions, the nature of dark matter and dark energy, or the quantum origin of
gravity. A wide range of solutions have been put forward to fill the gaps – an example of
which is inflation. The ‘hidden’ or ‘dark’ sector is an umbrella term for the collection of
hypothetical particles – such as inflaton candidates – and new gauge symmetries that arise
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in these models. So far, direct experimental evidence for hidden particles remains elusive,
meaning they interact weakly, if at all, with the known SM. Two compelling candidates
of particles in the dark sector are the dark photon and the axion, which we describe
below [97, 98, 99].

The Dark Photon

The dark photon is a hypothetical vector boson that arises in various extensions of the
SM [99, 100, 101, 102, 103, 104]. We label the dark photon field by A′. It couples to the
SM electric charge gauge group via a kinetic mixing term [105, 106]:

L ⊃ −ε
2
FµνF

′µν − m2
A′

2
A′

µA
′µ, (1.54)

where Fµν and F
′µν are the SM photon and dark photon field strength tensors, respectively.

Dark photons may have a small, non-zero mass mA′ , which sources the second term above.
BothmA′ and the coupling constant ε are free parameters. In the BSM models that predict
a kinetic mixing coupling, the dark photon is the main carrier of interactions among the
dark sector states, i.e. it forms an independent U(1) gauge symmetry. The existence of a
mass term would imply finite-range forces within the dark sector. For this reason, the dark
photon is referred to as a mediator with the dark sector.

A substantial portion of the parameter space of the dark photon has been probed. In
the massless case, collider physics and Big Bang Nucleosynthesis has placed important
bounds on the massless photon [97, 107, 108]. In the massive case, for keV and higher
masses, strong bounds come from supernovae [109], dark matter direct detection efforts, or
collider and experimental constraints on lepton decays [110, 97]. However, a region in the
parameter space is still largely unexplored, corresponding to scales that are only accessible
through cosmological or astrophysical tests and ultra-light masses. An illustration of the
parameter space for the dark photon is shown in Fig. 1.3a, with data from [16]. Past and
ongoing efforts to probe ultra-light dark photons include tests of superradiance [111, 112,
113, 114, 115], cosmological evolution [116, 117, 118, 119] and stellar objects [120, 121, 122],
as well as lab searches [123, 124, 125, 126, 127]. Chapter 4 offers a new method to search
within this particular region.

The Axion

The axion is a pseudo-scalar (spin-0) boson, denoted by a. BSM models predict that below
the scale of EW symmetry breaking, the axion couples to gauge fields and fermions ψ (both
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leptons and hadrons). A typical Lagrangian reads [65]:

L ⊃ gaγγ aF
µνF̃µν + gaψ ∂µa ψ̄γ

µγ5ψ + gaGG aGµνG̃
µν . (1.55)

Each operator has dimension five. Fµν and Gµν represent the photon and gluon field
tensors, while F̃µν and G̃µν are their duals. The form of this Lagrangian is tied to the
resolution of the strong CP problem in QCD [128, 129, 130, 131]. This problem arises
from the absence of observable violation of CP symmetry in QCD, which is not in line
with theoretical expectations. Axions arise from a field that dynamically adjusts to cancel
CP-violating contributions from QCD.

Axions can be produced in abundance during phase transitions associated with GUTs
[128, 129, 130, 131, 132, 99]. Similar to the Higgs field, they are created by spontaneously
breaking additional global symmetries. String theory also predicts the existence of ultra-
light ALP’s, spanning a wide range of masses down to the Hubble scale [99]. In this context,
axion fields arise from the topological complexity of multi-dimensional manifolds. The com-
pactification of the extra dimensions leads to effective potentials for the scalar degrees of
freedom – axions – that can also drive an inflationary period. Axion phenomenology is
characterized by derivative couplings, such as the one with fermions in (1.55). They can
have small non-zero mass terms ma. If the requirement to solve the strong CP problem is
waived, one can drop the gluon coupling gaGG in the Lagrangian and describe an axion-like
particle (ALP). Misalignment [133, 98, 134] is the proposed mechanism for axion particle
production: random quantum fluctuations in the axion field δφa(xµ) settle at different
amplitudes away from the global potential minimum at the end of inflation. As the Uni-
verse expands and cools, the ‘misaligned’ fields oscillate and produce axion dark matter
particles. Their abundance depends on the initial misalignment angle and the energy scale
of inflation. In many allowed ALP models, axions can make up all of dark matter [135].

Upcoming astrophysical experiments aim to explore the vast parameter space for ax-
ions and ALP’s [136, 16]. Depending on their specific mass range, ultra-light ALPs are
expected to manifest observable effects in different astrophysical phenomena [99]. An illus-
tration of the available parameters space and typical constraints for each decade in mass
is shown in Fig. 1.3b. For instance, axions with masses below 10−33eV would act as the
cosmological constant. Axions with masses between 10−33eV to 10−28eV could induce a
constant rotation of the CMB (CMB) polarization called birefringence, while those within
the range 10−28eV to 10−18eV could produce features in the matter power spectrum, ob-
servable through galaxy surveys and are termed ‘fuzzy dark matter’. Axions in the mass
range 10−22eV to 10−10eV can cause superradiance, which affects the dynamics and gravita-
tional wave emission of rapidly rotating astrophysical black holes [99]. Other astrophysical
constraints on low mass axions arise from scenarios where axions sourced by stars [137]
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or supernovae [138] are converted to photons in the galactic magnetic field or the inverse
process where background astrophysical photons are converted in extragalactic magnetic
fields [139]. We propose a new method to observe axions in the 10−13 − 10−11eV range
using the CMB and distribution of LSS in Chapter 5.

1.2 Relativistic First-Order Phase Transitions

False vacuum decay occurs in field theories with an associated potential with two non-
degenerate vacuum states. Given a large region of space localized around the false min-
imum, the system wants to minimize its energy and make the transition into the true
vacuum. There are several ways it can do so. For example, the barrier can be overcome if
an external input of energy is provided. Alternatively, the field can experience fluctuations
that may trigger the decay themselves. Of interest are fluctuations at finite temperature
or, in lack of a thermal bath, the fluctuations sourced by the quantum vacuum state. Even-
tually, locally, a finite region of the field will cross the potential barrier towards the true
minimum. In order to compensate for the change in energy density, a boundary layer is
created called the bubble wall. In time, bubbles materialize throughout the whole available
space, and as they expand and collide, they undergo all kinds of dynamics dictated by the
shape of the underlying potential. The phase transition ends when the state of the field
across the entire volume is localized around the true vacuum.

Vacuum decay is an important phenomenon with a wide range of cosmic implications. In
the context of inflation, false vacuum decay was the original mechanism by which inflation
was proposed to end [90]. However, it was quickly realized [91] that the phase transition
from an inflating false vacuum to a non-inflating true vacuum can not be complete unless
the epoch of inflation is exceedingly short. Instead, inflation becomes eternal, only ending
locally inside isolated clusters of true vacuum bubbles (for a review, see e.g. [140, 141]). In
string theory, our observable Universe is thought to reside inside one such bubble. The rare
collisions between bubbles could provide observable evidence for this scenario [142, 143,
144]. In the late Universe (e.g. after inflation), first-order phase transitions can occur in
models of baryogenesis [145, 146], string theory [147, 148, 149], grand-unified theories [150,
151], supersymmetry [152, 153], and even dark energy [154, 155].

A subset of these phase transitions can produce stochastic gravitational waves (GW)
observable by gravitational wave detectors; see e.g. [56] for a review. A first measurement
of stochastic GW has been made recently using Pulsar Timing Arrays [57]. It is known that
by-products of vacuum decay in early-Universe first-order phase transitions could source a
primordial component of this signal. In the original idea, electroweak baryogenesis could
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occur via a first-order phase transition, and primordial GW with measurable amplitude
today could be produced [156, 157]. A stochastic GW background could be observable in
the future with LISA [158].

Further motivation to study vacuum decay is given by evidence that the current Higgs
vacuum could be metastable [159, 160, 161].

Vacuum decay is most frequently described in the literature using Euclidean instan-
ton methods. It can occur at zero temperature via quantum tunneling [17, 18], at finite
temperature due to thermal fluctuations [19, 20], or more generally from an excited state
above the false vacuum [162]. First developed by Coleman, instanton methods have been
the status quo for studies of vacuum decay ever since. In this framework, one obtains a
semi-classical approximation for the decay rate by solving the field equations of motion in
imaginary time and imposing O(d+1) symmetry on the resulting solutions, which describe
the bubble nucleation event. This symmetry assumption is invalidated in cosmologically
relevant scenarios involving dynamical and inhomogeneous spacetimes.

Furthermore, to interpret the instanton in real time, additional assumptions are re-
quired. For example, the critical bubble is said to appear at some instant in time, out of
the vacuum fluctuations via a tunneling event, and with a finite size. It is not possible
to study the precursor of such an event in terms of real-time field dynamics. However,
ultimately, it is precisely dynamical evolution that is required to connect with observables.

The Instanton Formalism

In particle physics, typical problems involve finding scattering cross-sections and transition
amplitudes or calculating energy level shifts in an evolving classical background. These
problems can be solved in QFT by applying perturbation theory. The result of a pertur-
bative calculation is typically a power series in some small coupling parameter, such as a
coupling constant g. On the other hand, non-perturbative effects typically look like e−A/g,
where A is a constant. Such terms are invisible in perturbation theory because the terms
in the Taylor expansion of an exponential around g = 0 are zero. Instantons are exam-
ples of such solutions: they represent non-trivial saddle-point solutions to Euclidean path
integrals with finite action. Methods to find the instanton solution are considered gener-
alizations of the WKB approximation generalized to infinitely many degrees of freedom.
Below, we illustrate the concepts and techniques used in these calculations by focusing on
the pioneering paper by Coleman [163].
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Consider a 1 + 1-dimensional scalar field theory with Lagrangian density

L =
1

2
(∂tϕ)

2 − 1

2
(∂xϕ)

2 − V (ϕ). (1.56)

In QFT, the vacuum state is defined as the state with the lowest energy, associated with
the global minimum of a potential V (ϕ). We will be focused on potentials V (φ) with a
high-energy ‘false’ vacuum separated by a barrier from a low-energy ‘true’ vacuum. The
form of the potential is otherwise arbitrary, although for specificity in this Thesis, we focus
on a fiducial potential V (ϕ) with the form:

V (ϕ) = V0

[
− cos

(
ϕ

ϕ0

)
+
λ2

2
sin2

(
ϕ

ϕ0

)]
. (1.57)

This is shown in Fig 1.4. Note that in 1+1 dimensions, ϕ is dimensionless and V (ϕ) has
mass dimension two. The parameter λ modulates the depth of the false-vacuum potential
well such that if λ > 1, the potential has an infinite periodic sequence of false minima
at ϕfv = (2n + 1)πϕ0, alternating with true minima at ϕtv = 2nπϕ0, n ∈ Z. The field
is initialized around the false vacuum located at ϕfv = π and can decay to the stable
configuration on either side – ϕtv = 0 or 2π. In a classical theory, the false vacuum is
stable. In a quantum theory, barrier penetration is allowed, making the local minimum
unstable.

This form of the potential is motivated by proposals to simulate vacuum decay with
cold atom experiments [164, 165, 39, 41, 38]. Our results are relevant to this program but
can be generalized to any potential with multiple vacuum states.

The path integral describing the probability of the state initially in the false vacuum
to transition into the true vacuum after a time t is given by:

〈
ϕtv

∣∣eiHt/ℏ
∣∣ϕfv

〉
≈
∫ ϕfv(t)

ϕfv(0)

Dϕ eiS[ϕ]/ℏ, (1.58)

where the integrand Dϕ is over all possible field configurations satisfying the boundary con-
ditions. The propagator is highly oscillatory, which makes this problem seem intractable.
The solution is analytic continuation into Euclidean space by converting to an imaginary
time variable defined as τ = it. The Euclidean action is given by

SE[ϕ] =

∫
dτ dx

[
1

2
(∂τϕ)

2 +
1

2
(∂xϕ)

2 + V (ϕ)

]
. (1.59)

The solution to the Euclidean equations of motion with the highest contribution to the path
integral has been coined ‘the bounce’. To calculate it, we take the saddle points solution
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with maximal symmetry, known as the instanton. These are trajectories that satisfy the
Euclidean equations of motion (∂2τ + ∂2x)ϕ = −V ′(ϕ). It is assumed that contributions
from fluctuations around the instanton are vanishingly small.

In order to describe the O(2)-dimensional solution, it is convenient to define the coor-
dinate ρ2 = τ 2 + x2. The equation of motion becomes

d2ϕ

dρ2
+
d− 1

ρ

dϕ

dρ
= V ′(ϕ), (1.60)

where d is the number of spatial dimensions, here d = 1. The boundary condition
limρ→∞ ϕ(ρ) = ϕfv ensures that the end state is always the false vacuum. We also im-
pose ∂ρϕ → 0 to avoid a singularity when ρ → 0. The equation (1.60) can be solved
numerically. The solution describes a particle evolving in an inverted potential, which
starts near the true vacuum, then rolls down against a time-dependent friction term and
settles precisely at the false vacuum ϕfv = π. An illustration of the inverted potential is
shown in Fig 1.5, along with example solutions for two choices of λ.

Reverting to real time, we can envision this solution as the spatial profile of a critical
bubble at some initial time t = 0. The instanton is interpreted as the outcome of a
tunneling event where a bubble with a finite radius has appeared on top of the background
false vacuum field. Inside the bubble, the field is localized around ϕtv = 2π. The region
where ϕ changes rapidly with increasing ρ, interpolating between the two states, is called
the bubble wall. It can be seen from Fig 1.5 that a larger value of λ corresponds to a
smaller difference between energy densities of the relative vacua, giving rise to a thinner
wall.

Two forces are competing on the bubble boundary. On one hand, the energy density in
the true vacuum exerts pressure on the wall proportional to the volume of the bubble. On
the other hand, there is a pressure term pointing inwards due to the tension in the wall from
the higher-energy false vacuum state. In order to prevent collapse, bubbles must materialize
with a radius above some critical threshold, function of the shape of the potential. Starting
from this configuration, the walls then expand with constant acceleration, converting the
surplus energy of the false vacuum to drive the expansion.

Considering the path integral expression again, since the potential V (ϕfv) is not the
global minimum, the true vacuum has an associated energy state below the zero-point
eigenstate E0 set by the false vacuum. In practice, the presence of such an eigenmode
signals the instability of the solution towards growth (or shrinkage), as in the case of the
critical bubble. In the instanton formulation, this determines an imaginary part to the
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false vacuum energy E0, and hence the existence of a decay width:

Γ = −2 ImE0. (1.61)

To first order in ℏ, it can be shown that this is given by the expression

Γ/V ∼ Ae−B/ℏ, (1.62)

where B ≡ SE is the bounce action, and the proportionality factor A is calculated from
fluctuations around the saddle-point solution. Translational invariance results in a state
with zero eigenvalue termed the ‘zero mode’, which motivates adding the volume factor V .
This is the decay rate of the false vacuum. Together with the bubble profile, they are the
two main observables of instanton theory.
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(a) Combined current limits on the coupling between light dark photons and SM pho-
tons, denoted by ε.

(b) Combined current limits on light axions coupling to SM photons, denoted by gaγγ .

Figure 1.3: We show a part of the parameter space of the processes highlighted in Sec-
tion 1.1.6. The contours show the present bounds on the couplings between SM photons
and hidden-sector candidates. Those shown in red come from laboratory probes, astro-
physical bounds are shown in green, and blue depicts constraints from the CMB. Notice
that within the mass ranges shown, much of the area is still unexplored (shown in white).
Figures taken from [16].
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Figure 1.4: The potential V (ϕ) we chose to study vacuum decay throughout this Thesis.
The parameter λ modulates the shape of the potential around the local minimum and
the depth of the barrier. When the parameter λ > 1, the potential V (φ) supports the
formation of bubbles. It acquires an infinite sequence of local minima at φfv = (2n+1)πφ0

alternating with global minima at φtv = 2nπφ0, n ∈ Z. If the field begins in the false
vacuum, then through quantum mechanical or thermal effects, bubbles containing the true
vacuum phase will form, expand, and coalesce - this is false vacuum decay.
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Figure 1.5: Left: The inverted potential which sources the equation of motion (1.60) for
two values of coupling λ. The Euclidean solution describes a particle that starts at the false
vacuum and then rolls towards the true vacuum against a time-dependent drag. On the
right: The instanton solutions. Going back to real time, and setting the time coordinate to
zero, this profile is interpreted as the spatial profile of a bubble which has just materialized
out of the false vacuum.
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Part I

New Dynamical Observables in
First-Order Phase Transitions
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Summary of Part I

In Chapter 2 we introduce the first new dynamical observable of vacuum decay: the pres-
ence of a two-point correlation function in the distribution of bubble nucleation sites – a
measure of clustering. First, we set up the field theory of a scalar field in a Minkowski
vacuum and explain how false vacuum decay arises from semi-classical evolution. Next,
Gaussian peak theory is reviewed in one spatial dimension. Using empirical observations
from our simulations, we then argue that bubbles form around peaks in the field and de-
fine the relevant estimator for the two-point function. We present our results and compare
them with the free field theoretical prediction, showing qualitative agreement. We finish by
discussing the implications of this result for bubble collisions and associated cosmological
observables.

In Chapter 3 we turn to the case of a metastable scalar field at finite-temperature
and introduce two additional new observables: the distribution centre-of-mass velocities in
bubbles at nucleation and the oscillon precursor. First we give an overview of the Euclidean
instanton description for vacuum decay at finite temperature, and the properties of the
critical bubble solution. Next, we describe in detail the computational methods that were
used to extract these observables. We discuss the role of fluctuations in thermalization
and show how the theory parameters such as the effective temperature and field mass
evolve in time around the false vacuum. We measure the decay rate and compare it to
the predictions of the thermal Euclidean theory, finding good agreement. We also verify
the consistency of several empirical measurements of the critical bubble energy with the
theoretical prediction. Finally, we comment on the implication of these new observables
for early universe scenarios.
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Chapter 2

Bubble clustering in cosmological
first-order phase transitions

2.1 Introduction

As explained in section 1.2, vacuum decay is most frequently described in the literature
using Euclidean instanton methods. The framework treats this problem in analogy with
quantum tunneling in non-relativistic quantum mechanics. Crucially, its predictions cannot
be applied to configurations with more than one bubble. Therefore, while the instanton
methods can be used to compute decay rates (i.e. the probability per unit 4-volume that a
bubble will nucleate), one must assume that bubble nucleation events are independent in
order to build a spacetime picture of the percolation of true vacuum bubbles. Testing this
assumption is the primary goal of this Chapter. As we describe in more detail below, this
assumption does not hold, but rather nucleation events are clustered in analogy with the
clustering of rare peaks in Gaussian random fields.

Recently, a real-time semi-classical approach to vacuum decay was developed in [21]. In
this approach, the dynamical phase space evolution of a quantum state initially in the false
vacuum is modelled using the truncated Wigner approximation [166, 167]. One generates
an ensemble of initial conditions of the field and its conjugate momentum, drawn from
the ground state defined by the false vacuum minimum. These initial states are then
evolved classically with the non-linear Hamiltonian using lattice simulations. The field
configuration in each realization is sampled at late times; in some realizations, bubbles of
the true vacuum form. This procedure yields a semi-classical approximation to the first-
order phase transition dynamics leading to the decay of the false vacuum. Although both
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the real-time semi-classical and instanton methods are semi-classical approximations it is
still an open question precisely how these two approaches are related; see Refs. [21, 33, 34,
31] for some discussion. More details on the interpretation of real-time simulations, and a
practical comparison with Euclidean methods is given in Appendix A.1.

In the limit where the nucleation rate is relatively slow (e.g. compared to the light
crossing time of the lattice), in any given realization the field behaves like a free scalar
(with mass determined by the curvature about the false vacuum minimum) for much of
its evolution. Starting from vacuum initial conditions, if the field truly were just a free
massive scalar, then on each timeslice we obtain a Gaussian random field. As described in
Chapter 1, peaks in a Gaussian random field cluster, and the properties of this clustering
encode the power spectrum of the underlying field. This is the basis of cosmological
studies using galaxies as a tracer of the underlying large-scale distribution of dark matter.
Returning to our simulations, over a decorrelation timescale of order the inverse mass, the
configuration of the field randomizes yielding a new set of peaks. Eventually, a peak will
be high enough to leave the basin of attraction of the false vacuum, and the non-linearities
of the potential allow something interesting to happen: the formation of a bubble inside
of which the field settles into the true vacuum. If this bubble is large enough, it will
expand. Within this picture, bubbles nucleate from peaks in the vacuum fluctuations of
the field, and since peaks are clustered, bubble nucleation events should be clustered as
well. Put simply, it is easier to nucleate bubbles from a region of space where the field is
closer to the true vacuum. This runs contrary to existing work on relativistic first-order
phase transitions, which have implicitly assumed a distribution of bubbles statistically
independent of position and time.

In this Chapter, we look more closely at the field region where the bubbles form and
demonstrate that peaks of a critical spatial size and amplitude can act as seeds for bub-
ble nucleation. Using the nucleation seed properties to identify bubble sites, we com-
pute the two-point correlation function between nucleation sites over an ensemble of 1+1-
dimensional lattice simulations. We compare the result to the spatial correlation function
for peaks in a scalar field with mass set by the false vacuum curvature, finding qualitative
agreement, and validating the description above.

There are a number of implications of a non-trivial two-point bubble correlation func-
tion:

• Just like galaxies provide a biased tracer of the underlying density field, bubble
nucleation events provide a biased tracer of the underlying vacuum fluctuations.
Just as a galaxy survey can be used to determine the statistics of the density field,
the distribution of bubble nucleation events can be used to determine the statistics of
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vacuum fluctuations. The bubble correlation function is sensitive to deviations from
the vacuum state, and would yield a different result for e.g. a thermal or vacuum
state. There are associated connections with quantum measurement which deserve
further exploration.

• A number of analogue experimental systems that can be used as quantum simulators
of false vacuum decay have been proposed [168, 164, 169]. The two-point bubble
correlation function (or more generally, an n-point function) is an observable for
these experiments, which could be used to confirm the validity of the semi-classical
picture of vacuum decay and the properties of the initial state (as outlined in the
point above).

• The frequency of collision between bubbles during eternal inflation and in post-
inflation phase transitions is affected by the clustering of bubble nucleation sites.
This has implications for programs to detect these effects in the CMB and spectrum
of stochastic primordial gravitational waves.

The Chapter is organized as follows. In section 2.2 we set up our field theory and
explain how false vacuum decay arises from semi-classical evolution. In section 2.3 we
review Gaussian peak theory and discuss the general features of the two-point correlation
function between peaks in one spatial dimension. In section 2.4 we argue that bubbles
form around peaks in the field and use empirical observations from our simulations to
define bubble nucleation sites. In section 2.5 we present our results and compare with the
free field theoretical prediction. In section 2.6 we discuss the implications of this result for
bubble collisions and associated cosmological observables, and conclude in section 2.7.

2.2 Real-time semi-classical formalism

We consider a scalar field theory in 1+1 dimensions with Lagrangian density and potential
defined in the Introduction:

L =
1

2
ϕ̇2 − 1

2
(∂xϕ)

2 − V (ϕ), (2.1)

V (ϕ) = V0

[
− cos

(
ϕ

ϕ0

)
+
λ2

2
sin2

(
ϕ

ϕ0

)]
. (2.2)

In this Chapter, we focus on the regime where the decay rate of the false vacuum is relatively
fast (λ ∼ 1), so that we find a sufficient number of nucleation events to empirically compute
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correlation functions. The parameter ϕ0 scales the width of the potential, while V0 scales
its height. V0/ϕ

2
0 sets the typical mass squared scales in the potential. To adjust the

amplitude of quantum effects, it is therefore convenient to vary ϕ0 while holding V0ϕ
−2
0

fixed. This adjusts the width of the false vacuum minima relative to the typical amplitude
of quantum fluctuations, which can be alternatively be viewed as adjusting ℏ ∝ ϕ−2

0 .

We initialize an ensemble of simulations with the mean field in the false vacuum ϕ =
πϕ0, with fluctuations consistent with the ground state of the quadratic approximation to
the false vacuum potential minimum

ϕ(x, t = 0) = ϕfv + δϕ(x), Π(x, t = 0) = ϕ̇(x, t = 0) = δΠ(x). (2.3)

The fluctuations δϕ(x) and δΠ(x) are drawn from the Wigner functional of the initial
state, with each initial draw corresponding to a single member of the ensemble. Since we
are interested in evolution from a false vacuum, we will approximate the initial Wigner
functional as the vacuum associated with the quadratic expansion of the potential about
the false vacuum. Investigating departures from this choice for the initial state is beyond
the scope of this thesis.

The initial fluctuations δϕ and δΠ are drawn as realizations of Gaussian random fields
whose Fourier coefficients δϕ̃k and δΠ̃k have covariance

〈
δϕ̃∗

kδϕ̃k′
〉
=

1

2ωk
δ(k − k′),

〈
δΠ̃∗

kδΠ̃k′

〉
=
ωk
2
δ(k − k′),

〈
δϕ̃kδΠ̃

∗
k′

〉
= 0 , (2.4)

where ω2
k = k2+m2 andm2 = m2

eff = V ′′(ϕ = πϕ0) = V0ϕ
−2
0 (λ2−1). Here ⟨·⟩ represents an

ensemble average, and we have assumed unitary normalization for the Fourier transforms
in the continuum.

Each realization is evolved using the classical Hamilton’s equations:

dϕ

dt
= Π,

dΠ

dt
= ∇2ϕ− V ′(ϕ) . (2.5)

At a later time, we make measurements on the evolved ensemble. This approach captures
the dynamical evolution of the Wigner functional [170] to leading (nonperturbative) or-
der in ℏ of the form ei/ℏ. Meanwhile, the leading perturbative quantum corrections are
encoded in statistics of the initial fluctuations [21] (see also [171, 172]). In the cold atom
community, this is known as the Truncated Wigner Approximation (see e.g. Ref. [173] for
a review), while in cosmology it is known as the stochastic lattice approximation and is
used extensively in preheating studies (see e.g. Ref. [174] for a review). For a free massive
scalar, this procedure exactly describes the full quantum evolution for any initial state with
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positive definite Wigner functional, such as the vacuum state. Including non-linearities in
the potential, the story is more complicated. The classical non-linear time-evolution should
capture all tree-level interactions between the Fourier modes. One complication arises from
our need to initialize modes up to some cutoff kcut as introduced below—the effective dy-
namics of the longest wavelength modes on the lattice are modified from what we would
expect in the bare potential alone (i.e. renormalization effects will arise). Nevertheless,
in scenarios with unentangled initial states where quantum dynamics give rise to many
particle, effectively classical final states, we can expect this procedure faithfully tracks the
dynamics. One such situation is the decay of the false vacuum, which will be our main
focus.

In order to implement the above procedure numerically, we must work with dimen-
sionless spacetime coordinates and field variables. As well, we must adapt the continuum
prescription above to a discrete lattice of finite side length. It is convenient to introduce
dimensionless variables

t̄ = µt x̄ = µx ϕ̄ =
ϕ

ϕ0

, (2.6)

where µ is some inverse length scale, and ϕ0 is as defined in the potential. We assume
throughout that ℏ = c = 1, so that µ has units of mass and ϕ0 has units of (mass)(d−1)/2,
where d is the number of spatial dimensions. In these units, the dimensionless equations
of motion are

dϕ̄

dt̄
= Π̄ (2.7)

dΠ̄

dt̄
= ∇̄2ϕ̄− V0

µ2ϕ2
0

[
sin
(
ϕ̄
)
+
λ2

2
sin
(
2ϕ̄
)]

. (2.8)

We initialize the fluctuations on our finite discrete lattice of side length L as

δϕ̄ ≡ δϕ

ϕ0

=
1

ϕ0

√
µL

ncut∑

j=1

[
α̂j√
2

√
µ2

V ′′(ϕfv) + k2j
eikjx + c.c.

]
, (2.9)

where α̂j is a realization of complex random deviate with variance
〈
|α̂j|2

〉
= 1 and kj =

2π
L
j.

Here we have truncated the spectrum at wavenumber kcut =
2π
L
ncut. The initial realization

of the momentum fluctuations is generated analogously

δΠ̄ ≡ 1

µ

δϕ̇

ϕ0

=
1

ϕ0

√
µL

ncut∑

j=1


 β̂j√

2

√
V ′′(ϕfv) + k2j

µ2
eikjx + c.c.


 , (2.10)
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with β̂j a realization of a unit variance complex random deviate that is uncorrelated with
α̂j. The temporal evolution is performed using a 10th order accurate Gauss-Legendre
scheme [175, 176]. Spatial derivatives are computed by forward Fourier transforming,
multiplying by the appropriate power of ik, then inverse Fourier transforming. We refer to
this as a Fourier pseudospectral approximation, and as a consequence the simulations have
periodic boundary conditions. We verified that the total field energy in the simulations is
conserved to near machine-precision levels.

In the next section, we describe the picture expected for a free massive scalar, where
the semi-classical approach described above is exact and we can compare numerical and
analytical approaches. We then move on to a numerical study with the potential (2.1),
where vacuum decay can occur.

2.3 Peak-peak correlation for a massive scalar

In this section we describe the expected peak-peak correlation function for vacuum fluctu-
ations in a free massive scalar field, which provides a warm-up and a point of comparison
for the analysis of the bubble correlation function. As described in the previous section,
the initial condition is a spatially homogeneous Gaussian random field with spectrum given
by (2.4). Evolving over a time of order m−1, we obtain an uncorrelated Gaussian random
field with the same power spectrum. Therefore, evolving an ensemble of simulations with
vacuum initial conditions simply propagates the vacuum. In addition to the two-point
statistics (i.e. power spectrum) of the field, we can compute the statistics of extremal
points on a fixed time-slice. For the free field example, we focus on maxima (i.e. peaks).
The statistics of peaks in a Gaussian random field are described in the classic paper [22].
In this section, we review the derivation of the peak number density and of the two-point
peak correlation function in one dimension. A similar derivation can be found in [177].
We then validate our numerical code by comparing with this expectation and show good
agreement.

2.3.1 Analytic derivation of the peak-peak correlation function

Full realizations of our approximate false vacuum initial state possess fluctuations on all
possible spatial scales, although the use of a discrete lattice enforces a truncation of this
spectrum above some wavenumber below the Nyquist frequency. However, we are primarily
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interested in variations of the field over distances of order m−1. Therefore, given a fine-
grained realization of a Gaussian random field ϕfg(x) (e.g. a realization of the field described
in the previous section), it is natural to smooth it with a Gaussian kernel W of width R0

ϕ(x) ≡
∫

dx′ W (x, x′)ϕfg(x
′) =

∫
dx′

e
− (x−x′)2

2R2
0√

2πR0

ϕfg(x
′) . (2.11)

For the case of exploring peaks in the field, R0 roughly corresponds to the width of peaks we
are interested in. Although many filters are possible, we choose a Gaussian filter because of
its conceptual simplicity both as a local Gaussian smoothing in real space and a Gaussian
truncation of high frequency modes in Fourier space. We do not expect our qualitative
conclusions to depend on this choice. In a given field realization, the peaks in the smoothed
field are distributed as a random process throughout space. A first guess may be that the
peak locations are independent of each other. However, this is not quite correct, and there
are important correlations between the peak locations as we review below.

We model the number density of peaks in a single field realization as a sum of Dirac
delta functions

ρpk(x) =
∑

i

δ(x− xpk,i) , (2.12)

where the xpk,i are the locations of peaks, labelled by the index i. We want to relate the
statistics of ρpk (and xpk) to the underlying field ϕ(x). We denote the field, its gradient,
and its curvature by ϕ(x), η(x) = ϕ′(x), and ζ(x) = ϕ′′(x), respectively. In the vicinity
of a peak, we have ϕ(x) ≈ ϕpk +

1
2
ζpk(x − xpk)2 and η(x) ≈ ζpk(x − xpk). Here we have

indicated quantities evaluated at the location of the peak by ·pk. It follows that δ(x−xpk) =
|ζ(xpk)|δ(η(x)). The number density of maxima of ϕ where η(x) = 0 and ζ(x) < 0 becomes
ρpk(x) = |ζ(x)| δ(η(x)). Therefore, to understand the statistics of individual peaks, it
is convenient to first reduce the infinite dimensional space of field configurations down
to the three-dimensional space of y ≡ (ϕ, η, ζ) = (ϕ(x), η(x), ζ(x)) evaluated at a single
point. By translation invariance, the statistics of the random vector y over the ensemble
of field configurations is independent of the choice of position x. Peaks are selected by
imposing appropriate constraints on η and ζ. Similarly, peak-peak statistics can be tackled
by considering the six dimensional random vector y2 = (ϕ(x), η(x), ζ(x), ϕ(x + r), η(x +
r), ζ(x+ r)), which depends only on the separation r.

The statistics of y and y2 are specified by various two-point correlation functions be-
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tween the field and its derivatives. For future convenience, we therefore introduce

σ2
(m+n)/2(r) =

〈
∂(m)ϕ(x) ∂(n)ϕ(x+ r)

〉
=





+∞∫
−∞

dk km+nP (k) cos (kr), if m+ n even

+∞∫
−∞

dk km+nP (k) sin (kr), otherwise .

(2.13)
The case r = 0 is sufficient to specify the distribution of single peaks, while the r ̸= 0
information is required to explore peak-peak correlations. Here P (k) is the power spectrum
of the smoothed field

P (k) = |W (k;R0)|2 P0(k), W (k;R0) = e−(kR0)2/2 , (2.14)

where P0(k) is the power spectrum of the unsmoothed field and W (k;R0) is the Fourier
transform of our Gaussian kernel with size R0. We will use the notation σ2

(m+n)/2(r) when

r ̸= 0, and σ2
(m+n)/2 when r = 0.

A first quantity of interest is the ensemble average peak density with height above a
given threshold ϕt

npk(ϕt) ≡ ⟨ρpk(x)⟩ = ⟨|ζ(x)| δ(η(x))⟩ =
∫

ϕ>ϕt

∫

ζ<0

P(ϕ, η, ζ;M)
∣∣∣
η=0
|ζ| dζdϕ, (2.15)

where P(ϕ, η, ζ;M)dϕdηdζ is the joint probability distribution for the random variables
y⃗ = (ϕ, η, ζ) evaluated at a single spatial position. The conditions η = 0 and ζ < 0
select maxima of the field, but the statistics of maxima are no different than that of the
minima. Finally, the number density depends on the peak amplitude threshold ϕt. Since
we are ultimately interested in ‘peaks’ probing the nonlinear structure of our false vacuum
potential (2.1), it is convenient to consider the rescaled threshold ϕ̄t = ϕt/ϕ0.

All that remains is to obtain the probability density P . It is straightforward to see that
(ϕ, η, ζ) are jointly Gaussian distributed

P(ϕ, η, ζ;M)dϕdηdζ =
e−

1
2
yT·M−1·y

√
(2π)3 detM

dϕdηdζ . (2.16)

The probability density is specified by the covariance matrix M with elements mab ≡
⟨yayb⟩, where y = (ϕ, η, ζ) as above. Using (2.13), we thus have

M =



σ2
0 0 −σ2

1

0 σ2
1 0

−σ2
1 0 σ2

2


 (2.17)
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and (2.15) becomes

npk

(
ϕ̄t
)
= − 1√

(2π)3σ2
1 (σ

2
0σ

2
2 − σ4

1)

∫ +∞

ϕ̄tϕ0

∫ 0

−∞
e−

1
2
yT ·M−1·y|η=0ζdζdϕ , (2.18)

with

yT · M−1 · y
∣∣∣
η=0

=
σ2
2ϕ

2 + 2σ2
1ϕζ + σ2

0ζ
2

σ2
0σ

2
2 − σ4

1

. (2.19)

In the limit of high ϕ̄t ≫ σ0/ϕ0, the dominant term in the exponent is −ϕ2/σ2
0. We

therefore see that the number density of peaks decreases as the threshold is increased.

Now we turn to the derivation of the peak-peak correlation function. It describes the
clustering of peaks, which are a biased tracer of the underlying field. Excluding self-pairs,
the two-point correlation function ξpk is defined in terms of the peak number density as

n2
pk(ϕ̄t) (1 + ξpk(r)) = ⟨ρpk(x)ρpk(x+ r)⟩ , (2.20)

which is the joint probability that peaks exist in two volume elements separated by a dis-
tance r divided by the square of the overall peak number density at fixed threshold ϕ̄t.
Denoting the properties of the peak at x and x + r with the subscript 1 and 2, a point in
configuration space is now specified by the six dimensional vector y2 = (ϕ1, η1, ζ1, ϕ2, η2, ζ2).
As in the case of the single peak parameter space, these variables are jointly Gaussian dis-
tributed. To investigate the correlation between pairs of maxima that both exceed the same
threshold ϕt, we enforce {ϕ1 > ϕt, η1 = 0, ζ1 < 0, ϕ2 > ϕt, η2 = 0, ζ2 < 0}. Equation (2.20)
can be rewritten as

1 + ξpk(r) =
npk(ϕ̄t)

−2

(2π)3
√

detMpair

∫∫ ∞

ϕ̄tϕ0

∫∫ 0

−∞
e−

1
2
yT
2 ·M−1

pair·y2ζ1 ζ2 dζ1dζ2dϕ1dϕ2. (2.21)

Here, the correlation matrix for the pair of peaks is given by

Mpair(r) =

(
M11 M12(r)
M21(r) M22

)
, (2.22)

M11 =M22 =



σ2
0 0 −σ2

1

0 σ2
1 0

−σ2
1 0 σ2

2


 , (2.23)

M12(r) =M∗
21(r) =



σ0(r)

2 −σ1/2(r)2 −σ1(r)2
σ1/2(r)

2 σ1(r)
2 −σ3/2(r)2

−σ1(r)2 σ3/2(r)
2 σ2(r)

2


 . (2.24)
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From this we obtain the exponent in (2.21) as

yT
2 · M−1 · y2 = m−1

11

(
ϕ2
1 + ϕ2

2

)
+ 2m−1

14 ϕ1ϕ2 +m−1
33

(
ζ21 + ζ22

)

+ 2m−1
36 ζ1ζ2 − 2m−1

13 (ϕ1ζ1 + ϕ2ζ2)− 2m−1
16 (ϕ1ζ2 + ϕ2ζ1) , (2.25)

wherem−1
ab be elements of the 6×6 matrixM−1

pair. The matrixM−1
pair is singular at r = 0, but

well defined for r positive. For the scales below the smoothing scale R0, ξpk(r → 0) = −1.
At small separations the dominant term in the exponent has prefactor m−1

11 ∼ r−2, so ξpk(r)
picks up as e−c/r

2
for some constant c. For large separations the exponential inside the

integral dominates and ξpk(r ≫ R0) plateaus around a constant value. In the limit of large
ϕ̄t ≫ σ0/ϕ0, the main contribution to ξpk at intermediate separations is from npk(ϕ̄t)

−2

which grows as e2ϕ̄
2
tϕ

2
0 . Therefore, peaks of greater height (i.e. increasingly rare) cluster

more strongly than peaks of lower height. Examining the falloff of ξpk(r) in greater detail,
the correlation length is of order a few times mR0.

Note, equation (2.20) holds for the case with 3 spatial dimensions, and the scaling of the
bias parameter with separation r is similar to the 1-dimensional case. It can be shown by
working in analogy with the case presented here, using the generalized spectral moments,
how it is still true that ξpk peaks around a few times mR0. For numerical interests we
restrain ourselves to the 1 + 1-dimensional volume but the implications are valid in the
3 + 1 case as well.

When we compare the prediction for the peak-peak correlation function of the formalism
in the continuum limit with the results from simulations, we must use the discrete version
of the field power spectrum. This is so that we obtain an analytic result that matches the
implementation on the discrete lattice of the field. In practice this means replacing the
integrals in (2.13) with a sum over all modes

σ2
(m+n)/2(rij) =





ncut∑
l=−ncut
l ̸=0

km+n
l P (kl) cos (klrij), if m+ n even

ncut∑
l=−ncut
l ̸=0

km+n
l P (kl) sin (klrij), otherwise ,

(2.26)

where we assume either that the spectral cut is below the Nyquist frequency, or else that
we have an odd number of grid sites, so that the lower limit of the sum extends to −ncut.

2.3.2 Numerical peak-peak correlation function

We now wish to demonstrate that we can reproduce the peak-peak correlation function
empirically using an ensemble of our lattice simulations. This is an important step to
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confirm that our simulations accurately time-evolve the peak statistics, in preparation for
studying the bubble-bubble correlation function. Since our initial conditions are Gaussian,
and Gaussianity is maintained by linear field evolution, in this section we consider a free
massive scalar field with potential

V (ϕ) =
1

2
m2(ϕ− ϕfv)

2 =
1

2
m2ϕ2

0

(
ϕ

ϕ0

− ϕfv

ϕ0

)2

, (2.27)

with initial conditions corresponding to Minkowski vacuum fluctuations with mass m. For
convenience, and ease of comparison with later results, we choose a mass consistent with the
second derivative of the bare potential (2.1) about the false vacuum, m2 = V0ϕ

−2
0 (λ2 − 1).

The field and momentum are initialized as described in section 2.2. From (2.21), we see
that the predicted peak-peak correlation is determined by the peak threshold ϕt, as well as
a few lower order sinusoid weighted ‘moments’ of the field power spectrum. For our initial
conditions, the moments are in turn specified by the field mass m and filter smoothing
scale R0 in the combination mR0, and the field scale ϕ0. A key quantity characterizing the
rarity of the peaks is ϕ2

t/σ
2
0 ∝ ϕ2

0.

Evolving the field, we obtain ξpk(r) on a single randomly selected timeslice in each
simulation by detecting all peaks above a fixed threshold ϕ̄t. We then compute the equal-
time peak-peak correlation function using the estimator [178]:

1 + ξpk(r) =

〈
1

K

K∑

i=1

Ki(r)

npkVi

〉
, (2.28)

where Ki(r) is the number of peaks inside a search volume ∆Vi = 2∆rϕ−1
0

√
V0 at spatial

separation within ±[r, r + ∆r)ϕ−1
0

√
V0 from the reference peak i. The factor of 2 arises

from the fact that we search for peaks both to the left and to the right of the reference peak
i up to separations L/2. npk is the measured number density of peaks on the timeslice,
and K the total number of peaks on that slice, for a given realization. In other words,
the correlation function is the expected ratio of the number density of peaks a distance r
from a randomly chosen peak to the mean number density. The ⟨·⟩ denotes the ensemble
average of the correlation function, which in this section we take to be 200, 000 simulations.
The result for fixed mass and smoothing scale, but varying threshold, is shown in Fig. 2.1,
where the smoothing scale is mR0 ∼ 1/3, and kcutR0 ∼ 2. Data is binned such that
∆r/R0 ∼ 0.2. The lattice parameters are consistent with those described in detail in
section 2.4 for the simulations including false vacuum decay. We compare the empirically
measured correlation function to the analytic expectation from (2.21). The prediction and
lattice simulation results agree up to a small sampling bias at higher thresholds arising
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Figure 2.1: The equal-time peak-peak correlation function for four detection thresholds
ϕ̄t computed analytically (dashed lines) and extracted from an ensemble of simulations
(points). The agreement between analytic and numerical results serves as a validation
exercise for the simulations. The thresholds are chosen in units of the field RMS σ0.
Larger values correspond to a larger peak amplitude in ξpk showing that the tallest peaks
cluster more strongly. ξpk = −1 where the separation r is less than the smoothing scale
R0. It picks up exponentially to reach a maximum at separation r ∼ 4R0, the scale where
peaks are the most frequent. This balances out at larger separations where ξpk < 0. Note
that the lattice size is rmax/R0 ∼ 415. The small mis-match between the analytic curves
and simulations arises due to a small bias in the estimator (2.28) from realizations with
few peaks.

due to a large sample variance on the realization peak number density. We find that the
distribution is independent of timeslice, confirming our expectation that time evolution
merely propagates the vacuum statistics.

A few properties of the correlation function are noteworthy. First, it can be seen that
the peak amplitude of the correlation function increases with threshold, holding to the
expectation that rarer peaks cluster more strongly. The increasing noise and bias on the
data points for higher thresholds in Fig. 2.1 is due to increasing sample variance (i.e. rarer
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peaks). A consistency check on the estimator (2.28) is to ensure that

∫ L/2

−L/2
dr (1 + ξpk(r)) = 1 , (2.29)

to good approximation. In other words, if peaks are correlated at short separation then to
maintain the average number density throughout the volume they must be anti-correlated
at large separation. We verify that this is indeed true for our ensemble of simulations, at
all times.

Before moving on to discuss vacuum decay, let us consider the following thought ex-
periment. Imagine that we had a physical system consisting of a scalar field in its vacuum
state. Now suppose we could construct a ‘peak detector’ that was sensitive to peaks in
the (spatially) smoothed vacuum fluctuations above some threshold ϕ̄t, enabling one to
replicate our numerics with an experimental protocol. For example, one could imagine
that the value of ϕ controls the lifetime of some unstable particle such that when ϕ̄ > ϕ̄t
decay happens very quickly, but is shut off when ϕ̄ < ϕ̄t. Filling space with a dilute gas of
such particles (with the inverse number density roughly corresponding to the smoothing
scale), we could then detect the position of peaks by locating the origin of the detected
decay products of the unstable particles. From this distribution of peak positions, we could
compute the two point correlation function using the estimator (2.28). Finally, since the
spatial dependence of the peak-peak correlation function is in one-to-one correspondence
with the power spectrum of the vacuum fluctuations, it is possible to extract the statistics
of the vacuum fluctuations underlying the peaks (at least in the infrared) 1. As we will see
in the next section, false vacuum decay appears to be analogous to this example.

2.4 False vacuum decay

We now move on to discuss vacuum decay in the potential (2.1). Our ultimate goal is to
compute the two point correlation function between bubble nucleation sites as a function
of both their spatial and temporal separations. The following two sections address this.
In this section, we review the spacetime picture of false vacuum decay and construct an
algorithm for identifying bubble nucleation sites. In the next section we will apply this
formalism to bubble nucleations in our numerical simulations.

1The interaction with the unstable particle will alter the vacuum state of the massive scalar, so one
must be a bit careful with this thought experiment to be precise about which state one is probing. Here,
we assume it is the state defined by the non-interacting vacuum of the massive scalar.
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Figure 2.2: Stages in the evolution of a bubble, as snapshots of the smoothed field amplitude
over a lattice region. The snapshots are spaced by equal-time intervals. One can follow
time backwards and trace the bubble to the location of a peak rising gradually above the
mean field.

We initialize an ensemble of simulations as described in section 2.2. The mean field
is at the false vacuum minimum ϕ̄fv = π, and fluctuations about the false vacuum evolve
non-linearly according to the equations of motion. Every once in a while, the non-linear
evolution leads to large localized fluctuations in the field. Some of these fluctuations
overcome the potential barrier, and from here the field may either bounce back or continue
to roll down the potential into one of the true vacua, depending on the size of the spatial
region where the fluctuation occurs. In the latter case, a bubble of true vacuum is formed,
which subsequently expands. We confirm below that this is a reasonably good proxy for
bubble formation. Each realization experiences a different number of decay events, and
the full ensemble is used to extract statistics about the bubble formation process.

A series of timeslices around a typical nucleation event found in the simulations is shown
in Fig. 2.2. Not every peak triggers a nucleation event; it must be of sufficient amplitude
and width to do so. This led us to consider extrema in a smoothed field as a proxy for
nucleation events. Since there are two true vacua at ϕ̄tv = 0, 2π, maxima about the false
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vacuum decay to ϕ̄tv = 2π while minima decay to ϕ̄tv = 0.

In order to remove the small scale noise while still resolving the structure of individual
bubbles, we want to define our smoothing scale to be slightly smaller than the typical size
of a bubble early in its time evolution. We empirically determine the typical bubble size
by stacking bubbles from different simulations in our ensemble to find the mean bubble
profile. An immediate challenge is that most bubbles are not formed at rest, and many
have a centre-of-mass velocity that is highly relativistic. The shape of the bubble walls
and the bubble size in the frame of reference of the simulation is distorted by relativistic
length contraction. To obtain the average bubble, we have to bring the bubbles to rest
before averaging. The detailed properties of the average bubble and the distribution of
velocities are of general interest for understanding the properties of vacuum decay. A more
comprehensive treatment of bubble nucleation velocities makes the topic of Chapter 3.
Below we outline a simplified method to bring these bubbles into their rest frame. Our
goal here is simply to motivate a smoothing scale. Note that although we define the
smoothing scale by the size of the average bubble in its rest frame, relativistic bubbles
which are length contracted can still be detected. We elaborate upon this below.

We prepare an ensemble of simulations with λ = 1.5 and ϕ0 = 2.22. We initialize
the field fluctuations with this larger value of ϕ0 (and hence lower amplitude) in order to
decrease noise around the bubble walls. In turn, this lowers the decay rate, allowing us to
more easily isolate individual bubbles. If we vary ϕ0 while holding V0/ϕ

2
0 fixed, the shape

of the bubble is independent of ϕ0 at tree level, allowing us to use the same average bubble
size for all the simulations presented below. We initialize the field evolution using the
same grid parameters as the non-linear simulations, which are defined below. Nucleation
events are identified in the simulations where the field has transitioned to the true vacuum,
and bubbles are extracted. These bubbles materialize with a spread of velocities ranging
between zero and nearly the speed of light. In order to bring a bubble into its rest frame,
we extract the velocity of the walls (which follow hyperbolic trajectories) from which we
obtain the centre of mass velocity of the bubble vCOM, and apply an inverse Lorentz boost
in order to bring the bubble into its rest frame. We start by obtaining the rL(t) and rR(t)
trajectories for the centres of the left- and right-travelling bubble walls respectively, on each
timeslice, over the entire extent of the bubble, and most importantly around the moment
of nucleation where the vertex is located. We proceed as follows:

1. We obtain rL/R in each timeslice t as the best fit parameters of the field value ϕ̄(t, r) to

the expression ±
(
tanh r−rL

wL
+ tanh rR−r

wR

)
ϕ̄fv
2
+ϕ̄fv, where r is a coordinate that spans

the lattice and wL/R is a measure of the wall thickness. We impose that wL = wR in
the rest frame.
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2. With the values rL/R obtained this way, we fit each wall individually to a hyperbola

rL/R(t) = ±
√
a1 + (t− a2)2 + a3 with free parameters a1, a2, a3 ∈ R to get the full

trajectory. The wall velocity is vL/R = ṙL/R(t).

3. Using relativistic velocity addition we obtain the centre of mass velocity for the
entire bubble vCOM, and the instantaneous wall velocity vwall(t) in the bubble’s rest
frame. The Lorentz boost factor is the value of vwall(t) that minimizes the difference
|vCOM − vwall(t)|.

4. We apply a Lorentz boost transformation on the grid coordinates, deforming the
bubble by interpolating it onto the new grid.

5. This process is iterated until the vCOM of the transformed bubble is below 0.1c, with
c the speed of light on the lattice. Due to computational limitations imposed by
our interpolating scheme, the maximum boost factor on each iteration we apply is
v = 0.9c.

Applying this procedure to our simulations, we obtained 15 stationary bubbles. Ten
of these were found to have nucleated with relativistic velocities v > 0.5c, with 3 of these
having v > 0.9c. The average bubble profile is shown in Fig. 2.3. We identify the time
interval where the instantaneous wall velocity is ≤ 25% of the speed of light. We extract
the time-averaged field profile for the rest-frame average bubble over this interval. We
then obtain the FWHM of this field profile and identify average bubble radius R̄ with one
half of this value. This procedure is pictured in Fig. 2.3 Once a bubble materializes in
simulations in its own rest frame with the above width and height, it will continue to grow
and expand relativistically until it stabilizes in amplitude around the true vacuum.

Having defined a smoothing scale to apply to the simulation data, we now define an
algorithm for identifying the peaks in the field that correspond to nucleation sites for
bubbles decaying to ϕ̄tv = 2π as follows:

1. We smooth the field in each realization along the spatial axis on each timeslice. The
smoothing is done with a Gaussian kernel of width R0, as we do for the case of the
free field (see (2.14)). We choose two smoothing scales for comparison: R0 = R̄/4 and
R0 = R̄/2, where R̄ is the average radius of bubbles. Fluctuations over significantly
smaller spatial regions do not seed bubble nucleation events.

2. To eliminate bubbles nucleating directly from peaks in the initial conditions, we
discard all events detected to occur for t ≤ 2m−1. For a free field, this is of order the
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Figure 2.3: On the left we show the averaged bubble in its rest frame. We construct this by
de-boosting 15 bubbles to their rest frame, translating the nucleation center to a specified
location, and averaging. On the right we show in blue the field profile of the average bubble
for all the timeslices highlighted between the red curves on the left. These correspond to
the interval where the wall velocity is ≤ 25% of the speed of light on the lattice. The red
curve shows the time average of these profiles. The green line shows the FWHM of the red
curve, relative to the maximum highlighted by the orange star. The average bubble radius
R̄ is taken to be a half FWHM.
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decay time for peak-peak correlations. The remaining events occur from nonlinear
processing encoded in the equations of motion.

3. Stepping through each subsequent timeslice, we locate extrema in the smoothed
field that exceed a threshold ϕ̄ > ϕ̄t, ϕ̄t = ϕ̄max + ∆|ϕ̄max − 2π|, with ϕ̄max the
value of the field at the potential maximum to the right of the false vacuum, and
∆ ∈ {0.2, 0.25, 0.3}. These values for ∆ are chosen as they give a ϕ̄t greater than
the amplitude of the average bubble at nucleation. We compare three choices for
threshold below, and confirm that our results are not highly sensitive to the value
chosen over a significant range.

4. To confirm that a peak is indeed a nucleation event, we check the field evolution
within the future light-cone of the detection site. In order for a detection site to
be classified as a nucleation event, we require that the field within the future light
cone both exceeds detection threshold over a period ∼ m−1 and remains within the
true vacuum well. Specifically, if the field peak returns to the original false vacuum
we consider that the bubble has dispersed. Alternatively, if the amplitude reaches a
different false or true vacuum, we consider that the signal corresponds to a collision
of the bubble wall with large fluctuations in the background field, or with another
bubble. These cases are excluded by imposing amplitude cuts at ϕ̄t ≤ ϕ̄ ≤ 2π.

5. Once a nucleation event is located, we do not assign further nucleation events within
its future light-cone or within the bounds of the bubble at subsequent times (the
bubble associated to a nucleation event is defined as the field region where ϕ̄ > ϕ̄t).
Imposing a maximal amplitude cutoff as described in the previous step is also useful
way of discarding false signals that mimic a nucleation event around the bubble wall,
which occur marginally outside of the future light-cone of the nucleation sites and
would otherwise add noise to our data.

To identify nucleation events for bubbles decaying to ϕ̄tv = 0 we reflect the field around
the original false vacuum ϕ̄ = π through the linear transform ϕ̄ → 2π − ϕ̄ and apply the
detection algorithm to the transformed field.

We simulated ensembles of 30, 000 field evolutions for three choices of potential pa-
rameters: {ϕ0 = 1.35, λ = 1.5}, {ϕ0 = 1.27, λ = 1.5}, and {ϕ0 = 1.35, λ = 1.6}. These
combinations produce field evolutions with sufficiently rapid nucleations to have multiple
events within a single simulation. The physical size of the lattice is ϕ−1

0

√
V0L = 200

√
2

with V0 = 0.008 ϕ2
0µ

2, and N = 8192 lattice sites. The field spectrum is truncated at
wavenumber index ncut = 256, corresponding to a wavenumber kcut ≈ 5.7ϕ−1

0

√
V0. The

lattice spacing is dx = L/N and the discrete time step was dt = dx /16.
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We checked that these parameters ensure a fully resolved vacuum state. To do this, we
ran ensembles of 100 simulations initialized with a sequence of modes up to the ncut = 256
threshold used in our final results. First, we set ncut to the Nyquist frequency nnyq = N/2,
then we gradually changed N such that nnyq increased each time by a factor of 2. At
each resolution, the coordinates assigned to bubble nucleation events remained constant,
proving that the modes not sampled (i.e. between ncut = 256 and nnyq) do not change the
realizations significantly.

To measure the efficiency of our detection algorithm, we visually inspected 100 simu-
lations for each combination of {ϕ0, λ} and smoothing scale. We refer to a true positive
event as one that has been confirmed as a true nucleation event by visual inspection; a
false positive is an event that is detected but confirmed false by visual inspection. We
define the efficiency as the ratio of true positive events to all positive (i.e. true positive and
false positive) events. For R0 = R̄/4 we estimate the efficiency for all three thresholds at
> 95% when λ = 1.6 and > 93% when λ = 1.5 by counting the fraction of false positive
events out of the total. Fig. 2.4 shows three events which we labelled as false positives:
the orange triangle at ϕ−1

0

√
V0 t ≈ 17 is clearly within the wall of a bubble previously

accounted for by the orange detector; meanwhile we considered the yellow circle and blue
star at roughly ϕ−1

0

√
V0 r ≈ 110 to correspond to background field fluctuations. Around

60% of false positive events are misattributions within the physical extent of bubble walls,
while the remaining 40% of false positive assignments are represented by large amplitude
vacuum fluctuations in the background field that eventually dissipate. Visual confirmation
of results is subjective but gives a rough estimate for the error. According to our test, the
total number of detected events differs by at most 4% between the three thresholds, and
this difference is made up of mostly false positive events. Moreover, the largest threshold
ϕ̄t gives up to twice as many false positives compared to the other two thresholds. The
explanation for this difference is the following: since the bubble grows in amplitude with
time, higher thresholds assign the events to later times than the lowest threshold and de-
crease the extent of the light-cone for the respective bubble, leading to erroneous detections
at late times, i.e. the example of the orange triangle at ϕ−1

0

√
V0 t ≈ 17 in Fig. 2.4. We

do not have an estimate for the percentage of false negatives (i.e. nucleations that have
not been detected). However, by visual inspection, false negative candidates appear only
around nucleation sites already accounted for (e.g. two neighbouring peaks that merge
during the bubble formation process can, in some cases, be detected as a single nucleation
site, but sometimes as two). The number of bubble nucleation sites in such clusters is
intrinsically ambiguous, and it depends on the details of how nucleation events are defined.
The inclusion of such false negatives would make the correlation function computed in the
next section larger at small separations. Moreover, since bubbles form with a range of
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centre-of-mass velocities, their spatial coordinate also changes between different detection
thresholds. Consequently, we discard as unphysical events that coincide exactly in (t, r)
for all three thresholds, noting that on average only about 20% of these are indeed con-
firmed visually as nucleation sites for bubbles. We do not find a significant number of
false negatives associated with bubbles that have large centre-of-mass velocities so long as
they are not associated with clusters of nucleation events, implying that relativistic length
contraction does not affect the ability of our algorithm to detect bubbles.
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Figure 2.4: An example simulation with bubbles formed through both decay channels. We
ran the detection algorithm to identify the nucleation sites of bubbles decaying to the true
vacuum at ϕ̄tv = 2π. The detected nucleation events are shown for each threshold ϕ̄t.
The smoothing scale used here is R0 = R̄/4. We show two of the most common types of
detection error. First, the orange triangle at ϕ−1

0

√
V0 t ≈ 17 corresponding to the largest

threshold is found around the edge of a bubble already accounted for, and second the
background field fluctuations at ϕ−1

0

√
V0 r ≈ 110 picked up by the two lowest thresholds.

2.5 Bubble-Bubble correlation function

In the previous section, we made a connection between extrema in fluctuations about the
false vacuum and bubble nucleation events. In analogy with the free field case, where peaks
are correlated, we might expect the same to be true for bubble nucleation events. Indeed,
we now show that this is the case. This is the main result of this Chapter.

The bubble-bubble correlation function ξbb(t, r) measures the probability in excess of
random that a bubble is found a fixed distance in space and time away from another.
Measuring this correlation function in our data is essentially a counting problem. The
bubble-bubble correlation function is defined by looking at the distribution of bubble nu-
cleation sites. The nucleation sites are defined as the coordinate pairs (t, r) where the field
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amplitude satisfies the conditions we enumerated in the section above. We are asking what
is the probability that if a bubble is nucleated at spacetime coordinates (0, 0), another
bubble is created within [t, t+∆t)ϕ−1

0

√
V0 and ±[r, r +∆r)ϕ−1

0

√
V0. By analogy with the

equal-time two-point correlator, we estimate the bubble-bubble correlation function using

1 + ξbb(t, r) =

〈
1

B

B∑

i=1

Bi(t, r)

ρVi(t, r))

〉
, (2.30)

for a sample containing B ∈ N bubble nucleation sites. Here, Bi(t, r) is the number
of bubbles lying in a shell of fixed spacetime volume Vi = 2∆t∆r ϕ−2

0 V0 and minimal
separation t and ±r in time and space, respectively, from the ith bubble. We have defined
the binning parameters ∆t = 16nt dt and ∆r = nr dx and nt ∈ Z \ {0} and nr ∈ N, nr ≤
N/2. ρ plays the role of the bubble number density for the respective sample. Averaged
over all samples, we obtain our estimate for the correlation function.

We first compute the equal-time bubble correlator, given by equation (2.30) where
t = 0 (defining ‘equal-time’ since the reference bubble is translated to t = 0). The number
density of nucleation sites ρ is computed in each realization. Using an ensemble-average
number density produces very similar results for the correlation function. Because the false
vacuum has two decay channels, we can construct four different bubble-bubble correlation
functions: ξ−−

bb is the correlator between two bubbles filled with ϕ̄ = 0, ξ++
bb is the correlator

between two bubbles filled with ϕ̄ = 2π, ξ+−
bb is the correlator between one bubble filled

with ϕ̄ = 0 and one with ϕ̄ = 2π, and ξbb is the correlator between all bubbles. Because
the potential is symmetric about the false vacuum, we have ξ++

bb = ξ−−
bb . We verify that

this is true in our numerical results, providing one check against biases in our algorithm
for locating nucleation events. The average number density of bubbles filled with either
vacuum is equal across the ensemble, therefore ξbb is the correlation function of twice more
frequent events than either ξ++

bb or ξ−−
bb .

The result for the three distinct equal-time correlators is shown in Fig. 2.5 corresponding
to the different choices of the threshold, as well as two smoothing scales, in the bubble
finding algorithm. To estimate the errors, we break our ensemble of 30, 000 simulations
into 30 ensembles of 1000 simulations each. We compute the peak-peak correlator in
each sub-ensemble, and use the RMS of the sub-ensemble means in each radial bin as an
estimate of the error. Most importantly, we see from ξ++

bb (t, r) that bubbles of the same
type have a statistically significant and non-trivial positive correlation. Nucleation events
are significantly correlated, and therefore cluster, over a distance of order a few times the
initial size of bubbles when they nucleate, R̄. Bubbles of opposite type have a negative
correlation ξ+−

bb (t, r), which follows from the fact that finding a large peak and a large
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trough near each other in the field is a rare event. The dependence of ξ++
bb (t, r) on the

threshold chosen in the bubble finding algorithm is significant, but the qualitative features
of the correlation function remain unaltered. The mismatch is a result of the different
definitions for a nucleation site that each threshold implies. Some signals in the field are
detected as bubbles for one choice of ϕ̄t, but not for another. Moreover, different thresholds
assign a different location for each bubble nucleation event (e.g. a larger choice of threshold
implies a relatively later stage in the process of formation for a bubble). Therefore events
corresponding to the same bubble might show up in different bins of ξbb, depending on ϕ̄t.
Note, however, that the correlation function peaks at roughly the same scale regardless of
the choice of threshold. We also compare two choices of smoothing scale, equal to R̄/4
(top panel of Fig. 2.5) and R̄/2 (bottom panel of Fig. 2.5). As expected, for a larger
smoothing scale, we lose the ability to resolve correlations at short distances. Smoothing is
equivalent to coarse-graining the lattice, merging clusters into single, stand-alone bubbles.
Nevertheless, there is still a significant correlation for identical bubbles, and a significant
anti-correlation for non-identical bubbles.

In Fig. 2.6, we compare the bubble-bubble correlation function to the peak-peak corre-
lation function obtained for a free massive scalar with mass set by the curvature about the
false vacuum. We choose the lowest threshold imposed in the bubble finding algorithm,
and compute the correlation function for three choices of potential parameters. The quali-
tative similarity between the bubble-bubble and peak-peak correlator is apparent (with an
exclusion region, peak, and decay), and for this choice of threshold there is even reasonably
good agreement in the amplitude.

There are, however, a few important differences. Increasing the threshold for the free
field reduces the number density of peaks, thus increasing the amplitude of the correlation
function. For a perfect bubble detection algorithm, there should be a critical value for the
threshold beyond which the bubble finding algorithm will be insensitive to the threshold
choice, at least until it approaches the true vacuum. This is because once the threshold
is high enough for bubbles to form, increasing the threshold should only displace the nu-
cleation event in space and time. However, as commented on above, the highest threshold
has the largest false-positive rate. This systematic has the effect of suppressing the cor-
relation function with increasing threshold. This is the reason we have chosen the lowest
threshold, which has the lowest false-positive rate, and should more faithfully represent
the true bubble-bubble correlator. Another difference is the change in amplitude of the
correlation function for different potential choices. For peaks in the free field, larger val-
ues of ϕ0 decrease the amplitude of vacuum fluctuations relative to the width of the false
vacuum minimum, decreasing the number density of peaks exceeding our threshold and
leading to stronger clustering (comparing the red and blue curves in Fig. 2.6). For bubbles,
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the nucleation rate does decrease with increasing ϕ0 as expected. However, the clustering
of bubbles for the two different values of ϕ0 we probed is unchanged, as we see when com-
paring the correlation functions for potentials with λ = 1.5 and ϕ0 = 1.35 vs ϕ0 = 1.27
in Fig. 2.6. The fractional increase in the peak correlation function is far larger than for
the bubble correlation function. On the other hand, increasing λ at fixed ϕ0 makes both
peaks and bubbles more rare on the lattice (in fixed length units of ϕ−1

0

√
V0), manifesting

as a higher amplitude correlation function in both cases. Finally, the peak-peak correlator
has a maximum closer to the filter width than the bubble-bubble correlator. This is due
to the fact that bubbles are somewhat larger than the filter, and cannot cluster on scales
smaller than their size (which is roughly 4 times the filter width).

In Fig. 2.7 we show the ensemble-averaged ξ++
bb correlator in both space and time (2.30)

for the three parameter choices for {ϕ0, λ}. The contours describe the increased (or de-
creased) probability for a bubble to nucleate at some point {t, r} given a bubble whose
nucleation centre is at {t = 0, r = 0} In the standard picture of vacuum decay, the bubble
at the origin would nucleate at t = 0 with a size of r = R̄ and the wall would expand on
the hyperbolic trajectory shown in Fig. 2.7. We also show the past-directed hyperboloid
for reference. Note that the correlation function has no structure inside of the bubble
wall hyperboloid, which is a good check on the bubble detection algorithm: nucleation
events cannot happen inside of a bubble or in its causal past. Additionally, note that the
correlator is time-symmetric, but it does not have a symmetry with respect to Lorentz
boosts. Although the vacuum state is Lorentz invariant, a configuration with a bubble
nucleation event is not. From the perspective of the peak-peak correlator in a Gaussian
random field, we could understand the decay of the correlation function in time as being
due to the finite lifetime of peaks. Therefore, clustering should occur in a concentrated
region of both space and time. We now discuss the phenomenological consequences of a
space-time bubble correlation function.

2.6 Phenomenological implications

In this section we briefly highlight the phenomenological implications of a non-trivial
bubble-bubble correlation function. We can begin to understand these implications by
considering Fig. 2.7. Given a bubble at some location in spacetime, there is an enhanced
probability of another bubble nucleating nearby in space and time. This is in contrast to
the typical assumption that bubble nucleation events occur with equal probability in any
region of spacetime. Consider an observer at the origin of the central bubble in Fig. 2.7,
which originates at {t = 0, r = 0}. If another bubble were to nucleate from the false vac-
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uum region outside of the central bubble, and in the causal past of the observer at proper
time τ (the spacetime volume in Fig. 2.7 between the hyperbola and the past light-cone),
then they would have causal access to a bubble collision. The average number of collisions
N(τ) is an integral of the nucleation rate ⟨ρ⟩ over the spacetime volume available to nucle-
ate colliding bubbles. The existence of a non-trivial bubble correlation function can lead
to an enhancement or suppression in the average number of collisions given by:

N(τ)

N0(τ)
=

∫
Vcp(τ)

dt dr ⟨ρ⟩ (1 + ξ(t, r))
∫
Vcp(τ)

dt dr ⟨ρ⟩ = ⟨(1 + ξ(t, r))⟩Vcp(τ), (2.31)

where Vcp(τ) denotes the spacetime volume that is both in the causal past of an observer
at proper time τ and also outside of their bubble. In the second equality we have assumed
that ⟨ρ⟩ is independent of space and time, in which case the enhancement or suppression
in the number of observed collisions is simply the average of the correlation function over
Vcp(τ). From the definition of the correlation function, if an observer had access to the
entire volume of space and time then this volume average would be unity. Crucially, for
an observer at fixed proper time, the result of evaluating (2.31) will be non-trivial. For the
examples shown in Fig. 2.7, we expect an enhancement in the number of observed collisions
that peaks at a time of order τ ∼ R̄ (when the peak in the correlator is encompassed
by Vcp(τ)) and subsequently decays with τ as the volume average dilutes the region of
significant correlation. We show this in Fig. 2.8 by numerically integrating the amplitude
of ξ++

bb for each of the cases shown in Fig. 2.7. The data used is the raw binned data
for the correlation function smoothed with a 1+1-dimensional Gaussian filter of size 3 ×
16 dt ϕ−1

0

√
V0 ≈ 0.105 and 5 × dxϕ−1

0

√
V0 ≈ 0.175 in the time and space dimensions,

respectively.

There are two contexts where bubble-bubble correlations could have interesting phe-
nomenological consequences. The first is percolating phase transitions that produce ob-
servable gravitational waves [179, 156, 180]. The gravitational wave spectrum peaks at
a frequency set by the average size of bubbles at the time when percolation occurs [179,
156, 180, 181]. In previous literature, it was assumed that bubbles nucleate at random
positions, in which case the average size of bubbles at the time of collision is simply the
duration of the phase transition. In the presence of a bubble-bubble correlation function
such as the one in Fig. 2.7, bubbles are likely to form significantly closer together than
in the standard picture. Understanding the consequences in detail is beyond the scope
of the present study, but we can speculate that there will be a secondary peak in the
gravitational wave spectrum corresponding to the scale over which bubbles are correlated,
namely their initial radius. There may also be implications for the angular power spec-
trum of the stochastic gravitational wave background [182]. The second scenario where
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bubble-bubble correlations could be relevant is bubble collisions produced during eternal
inflation [142, 143, 144]. In this case, the enhancement in the expected number of collisions
due to the bubble-bubble correlator described above will enhance the probability of observ-
ing the signatures of collisions in the CMB [183]. Again, we defer a detailed investigation
of the consequences of such an enhancement to future work.

2.7 Discussion

In this Chapter, we showed that, analogously to the process of biased galaxy formation,
the nature of the fluctuations around the false vacuum state gives rise to clusters of bubble
nucleation sites. To our knowledge this is the first time biasing has been investigated in the
context of bubble formation in vacuum decay. We found that a significant correlation exists
between the nucleation sites of thick-wall bubbles in a single scalar field theory. A finite
correlation length between bubble nucleation sites implies a greater chance of collisions
between bubbles nearby in space and time. We briefly speculated that this could lead
to new features in the stochastic gravitational wave spectrum associated with first-order
phase transitions in the early Universe, and could increase the probability of observing the
collisions between bubbles in the scenario of eternal inflation.

There are several directions for future work. Extending the present study to more spa-
tial dimensions and confirming that the bubble-bubble correlation function is qualitatively
similar to that presented here is clearly an important first step. Moreover, we explained
that the existence of the bias is a consequence of the statistical properties of the fluctua-
tions, rather than of their origin. This means that our discussion could be generalized to
the thermal case with similar conclusions to be drawn. We expect that the only difference
would be in the absolute magnitude of the bias parameter, however the scaling between
bubble size at nucleation (depending largely on the shape of the potential) and the am-
plitude of the correlation should continue to be present. Testing these observations will
be the subject of future work. Furthermore, a detailed investigation of the impact of the
bubble-bubble correlation function on the phenomenology of first-order phase transitions
in the early Universe should be undertaken. This could lead to new targets for future grav-
itational wave observatories such as LISA. In another direction, the potential we studied
is motivated by the program of simulating vacuum decay in cold atom systems. These sys-
tems should exhibit a bubble-bubble correlation function analogous to the one investigated
here, and could constitute an important observable. Exploring how the bubble-bubble cor-
relation function can be used to determine the vacuum statistics could also be useful in
understanding the results of these experiments. More broadly, the bubble-bubble correla-
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tion function is just one example of how the real-time simulations of vacuum decay might
be used. The next Chapter explores another possible application.
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Figure 2.5: The image caption is on the next page.
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Figure 2.5: The three types of bubble auto-correlation functions. In each panel, from top
to bottom, these are the correlation between nucleation sites of like-bubbles, bubbles of
opposite true vacua, and the total correlation function. We show them for the same choice
of field parameters and threshold values {ϕ0, λ, ϕ̄t}, but different smoothing filter widths:
R0 = R̄/4 (top) and R0 = R̄/2 (bottom). Data is binned into volumes size nt = 3, nr = 10.
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Figure 2.6: The bubble-bubble correlator ξ++
bb (t, r) (solid curves, with error bars) versus

the peak-peak correlator ξpk(r) (dotted curves, no error bars) for all three combinations of
parameters {ϕ0, λ} and fixed threshold ϕ̄t and smoothing scale R0 = R̄/4. The qualitative
agreement between the curves is apparent except that the peak-peak correlator picks up
amplitude at r = R0, and the bubble-bubble correlator at r = R̄, which is expected.
The mixed two-point functions ξ+−

bb and ξ+−
pk show anti-correlation over scales up to the

correlation length of their counterparts ξ++
bb and ξ++

pk . While the ξpk is sensitive to the size
of the fluctuations at initialization ϕ0, the ξbb only reacts noticeably to the λ parameter.
Data is binned into boxes of size nt = 3 and nr = 10.
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Figure 2.7: The 2-dimensional bubble-bubble correlator ξ++
bb (t, r) for all three combinations

of parameters {ϕ0, λ} and smoothing scale R0 = R̄/4. The correlation function implies
clustering in both r and t directions. Data is binned into nt = 3 and nr = 5 intervals.
Errors are not shown and symmetry is assumed for negative r. In each panel, we overplot
the trajectory of the (time-symmetric) average bubble wall; a hyperbola with radius R̄. In
the centre panel, we depict the past light-cone of a hypothetical observer at the origin of
coordinates. This observer will have causal access to bubbles that nucleate in the spacetime
volume Vcp(τ) between the bubble wall and the past light-cone.
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Chapter 3

Bubble velocities and oscillon
precursors in first-order phase
transitions

3.1 Introduction

In this Chapter we employ the classical stochastic description of vacuum decay on a single
real scalar field with an initial Bose-Einstein distribution of fluctuations in 1+1 dimen-
sions. We explore additional observable phenomena related to the dynamical process of
bubble nucleation. We develop a set of algorithms to analyze in detail the properties of
bubbles, before, during, and after nucleation. Our qualitative results are summarized in
Fig. 3.1. Defining an empirical temperature for infrared modes on the lattice, the observed
decay rate is consistent with the instanton prediction at this effective temperature. This is
somewhat surprising as the input Bose-Einstein distribution is not the true thermal equilib-
rium state of the field, and thermalization is an extremely slow process in 1+1 dimensions.
Nevertheless, we find throughout that the predictions of a thermal ensemble describe our
empirical measurements well.

Studying individual nucleation events, we find that bubbles never form at rest. We mea-
sure the distribution of the bubble center-of-mass velocity, which has a variance determined
by the effective temperature for infrared modes and the energy of the critical bubble. An
accurate measurement of the center-of-mass velocity allows us to stack nucleation events in
their rest frame to determine the critical bubble and its time evolution. The measured crit-
ical bubble is consistent with the thermal Euclidean instanton prediction. Focusing on the
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critical bubble

Figure 3.1: Observables in vacuum decay. The basic observables in vacuum decay are the
decay rate Γ and the critical bubble profile φ(r), which can both be predicted from the
instanton techniques and measured from bubbles formed in real-time simulations. Observ-
ables beyond the decay rate include the bubble-bubble correlation function ξbb(t, r) that
was explored in Chapter 2, as well as the center-of-mass velocity v⃗COM of nucleated bubbles
and oscillon precursors that we investigate in this Chapter.

field configuration prior to nucleation, we confirm the prediction of Ref. [30] that the most
likely formation channel for bubbles includes an oscillon precursor. Oscillons are long-lived
time-dependent field configurations [23] arising in scalar field theories with anharmonic
potentials (see e.g. [24, 25]), whose role in vacuum decay has been discussed previously in
Refs. [26, 27, 28, 29, 30]. The existence of bubble precursors and a center-of-mass velocity
distribution could only have been confirmed with real-time description of vacuum decay,
and open the door to further investigations using similar techniques. Further, we speculate
that these features of vacuum decay can have observable implications for early-Universe
phenomenology.

Further details on the interpretation of decay and bubble nucleation in real-time simu-
lations as well as possible experimental applications of our work are given in Appendix A.1.
In particular, cold atom simulations of vacuum decay have recently been performed [50],
with further results expected in the near future [43]. The detailed properties of vacuum
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decay described above will be important observables for these experiments. Through com-
paring these observations with simulation and other real-time theoretical descriptions, we
hope to learn a great deal about the fundamentals of vacuum decay.

The Chapter is organized as follows. In section 3.2 we give an overview of the Eu-
clidean instanton description for vacuum decay at finite temperature, and the properties
of the critical bubble solution. In section 3.3 we introduce our numerical tools. Sec-
tion 3.4 introduces several new observables in false vacuum decay and describes in detail
the computational methods that were used to extract them. We discuss the role of field
fluctuations for thermalization in section 3.4.1 and measure the effective temperature and
mass of the field about the false vacuum. We measure the decay rate from lattice simula-
tions and compare it to the predictions of the thermal Euclidean theory in section 3.4.2.
In section 3.4.3 we measure the distribution of the center-of-mass velocities of nucleated
bubbles in ensembles of simulations. In section 3.4.4 we stack many nucleation events to
determine the ensemble-averaged most likely bubble configuration directly from the simu-
lations. In section 3.4.5 we show that bubble nucleation events are preceded by oscillons.
In section 3.4.6 we verify the consistency of several measurements of the critical bubble
energy. Finally, we comment on the implication of these new observables for early universe
scenarios in section 3.5. We assume the units with c = 1 and work in the limit ℏ → 0,
unless stated otherwise.

3.2 Euclidean computation of the decay rate at finite

temperature

We consider a scalar field theory in 1+ 1-dimensions, defined by the same Lagrangian and
potential:

L =
1

2
φ̇2 − 1

2
(∂rφ)

2 − V (φ), (3.1)

V (φ) = V0

[
− cos

(
φ

φ0

)
+
λ2

2
sin2

(
φ

φ0

)]
. (3.2)

Fig. 3.2 illustrates the potential for the case where λ = 1.5, which is of relevance for the
data analysis done in this Chapter.

In thermal equilibrium at some temperature T , the decay rate can be computed using
Euclidean instanton techniques [19, 20]. The goal is to find saddle points of the Eu-
clidean action (equivalently the partition function) corresponding to critical bubble solu-
tions that interpolate between a false vacuum initial condition and a true vacuum final
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Figure 3.2: Choice of bare potential for the relativistic field φ that supports the formation
of bubbles of true vacuum. It is given by (3.1) where λ = 1.5. The field starts off in the
false vacuum centered at φfv = πφ0 and can decay to either φtv = 0 or φtv = 2πφ0.

condition - a bubble. Beyond the temperature, the most important scale in the problem
is the characteristic (Euclidean) size of the bubbles. This can generically be estimated

as r ∼ 1/
√
∂2φV (φfv) ≡ m−1 (it could be far larger in the thin-wall limit, but we do not

consider such cases here). The statistical mechanics of the field at finite temperature can
be described by a field theory in Euclidean space with a time variable that has period
β ≡ ℏ/T . For T ≪ ℏm, the bubble is far smaller than the size of the time dimension, and
the full (in our case 2 dimensional) Euclidean solution must be used - this is the solution
appropriate to describe quantum mechanical formation of bubbles [18, 17]. In the opposite
limit where T ≫ ℏm, the bubbles are far larger than the size of the time dimension, and
the solutions are independent of Euclidean time.

The relevant saddle point solution φcrit(r) (also known as the ‘critical bubble’) in the
high-temperature limit is found by solving

∂2rφcrit = ∂φV (φcrit), (3.3)

with the boundary conditions φ(r →∞) = φfv and ∂rφ(r → 0) = 0. We disregard thermal
corrections to the potential which are small for the case of a single scalar field studied here.
Note, however, that they may be important if the decaying field couples to other species.
The prediction for the decay rate per unit time per unit volume in our 1+1 dimensional
system is

Γ = AB1/2e−B, (3.4)
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where the critical bubble action (divided by ℏ) is given by

B =
1

T

∫
dr

[
1

2

(
∂φcrit

∂r

)2

+ V (φcrit)

]
=
Ecrit

T
. (3.5)

In expression (3.4) the exponential term is the solution to the saddle point approximation to
the path integral with one periodic dimension of size ℏ/T , while the factor A encompasses
the effects of fluctuations around this solution. The factor of B1/2 comes from integrating
out the shift-symmetric degree of freedom. See e.g. [184, 185] for a review of thermal
instanton theory.

The critical bubble φcrit is also a static solution to the Lorentzian equation of motion

−∂2t φcrit + ∂2rφcrit = ∂φV (φcrit). (3.6)

It is unstable to either growth or collapse under small perturbations. For illustration, in
Fig. 3.3 we show the time evolution of a slightly rescaled configuration φcrit(r, t = 0) under
the equations of motion (3.6). The field profile at t = 0 for the image on the left is the
solution where the central value of the field in the bubble is φ(r = 0) = 4.8238φ0. The
stationary field profile remains nearly static for a finite amount of time, and then expands
into the true vacuum. Once the bubble wall begins to expand, the surfaces of constant field
follow timelike hyperboloids

√
r2 − (t− t0)2 = const, while the surfaces of constant field

inside the bubble follow spacelike hyperboloids
√

(t− t0)2 − r2 = const. The spontaneous
generation of hyperbolic symmetry in expanding thermal bubbles was studied in detail in
Ref. [186], where it was shown to be a generic phenomenon. On the right, we change the
central value of the field by one part in 104 choosing φ(r = 0) = 4.8237φ0. This yields
a solution that collapses, forming an oscillon. The collapse of subcritical bubbles into
oscillons was first discussed in Ref. [27].

3.3 Lattice simulations

In this Chapter, we focus again on a single scalar field in 1+1 dimensions. We take initial
conditions where the ‘occupation number’ in each Fourier mode is given by the Bose-
Einstein distribution:1

nk =
1

eωk/T − 1
, ω2

k = m2 + k2. (3.7)

1This is a classical analog of the occupation number. It is related to the true occupation number n̂k by
nk = ℏn̂k. So, n̂k diverges in the classical limit ℏ→ 0 with nk fixed.
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Figure 3.3: The time evolution of the critical bubble solution to (3.6). The critical bub-
ble is in unstable equilibrium between expansion and collapse, and small changes to the
initial condition determine the outcome. Here we show both outcomes, where the black
contours denote constant field amplitude. Lengths and times are measured in terms of

m ≡
√
∂2φV (φfv); the normalized field is φ̄ ≡ φ/φ0. The false vacuum is located at φ̄ = π;

the true vacuum is located at φ̄ = 2π. Left: After loitering near the critical solution, the
field evolves to the true vacuum inside an expanding bubble. The constant-field surfaces
composing the expanding wall and the bubble interior asymptote to timelike and spacelike
hyperboloids, respectively. Right: The field configuration is slightly subcritical (the central
value of the field is altered by one part in 104 as compared with the left panel), so after
a brief loitering period, it collapses into an oscillon - a long-lived compact oscillating field
configuration.

76



Using the potential (3.1), we set the scalar field mass m2 equal to the curvature around
the false vacuum m2 = V ′′ (φ̄fv). The field and conjugate momentum have the spectra:

⟨δφ∗
kδφk′⟩ =

nk
ωk

δ (k − k′) , ⟨δΠ∗
kδΠk′⟩ = nkωk δ (k − k′) , ⟨δφkδΠ∗

k′⟩ = 0. (3.8)

Throughout this Chapter we will use the ⟨·⟩ notation to denote an ensemble average unless
otherwise stated. Initial configurations of the field and conjugate momentum are random
draws from a multivariate Gaussian for each mode with covariance (3.8).

Let us make an important comment. The choice of the Bose-Einstein distribution for the
initial conditions is convenient since it ensures approximate equipartition of energy among
long modes relevant for bubble nucleation, while exponentially cutting off the power in the
ultraviolet, thereby reducing the sensitivity to the lattice spacing. However, it does not
represent an equilibrium thermal distribution of the classical field theory which we simulate.
In a free theory, the equilibrium would correspond to the Rayleigh-Jeans spectrum which
has a significant power in the ultraviolet and is numerically challenging. Presence of the
field self-interaction further complicates the definition of the equilibrium state – in fact,
makes it strictly speaking impossible for the dynamics around a metastable false vacuum.2

On the other hand, thermalization is extremely slow in 1 + 1 dimensions [194]. This
provides an opportunity of studying in real time false vacuum decay from non-equilibrium
states – a process inaccessible with Euclidean methods (see [195] for the generalization of
the instanton techniques for this case). The initial state with the spectrum (3.7) should
be viewed as an example of such non-equilibrium configurations. Remarkably, we will see
that nucleation of the true vacuum bubbles in this state still admits an approximate ther-
mal description, albeit with an effective temperature Teff different from the parameter T
in the initial Bose-Einstein distribution (3.7). We give more details on the spectrum and
its evolution below. We stress that our focus in this thesis is not on defining a precise
physically motivated set of initial conditions, but rather the identification of new observ-
ables in vacuum decay beyond the decay rate. The quantitative predictions for observables
in specific early-Universe or experimental scenarios can be obtained by extending our re-
sults to different choices for the initial state. The mean field and conjugate momentum
at initialization are chosen precisely at the false vacuum, while fluctuations are sampled

2The Rayleigh-Jeans spectrum was adopted in the first numerical studies of non-perturbative processes
in classical field theory in 1+1 dimensions [187, 188, 189]. Other previous works [190, 191, 192, 193] either
explicitly introduced a heat bath, a thermalization phase preceding a sudden change in the potential (a
quench), or incorporated the effect of a heat bath into effective equations of motion. This introduces
additional complexity and model assumptions that are avoided in our approach - we simply have an
ensemble of closed systems with an initial spectrum of fluctuations.
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stochastically in each realization around these values according to φ̄(r, t = 0) = π + δφ̄(r)
and Π̄(r, t = 0) = δΠ̄(r), where

δφ̄(r) =
1

φ0

1√
L

∑

k

[
α̂k√
ωk

eikr√
eωk/T − 1

+ c.c.

]
,

δΠ̄(r) =
1

φ0

1√
L

∑

k

[
β̂k
√
ωk

eikr√
eωk/T − 1

+ c.c.

]
.

(3.9)

The complex random deviates α̂k and β̂k are drawn from a Gaussian distribution of unit
variance. Each realization of the initial conditions is then evolved using equations of motion

dφ̄

dt
= Π̄,

dΠ̄

dt
= ∇2φ̄− V0

φ2
0

[
sin(φ̄) +

λ2

2
sin(2φ̄)

]
.

(3.10)

The parameter φ0 controls the width of the potential, while V0 controls its height. The
potential and lattice parameters are fixed throughout this Chapter. The only parameter
we vary across ensembles is T in the initial spectrum (3.7) which can take one of the
following values: T = {0.9m,m, 1.1m, 1.2m}. The potential is defined by λ = 1.5 and
V0/φ

2
0 = 0.008, with φ0 = 2π/4.5. The physical size of the lattice is L = 50

√
2φ0/

√
V0

and we sample N = 1024 points. This gives a lattice unit dr = L/N ≈ 0.77 and an IR
scale dk = 2π/L ≈ 7.95× 10−3. Wave-numbers k run from kIR = dk to kUV = dkN/2. We
perform a total of 4000 simulations at each value of T , and monitor the time evolution up
to at most 5L, i.e. five lattice crossing times, or until the field has completed the phase
transition into the true vacuum. The discrete time step for the integration procedure
is dt = dr/16. The speed of light is fixed in simulations to c = dr/dtout = 1, where
dtout = 16dt is the interval over which the data are output to produce spacetime diagrams
such as e.g. Fig. 3.3. We typically express length and time scales as a function of the mass
which is fixed to m(φ) = V0φ

−2
0 (λ2 − 1) = 0.1 in the dimensionless code units. The critical

bubble energy is Ecrit ≈ 0.33 in the code units, or Ecrit ≈ 3.3m. We also use the notation
φ̄ = φ/φ0, where φ̄ is the normalized field amplitude. A summary of the most relevant
parameters is given in Table 3.1. In the rest of this Chapter, all dimensionful quantities
are plotted in terms of the bare mass scale m.

For future reference, we denote the expectation values for the variance of field and
momentum fluctuations by σ2

φ ≡ ⟨δφ2⟩ and σ2
Π ≡ ⟨δΠ2⟩, where the average is taken over

many different realizations. At the initial moment of time we can write them in terms of
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the Bose-Einstein distribution (3.7) as

φ2
0σ

2
φ =

1

L

∑

k

nk
ωk
, φ2

0σ
2
Π =

1

L

∑

k

nkωk. (3.11)

From low to high values of T , the ratio σφ = σφ̄/φ0 gives ≈ {0.20, 0.22, 0.24, 0.26}, whereas
σΠ = σΠ̄/φ0 ≈ {0.028, 0.032, 0.036, 0.040}.

Parameter Value in code units Comparison with mass
Potential coupling λ 1.5 −

Potential barrier width φ0 2π/4.5 −
Potential barrier height V0 0.008φ0 ≈ 0.011 −

Bare field mass m
√
V0φ

−2
0 (λ2 − 1) = 0.1 m

Parameter in the initial spectrum T 0.09, 0.1, 0.11, 0.12 0.9m, 1m, 1.1m, 1.2m

Physical lattice size L 50
√
2φ0/

√
V0 ≈ 791 80/m

Lattice sample points N 1024 −
Maximum evolution time 5L ≈ 3953 400/m

Lattice spacing dr L/N ≈ 0.77 0.08/m
Integration time step dt dr/16 ≈ 0.048 0.0005/m
UV spectral cutoff dk 2π/L ≈ 7.95× 10−3 0.08m
IR spectral cutoff kIR dkN/2 ≈ 4.1 41m

Critical bubble energy Ecrit ≈ 0.33 3.3m

Table 3.1: List of relevant physical quantities used in this Chapter, together with their
numerical values and comparison with the mass scale.

3.4 Observables in vacuum decay

In this section, we analyze the ensembles defined above to identify new classes of ob-
servables in vacuum decay. In the previous Chapter it was demonstrated that bubble
nucleation centers cluster, and their two-point correlation function ξbb(t, r) was measured
using simulations. Here, we demonstrate that a detailed study of nucleation events can
reveal additional observables in vacuum decay. An overview is presented in Fig. 3.1. We
expect the qualitative results to apply to a broad set of classical excited states about the
false vacuum characterized by large occupation numbers and stochastic phases of the field
modes.
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We begin by examining the fluctuations about the false vacuum prior to bubble nucle-
ation and measure the effective mass and temperature that the field fluctuations evolve
under. Next we measure the decay rate observed in our ensemble of lattice simulations
as a function of the effective temperature and find good agreement with the theoretical
prediction of Euclidean instanton theory for finite temperature vacuum decay, as reviewed
in section 3.2. Moving on to study individual nucleation events, a number of features are
evident. First, we demonstrate that typical bubbles do not form at rest, but rather have a
center-of-mass velocity distribution that agrees well with the hypothesis that boosted bub-
bles are Boltzmann suppressed. By stacking many nucleation events in their rest frame,
we determine the critical bubble configuration on the lattice. This empirical profile closely
matches the analytical critical bubble solution. Next, we observe that bubble nucleation is
preceded by a long-lived oscillon precursor field configuration. Finally, we compare three
different ways of determining the critical bubble energy: from the static solution of (3.3),
from the stacked decaying numerical simulations, and from the bubble velocity distribu-
tion. We find them to be in good agreement. The analysis techniques we present can be
used in future lattice simulations or experiments using analogue quantum simulators of
vacuum decay.

3.4.1 Fluctuations around the false vacuum before decay

Beyond the formation of bubbles of the true vacuum, the non-linear nature of the potential
coupled with the finite size of the system and finite lattice spacing have several important
implications.

• The existence of field fluctuations around the minimum leads to a renormalization of
the coupling constants m and λ for the effective potential seen by infrared modes on
the lattice. These corrections depend on the field variance. These effects have been
studied quantitatively in [32] for the potential we use here; for a detailed discussion
of renormalization effects on thermal vacuum decay see e.g. [192, 193].

• Because the system is initially out of equilibrium, the statistics of the fluctuations
about the false vacuum evolve in time. In particular, power is transferred from the
IR to the UV. In principle, if the false vacuum were arbitrarily long-lived, the system
could thermalize to a Rayleigh-Jeans spectrum with a new temperature.

• The effective couplings seen by IR modes on the lattice depend on the spectrum of
fluctuations about the false vacuum. Since this spectrum is time-dependent, there
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will be time evolution of the properties of the IR modes which participate in vacuum
decay.

We choose the parameters of our simulations to mitigate the consequences of these effects.
For the Bose-Einstein distribution with our choice of parameters, contributions to the field
variance near the ultraviolet cutoff are small

〈
δφ2

kUV

〉
→ 0. In this limit, the corrections to

coupling constants in the potential depend only on the amplitude of long modes with ω ≲ T .
We can then choose the values of T that are small enough such that corrections to the
potential are small, but large enough to yield vacuum decay on a reasonable computational
timescale. These choices also mitigate the second and third items above, since typical
fluctuations do not experience the strong non-linearities away from the false vacuum and
power that does ‘cascade’ to the UV does not contribute significantly to the field variance.
Nonetheless, it is possible to extract empirically the effective mass and temperature of
the IR fluctuations around the false vacuum. Since the critical bubble is itself made up
of modes with wavenumber k ∼ R−1

crit ∼ mO(1), the occupation numbers of the long-
wavelength modes and any changes from the initial theoretical spectrum will affect the
observables of vacuum decay. We investigate these changes quantitatively in this section.

We begin by focusing on the members of our ensemble that do not decay. The initial
conditions for these simulations are drawn from the Bose-Einstein distribution according
to (3.8). Choosing the undecayed members of the ensemble yields an observable selection
effect on the initial power spectrum in the infrared. In simulations where the initial power
on scales relevant to the formation of the critical bubble k < kcrit ∼ R−1

crit is larger than
the average, the probability to form a bubble is enhanced. Therefore, the undecayed
realizations have a deficit in initial power at low-k. Simulations where the phases and
initial momentum cause a time-dependent loss of power at low-k are also members of the
ensemble of undecayed solutions. The time-dependent loss of IR power in the field power
spectrum with respect to the initial theoretical Bose-Einstein distribution is illustrated
in Fig. 3.4. This is due to a combination of two main effects: the favoring of an initial
deficit of power on scales relevant for bubble formation and a phenomenon we refer to as
thermalization, where the IR power ‘cascades’ towards the ultraviolet over long time-scales
as the closed system tends towards thermal equilibrium.

The fact that the high-k part of the power spectrum remains largely unperturbed
implies that the time-dependent corrections to the couplings parameters experienced by
UV modes is minimal over the timescales relevant here and that the far-UV tail of our
field and its conjugate momentum remain exponentially suppressed. We conclude that UV
effects associated with the finite lattice spacing are not important for the analysis below.
On the other hand, the changes in the IR are visible in the power spectrum, as shown in
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Figure 3.4: Ensemble averaged power spectrum at T = 1.2m as a function of time, nor-
malized with respect to the theoretical average power spectrum on the initial slice, nk/ωk
as defined in (3.8). The faint lines show the true data, while the solid lines have been
smoothed with a Gaussian kernel of width 0.48/m to visualize the shape of the spectrum.
The ensemble average is performed over the realizations that have not decayed by the time
t. Since the number of surviving simulations decreases as a function of time, the statistical
fluctuations on the average spectrum increase at late times. Barring this effect, there is no
significant change in the UV end of the power spectrum. In the IR however, the spectral
amplitude oscillates over very long timescales. In the process, the power from the largest
scales k ≤ m migrates slowly towards the UV. This is evidence that thermalization is an
extremely slow process of transferring power from the IR towards the UV, as more and
more modes interact to reach a local thermal equilibrium. During this process the effective
temperature is determined by the power spectral amplitude on those scales which are in
thermal equilibrium.
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Fig. 3.4 and Fig. 3.5. This observation signals that the effective mass and temperature
controlling the power on large scales are running.

It is possible to measure the mass from the numerical dispersion relation using the power
spectral density

〈
|δφ(ω, k)|2

〉
as was done in [32]. Here we use an alternative approach and

measure the ratio between the conjugate momentum and field power spectra:

ω2
k(t) =

〈
|δΠk(t)|2

|δφk(t)|2

〉
= m2

eff(t) + k2, (3.12)

where we explicitly indicate the t-dependence to stress that the power spectra and coupling
constants, in particular the effective mass and temperature, are dynamical quantities. In
Fig. 3.5 we show the late-time ensemble averaged power spectra of the field (top right) and
conjugate momentum (bottom left) for the ensemble of simulations at T = 1.2m. In the
top left panel we show the ratio (3.12) as well as the dispersion relation ω2

k = m2
eff + k2

with the best-fit value of m2
eff . There is an excellent fit for meff/m = 0.80, demonstrating

that at late times the field fluctuations renormalize the mass parameter for IR modes to
be less than the input value. In the left panel of Fig. 3.6, we show the time-dependence of
the best-fit meff at each temperature. There is a stage immediately following initialization
where the mass measured from (3.12) abruptly decreases between 15% and 25%, with the
effect being stronger for larger T . After this stage, the mass starts to increase slowly until
it reaches a plateau. For all ensembles, the effective mass reaches steady state around
mt ≈ 160. We treat the late-time value for the mass as the effective equilibrium field mass
in each ensemble.

As the power ‘cascades’ from the IR towards the UV, the field and conjugate momentum
achieve a state of local thermodynamic equilibrium with an effective temperature deter-
mined by the long-wavelength modes [194]. The modes which are in equilibrium will satisfy
the Rayleigh-Jeans distribution defined by:

〈
|δφk|2

〉
∝ Teff/ω

2
k,
〈
|δΠk|2

〉
∝ Teff . Note that

the low-k limit of these relations implies that a decrease in the effective mass must come
with a corresponding decrease in the effective temperature at fixed field variance. The
measured effective temperature of the low-k modes as a function of time in each ensemble
is shown in the right panel of Fig. 3.6. Assuming thermal equilibrium is reached on scales
k ≤ 3.3m, we use the Rayleigh-Jeans distribution to find the best-fit effective temperature
from the field power spectra. In this procedure we fix the mass to the value given by our
late-time measurement of the dispersion relation from the ratio (3.12). We find that the
temperature drops abruptly after initialization, reaching a constant at late times. On time
scales mt > 160 the temperature is constant, up to statistical fluctuations due to limited
sample size. We estimate the systematic error on the effective temperature measurement

83



10−1 100

k/m

0

4

8

12
ω

2 k
/m

2
meff/m =0.80

10−1 100 101

k/m

0

1

2

3

4

5

〈 |
ϕ̄
k
(t

)|2
〉

×10−3

10−1 100 101

k/m

0

1

2

3

4

5

〈 ∣ ∣
Π̄
k
(t

)∣ ∣2
〉

×10−5

T/m = 1.2

Initial conditions

Late time data

Teff/m =0.42+0.08
−0.03

Figure 3.5: Measurement of the effective mass and temperature from the ensemble initial-
ized with T = 1.2m. Solid black curves show the dispersion relation with the bare mass
in the upper left panel and the initial auto-power spectra (3.8) in the top right and bot-
tom panels. The pink curves represent the ensemble-average of all surviving simulations
and over the time interval 160 ≲ mt ≲ 400. The fit of the empirical dispersion relation
with (3.12) is shown with the dotted line in the upper left panel and provides a precise
determination of the effective mass. With the effective mass fixed from the dispersion
relation, the field power spectrum is used to obtain a best-fit estimate of the effective
temperature, assuming a Rayleigh-Jeans distribution on scales k ∼ R−1

crit ≤ 3.3m. The
value also gives a good fit to the average power spectrum of the conjugate momentum in
the same range of scales. The faded pink interval illustrates the bounds of the systematic
error on the Teff measurement. Over the time interval considered, the empirical effective
temperature is constant up to statistical fluctuations. This is evidence that the modes
relevant for bubble formation have reached an approximate thermal equilibrium.
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Figure 3.6: In the left panel we show the time-evolution of the effective mass measured by
fitting (3.12) to the dispersion relation for a massive scalar ω2

k = m2
eff + k2. In the right

panel we show the time-evolution of the effective temperature measured by fitting the field
variance to the Rayleigh-Jeans distribution with the dispersion relation fixed by the value
of meff measured in the left panel.

by looking at the spread of the conjugate momentum power spectrum on large scales,
which is a direct measurement of Teff . Fig. 3.5 illustrates the measurement of the effective
temperature and its error bars for the case T = 1.2m. We observe that Teff is about three
times lower than the ‘temperature’ parameter T in the input Bose-Einstein distribution.

For the rest of this Chapter, we will use the values of the effective temperatures mea-
sured in this way, as well as the interpretation of local thermal equilibrium described
above, to estimate the false vacuum decay rate and explain quantitatively the measured
observables that we introduce.

3.4.2 Decay rate

The probability of the field remaining in the false vacuum centered at φfv after a time t
can be parametrized as:

Pr(survive) = e−ΓL(t−t0), (3.13)

where Γ is the probability per unit time per unit length to form a bubble and t0 is a
free parameter. The instanton prediction for Γ in (3.4) depends on the temperature and
the critical bubble configuration. We empirically determine ΓL by measuring the survival
probability as a function of time in our ensemble of simulations. To do so, we implement a
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similar technique as described in previous studies [21, 43] where the survival probability is
defined as the number of realizations out of an ensemble that have not nucleated a bubble
by time t. The nucleation time is determined by the condition that the quantity ⟨cos φ̄⟩,
where here ⟨·⟩ denotes a lattice volume average, has reached a value greater than −0.7.
The survival fraction is fit by an exponential according to (3.13), and the slope of the
exponent is identified with the decay rate ΓL.

The survival fraction for all choices of T is shown in left panel of Fig. 3.7. After a
transient phase, the survival probability is well fitted by an exponential. We take the
transient to be the time interval over which the power spectrum adjusts to the effective
mass and temperature parameters, as measured in the previous section. We perform the fit
over the shaded region in the figure, which excludes the transient region and encompasses
three lattice crossing times, i.e. for 160 < mt < 400. We find the best-fit value from 4000
simulations for ΓL and t0 in expression (3.13) for each input power spectrum. In the right
panel of Fig. 3.7 we show the trend of the decay rate with temperature compared against
the instanton prediction. Specifically, the solid black line represents the best-fit curve with
a functional expression given by (3.4), where B = Ecrit/Teff is fixed, and only the prefactor
A is a free parameter. The effective temperature is fixed by the analysis of the previous
subsection. By inspection, the decay rate agrees well with the Euclidean prediction.

3.4.3 Center-of-mass velocity distribution

Examining individual nucleation events in the simulations it is evident that bubbles do
not nucleate at rest; several examples are shown in Fig. 3.8 and Fig. A.1. This was also
noticed in Chapter 2. For the potential and range of temperatures studied here, we find
that bubbles materialize with center-of-mass velocities ranging from 0 up to 80% the speed
of light on the lattice. In this section we describe an algorithm to identify bubble nucleation
events, and determine the Lorentz boost necessary to transform to the rest frame of the
nucleation event.

In section 3.2 we described how a critical bubble formed from the thermal ensemble
is unstable to either growth or collapse. Here, we focus on nucleation events that lead
to expanding bubbles. Once a critical bubble begins expanding, the surfaces of constant
field describing the bubble walls asymptote to timelike hyperbolae (studied quantitatively
in Ref. [186]). We first identify simulations where the field value achieves this for one
of the two true vacua at φ̄tv = 0 and φ̄tv = 2π. Because our potential is symmetric
about the false vacuum, transitions to either of these true vacua are identical for our
purposes. For realizations where bubbles nucleate to φ̄tv = 0, we reflect about the mean
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Figure 3.7: Left: False vacuum survival probability as the fraction of simulations that have
not produced a bubble as a function of time, estimated from ensembles of 4000 realizations
for each of the four initial power spectra differing by the value of the parameter T . The grey
shaded region denotes the range used to fit an exponential decay rate of the form (3.13) used
to extract ΓL in each curve. This is the time range over which the effective temperature
Teff(t) has reached a plateau (see Fig. 3.6). Right: Decay rate as a function of effective
temperature, determined from the field power spectrum as explained in section 3.4.1. The
prediction from instanton theory is shown in black, where the prefactor A has been adjusted
to provide the best fit to the data and Ecrit is fixed by the critical bubble configuration in
the bare potential.

field and momentum values to produce a nucleation event to the true vacuum at φ̄tv = 2π.
This doubles our sample size. In cases where we find more than one nucleation event,
we truncate the simulations to encompass spacetime regions containing only the earliest
expanding bubble.

From this sample, we follow a procedure similar to the one proposed in the previous
Chapter to identify bubble nucleation centers and the bubble center-of-mass velocities. The
technique is based on finding the Lorentz boost that produces hyperbolic bubble walls with
symmetric expansion away from a common reference point. Such symmetric expansion is
what one expects to observe in the bubble’s rest frame (center-of-mass frame) in absence of
fluctuations. Any deviation from this symmetry indicates there is a preferred direction for
the expansion, sourced by a center-of-mass velocity component. The total velocity needed
to bring the bubble from the initial frame of nucleation into its rest frame via a Lorentz
boost is its center-of-mass velocity vCOM. The sign of the velocity indicates whether the
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expanding bubble is moving to the left or to the right in the lattice frame. To estimate
it, we define a measure for the asymmetry between the expansions of the left- and right-
traveling walls. In its rest-frame, the bubble is fully symmetric, so the goal is to treat this
asymmetric expansion as a residual and minimize it. The full details of the procedure can
be found in Appendix A.2.

Out of the four ensembles of 4000 realizations at each value of T/m ∈ {0.9, 1, 1.1, 1.2},
we detected a total of {1003, 2192, 3165, 3711} bubbles, respectively. We exclude bubbles
that formed before mt ≈ 80, to allow for thermal state to be reached. This filters out
a large fraction of simulations, especially at high values of T . As discussed earlier, the
effective temperature plateaus after mt ≥ 160, however we keep a looser cutoff here to gain
statistical power; we do not expect this choice to significantly affect our results. For each re-
alization, we checked visually that de-boosted bubbles from the procedure described above
appeared symmetric against a central axis. These requirements leave {559, 956, 997, 591}
bubbles at rest, which made up the ensembles considered throughout the rest of this
study. Out of these, in the simulation frame {49.91%, 51.15%, 51.65%, 49.41%} were right-
movers, and the rest were left-movers - a nearly even distribution as expected. In abso-
lute value, {31.48%, 33.58%, 38.72%, 42.81%} were moving faster than v = 0.3, showing a
clear increase with temperature. This trend continues with a larger velocity threshold, as
{7.69%, 10.98%, 13.94%, 16.58%} of all bubbles were moving faster than half the speed of
light.

The full distribution of velocities found in each ensemble is shown in Fig. 3.9 for each
initial power spectrum. The mean of these distributions is near zero; the variance is
plotted in Fig. 3.10. To obtain an estimate for the magnitude of the error in our result, we
divided each ensemble into 15 sub-ensembles and computed the variance. Then we used
the standard deviation of the resulting distribution as an estimate for the error.

This distribution is described by the following simple theoretical model. A boosted
bubble has total energy

E = γEcrit ≈ Ecrit(1 + v2/2), (3.14)

where in the second equality we have replaced the boost factor γ = (1 − v2)−1/2 by its
non-relativistic approximation which is accurate for the majority of the bubbles used in
our analysis. In a thermal ensemble with temperature Teff the probability to find such
bubble must obey the Boltzmann distribution,

P (v) = N−1e
− v2Ecrit

2Teff , (3.15)
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with the normalization factor3 N =
√

2πT
E

. The expectation value for the variance is:

⟨v2⟩ =
∫
dv v2P (v) =

Teff
Ecrit

. (3.16)

Note that this expression coincides with the inverse critical bubble action (3.5), ⟨v2⟩ = B−1.
Using the energy of the critical bubble obtained by solving (3.3) and the empirical values for
the effective temperature, this expression gives us a theoretical prediction for the center-of-
mass velocity. This is compared with the variance measured in the simulations in Fig. 3.10.
The agreement is within one sigma of the empirically determined variance.

The relativistic Klein-Gordon field has two associated conserved charges: the total
energy and the total momentum. These remain conserved to near machine precision over
the entire time of the evolution. They are defined on the lattice as:

H(φ̄) =
L∑

r

[
1

2
Π̄2 +

1

2
|∂rφ̄|2 + V (φ̄)

]
= H(φ)/φ2

0, (3.17)

P (φ̄) = −
L∑

r

Π̄∂rφ̄ = P (φ)/φ2
0. (3.18)

Both quantities are fixed by the initial conditions. However, different realizations have a
spread in the initial energy and momentum due to the stochastic sampling of the field and

3We formally extended the range of integration in the normalization condition
∫
dvP (v) = 1 from −∞

to +∞, which is justified if Ecrit ≫ Teff , so that the distribution is peaked at v ≪ 1.
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Figure 3.10: Comparison between the measured variance in the distribution of bubble
center-of-mass velocities depicted in Fig. 3.9 versus the prediction in (3.16). Ecrit is the
energy of the critical solution from instanton theory and Teff is given by the effective
temperatures at late time in each ensemble. There is good agreement between the two.

momentum mode amplitudes. In Fig. 3.11 we plot the initial relativistic momentum defined
in (3.18) versus the measured center-of-mass velocity vCOM for each realization. The best-
fit linear correlation between the total momentum and measured center-of-mass velocity is
nearly the same in each ensemble. The spread about the mean correlation increases with
T , as expected from the expression for the variance in initial momenta (see (3.9)). This
indicates that the initial conditions influence the dynamics of the bubble at nucleation.
The average relativistic momentum is zero across the ensemble. However, the local surplus
of momentum associated with the random initial conditions in a given realization selects
a preferred frame of reference for bubble nucleation.

3.4.4 Average bubble

In this section, we define an ensemble-averaged bubble measured on the lattice and compare
this to the critical bubble predicted by the thermal Euclidean instanton described in sec-
tion 3.2. A non-zero center-of-mass velocity at nucleation leads to morphological changes
in the critical bubble, e.g. its size at nucleation is length-contracted, while the total energy
is increased. We must therefore first transform to the frame where bubbles are at rest as
described above. Even after boosting to the rest frame, there is still great diversity in the
details of individual nucleation events. For example, in Fig. 3.8 some bubbles loiter around
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Figure 3.11: A scatter plot of the total conserved relativistic momentum on the lattice at
initialization versus bubble center-of-mass velocity. For reference, the initial variance of
fluctuations in each ensemble was σφ̄ ≈ {0.27, 0.30, 0.33, 0.36} respectively. There are four
solid black lines that represent the best linear fit through the data from each ensemble.
They all share the same slope to within the thickness of the lines, showing that the degree
of correlation remains constant with temperature. The root-mean-square in momentum
increases as a function of T , as expected.

the turnover value of the potential, while others make the transition from false vacuum
to true vacuum much faster. The variance between different realizations is greatest near
the nucleation center, where one would like to make direct comparison with the critical
bubble solution. Here, we define a stacking procedure to compute the ensemble-averaged
bubble. Our algorithm is fully automated, and does not use any prior information about
the expected profile.

The main idea is based on the observation that the walls of a stationary bubble start off
at rest, then expand with acceleration asymptoting to c = 1. The walls undergo Lorentz
contraction, becoming thinner as they accelerate, and gain a momentum far greater than
the typical momenta in the fluctuations about the false vacuum. Therefore, relativistic
walls become insensitive to fluctuations about the false vacuum and expand at the same
rate across all realizations. Essentially, bubbles have different formation histories, but
expand in a universal manner at late times.

To stack the bubbles we need a reference point that is common in all cases. We call this
reference point the spacetime location of the bubble ‘nucleation’ and label its coordinates
by (rN, tN). These coordinates are different for every bubble in the ensemble. To find tN,
we search for the time-slice where the bubble has reached a fixed radius R where the field
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Figure 3.12: Sample variance (defined in (3.19)) around the nucleation region of the stacked
average bubble at T = 0.9m, function of fluctuation height and width. Each point on the
graph shows the value of the variance as a function of the field amplitude threshold ϕ̄
and bubble size R. These two parameters control where the coordinates of the nucleation
center are assigned in each simulation. The white star shows the location where the
minimum variance is achieved. Each ensemble yields a different combination that satisfies
this condition. The average bubble is produced by stacking bubble nucleation events
defined by the (ϕ̄, R) pair at this point.

amplitude is above some fixed threshold ϕ̄. We also need to define rN for each simulation.
Since all bubbles have been already de-boosted and are assumed to be at rest, we make use
of their symmetry and define the nucleation center as the middle of the region of size 2R
delineated by the points where the walls reach a field amplitude of at least ϕ̄. The bubbles
are all translated to grids centered at (rN, tN), and the field can now be averaged.

To find the best choice for ϕ̄ and R, we scanned over a large and physically motivated
range of values. We choose mR between 0.77 (slightly smaller than the instanton predic-
tion) and 4.63 (roughly three times the instanton prediction). For ϕ̄, we choose a range
between φ̄fv + σφ̄ (far lower amplitude than expected from the instanton prediction) and
φ̄fv + 6σφ̄ (far larger in amplitude than the instanton prediction). To estimate the good-
ness of fit we minimize the sample variance over a finite spacetime region centered at the
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Figure 3.13: From left to right, we show the average bubble, average conjugate momentum
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surfaces of constant field amplitude. Qualitatively, beyond the nucleation time shown here
at t = 0, the features of the three fields match the characteristics of the critical saddle point
solution pictured in the left panel of Fig. 3.3. Moreover, the average fields look similar, up
to sample variance, among all four ensembles with different values of T .

nucleation center. The sample variance is computed as

var ⟨φ̄⟩ = 1

(2∆r)2

∑

r,t

∣∣∣ 1
S

S∑

i=1

[φ̄i(r, t)− ⟨φ̄(r, t)⟩]2
∣∣∣, (3.19)

where S is the total number of samples in the stack. The variance is computed for every pair
of field amplitude value ϕ̄ and bubble width R considered. The nucleation region is taken
to be the spacetime volume defined by r ∈ [rN −∆r, rN +∆r] and t ∈ [tN −∆r, tN +∆r]
with ∆r = 30dr around the nucleation site at coordinates (rN, tN) uniquely defined by
the pair

(
ϕ̄, R

)
. For reference, in mass units m∆r ≈ 2.4. The sample variance for all

combinations of R and ϕ̄ in the case of the T = 0.9m ensemble is shown in Fig. 3.12. The
variance is largest around the boundaries where the parameters take un-physical values.
The white star denotes the combination of parameters that minimizes the variance and
has been used to obtain the average bubble. This pair is different for each choice of T .

The average bubble is shown in Fig. 3.13 alongside its momentum and gradient on
equivalent coordinate grids. The momentum and gradient fields have been obtained in
the same manner as the procedure applied to the field. Namely, the Lorentz boosts were
done with respect to the same definition of the coordinate grid and gamma factor in each
simulation, and the stacking was with respect to the same set of reference points (rN, tN).
Notice that the bubble profile has common features with the canonical result shown in the
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left hand panel of Fig. 3.3. In particular, after a region of space where the field briefly loiters
around the potential maximum, expanding bubble walls form and the bubble interior rolls
down to the true vacuum at φ̄tv = 2π. The wall trajectories are best visible in the gradient
plot, where it can be seen that they quickly asymptote to null and that the gradient
increases as the walls length-contract as they achieve increasingly high velocity. From the
momentum plot, we see that the magnitude of momentum remains small until the bubble
is well-formed. Finally, in the field plot note that prior to the bubble nucleation event,
there is a coherent field configuration with φ̄ < φ̄tv – the opposite direction in field space
than the false vacuum. We will discuss this bubble precursor in the next section.

To make a comparison with the Euclidean instanton prediction for the critical bubble,
we must choose a corresponding time-slice through the average bubble in Fig. 3.13. To find
it, we use the following method. We sample the time-slices around the region identified as
t = 0 in the plot. We take the average field configuration at each time step and time evolve
it using the equations of motion, in the absence of thermal fluctuations. We define the
critical bubble profile φ̄crit(r, tcrit) as the earliest time-slice that evolves into an expanding
bubble solution in the absence of fluctuations and with zero initial momentum everywhere.
The profile for the T/m = 0.9 case is shown in Fig. 3.14 alongside the solution found using
the Euclidean instanton. The two agree quite well. The time evolution of the empirical
critical bubble configuration is shown in the left panel of Fig. 3.15. After a brief loitering
period, the configuration develops into an expanding bubble. Further, inputting as an
initial condition the field configuration one simulation time step prior at t = tcrit − dtout
yields an oscillon configuration as depicted in the right panel of Fig. 3.15. The critical
bubble defined in this way is nearly identical across all four ensembles with different T .
Notice also the striking resemblance between Fig. 3.15 and Fig. 3.3 – the ensemble average
bubble in our lattice simulations matches well with the expectation from the thermal
Euclidean instanton.

In Fig. 3.16 we show the time evolution of the average field and average momentum from
Fig. 3.13, for all values of T , and at a fixed r = 0, the location of the nucleation center. The
critical time has been identified for each of the four ensembles using the method described
above. The curves in Fig. 3.13 have been matched so that t = 0 corresponds to tcrit(T ).
First, note that the average evolution around this time is nearly identical for all values of
T , although each curve was formed by averaging a completely different ensemble of bubble
nucleation events. The field first oscillates about the true vacuum at φ̄fv = π, transitions
across the potential barrier, and oscillates about the false vacuum at φ̄tv = 2π. Around
mt = 0, there is a local minimum in the field momentum, as it briefly loiters around
φ̄ ≃ 3π/2.

However, note from the right panels in Figs. 3.14 and 3.16, and also from the middle

95



−10 −5 0 5 10

mr

0

1

2

〈ϕ̄
〉 cr

it
−
π

Critical profile

Prediction

−10 −5 0 5 10

mr

−0.1

0.0

0.1

〈∂tϕ̄〉crit

〈∂rϕ̄〉crit

Prediction

Figure 3.14: Left: We show in solid green the critical average bubble profile obtained
empirically. The critical profile φ̄(r, tcrit) is the field configuration taken from the aver-
age bubble in Fig. 3.13 that produces an expanding bubble when time-evolved under the
equations of motion. We refer to this particular field profile as φ̄crit, and the associated
time-slice as tcrit. Comparing against the Euclidean prediction shown in dashed black, we
find excellent agreement. The Euclidean profile represents also the initial condition for
the field configuration as a function of lattice site φ̄(r, t = 0) that was used to obtain the
left-hand side panel in Fig. 3.3. Right: The average gradient and momentum on the critical
time-slice compared to their theoretical predictions: the gradient of the Euclidean solution
and the uniformly null momentum respectively.
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panel of Fig. 3.13 that the average momentum around the critical nucleation time tcrit
does not vanish across the lattice. This is in contrast to the prediction of the Euclidean
instanton solution, where the momentum vanishes everywhere. The extreme case where
decays are driven entirely by a momentum profile was studied in [196]. Here, we certainly
do not find that this is the dominant channel, and furthermore, the critical bubble solution
we have identified does not require initial momentum to produce an expanding bubble.
Since the amplitude of momentum at (r = 0, t = tcrit) from both Fig. 3.14 and Fig. 3.16 is
of order the average root-mean-square of momentum fluctuations in the initial conditions
σΠ̄ ≈ {0.040, 0.045, 0.051, 0.056}, it is possible that this is a residual of the de-boosting
procedure or even a bias owing to the fact that we only average critical profiles which
result in expanding bubbles, and neglect solutions that collapse back into the false vacuum
via oscillons. Nevertheless, it is clear that field dynamics are an important component of
bubble nucleation since the average bubble includes precursor fluctuations. We now turn
to study these precursors in more detail.

3.4.5 Bubble precursors

The Euclidean instanton formalism provides a prediction for the critical bubble profile, but
offers no guidance into how this configuration comes about from an ensemble of fluctua-
tions around the false vacuum. General theoretical considerations can yield some insight,
as described in Ref. [30]. In short, the most probable formation history of a rare con-
figuration from a thermal ensemble is the time-reverse of its decay. For thermal vacuum
decay, the critical bubble is in unstable equilibrium between expansion and collapse. As we
demonstrated in Fig. 3.15, time-evolving the slightly subcritical average bubble yields an
oscillon (a stable and compact oscillating field configuration), which after long times would
decay back to un-bound plane-wave fluctuations about the false vacuum. Time-reversing,
the prediction is that the most probable formation history of an expanding thermal bubble
is for plane waves about the false vacuum to scatter, producing an oscillon, which propa-
gates for a long time, eventually interacting with thermal fluctuations to produce a critical
expanding bubble. Indeed, oscillon precursors have been observed previously in lattice
simulations [28], where they were shown to enhance the decay rate in a quench.

We can test the hypothesis that the most likely bubble formation history starts with
an oscillon by using our lattice simulations to empirically measure the dynamics prior to
bubble nucleation. In Fig. 3.13 we see that the average bubble configuration has a large
under-density in field space, followed by a peak in momentum. Looking closely at each
realization, empirically we observe that many bubbles form from oscillons; several examples
are shown in Fig. 3.17.
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Figure 3.16: The time evolution of the average bubble field amplitude (on the left) and the
average momentum amplitude (on the right) depicted in Fig. 3.13 along the r = 0 axis.
For each ensemble labeled by the value of T , we identified the critical time tcrit separately
as the time-slice where the field profile evolves into the expanding bubble solution and is
the earliest time-slice that evolves into a bubble. In this figure, we offset the time evolution
so that in each case the critical time lies at t = 0. The four profiles look extremely similar,
even though they are obtained by averaging entirely different ensembles of bubbles. In
particular, before the critical time, the average field oscillates around φ̄fv, while afterwards
it oscillates around φ̄tv with decreasing amplitude as it settles into equilibrium. Around
the critical time, the one-point function of the field amplitude makes a jump, while si-
multaneously the momentum temporarily acquires a non-zero amplitude, of roughly σΠ̄
in magnitude. At the critical time t = 0, the momentum one-point function is at a local
minimum.
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Figure 3.17: The image caption is on the next page.

100



Figure 3.17: Left: Examples of field configurations preceding the bubble nucleation at
(r, t) = (0, 0). The trajectories of the oscillon precursors are shown in black. The bubble
precursors are not the only structures evolving on the lattice and in fact in many cases it is
collisions of such objects that trigger bubble nucleation. The oscillon collisions also make
it difficult, in general, to track the long-term evolution of the precursor, as exemplified
in the third row where the trajectory seems to diverge from the dominant oscillon in
that simulation at around mt = −20 and instead random background fluctuations are
being picked up. The bottom row shows the same realization as above, but instead of
the oscillon we analyze an example null trajectory. Middle: The field amplitude along
the oscillon trajectory as a function of time. A large amplitude sinusoidal stands out in
the top two cases. The bottom case exemplifies that the typical background field does
not, in general, show the same phase coherence. Right: Taking the time-domain Fourier
transform of the field shown in the middle panel, we compute its power spectrum. The
peak frequency ωosc is identified by the vertical dotted line. Interestingly, the frequency
corresponding to this peak is below the mass scale of the field everywhere, except in the
null test case. This demonstrates that the oscillons are bound structures, since they are
characterized by a lower energy per particle, ωosc < meff , than a collection of free waves
with ω ≥ meff . Moreover, since the critical bubble is a static solution, it has ωcrit → 0. In
this sense, oscillons are an intermediate state between propagating field degrees of freedom
and the critical bubble solution.

We now explain how to disentangle these structures from the background field fluctua-
tions. First we select the simulations where the bubble nucleates after at least a duration
mt = 80, equivalent to a full lattice crossing time. This allows us to trace the long-term
evolution of the precursors. Throughout this section we limit our discussion to the case
T/m = 0.9 where the field fluctuations are smallest, but the results presented below apply
also to the other ensembles.

Oscillons stand out as large amplitude long-wavelength fluctuations. As they evolve
slowly in time, they bounce around the lattice subject to a random Brownian-like motion.
To isolate their trajectory in a consistent way across realizations, we compute the Hilbert
transform of the field φ̄(r, t) and take the absolute value. This produces the instantaneous
amplitude (envelope) of the field as a function of time [197]. The trajectory is simply given
by the location r on the lattice where the envelope has peaked in amplitude. The starting
point for the procedure is the location of the bubble nucleation, shown as (r, t) = (0, 0) in
the figures on the left panel of Fig. 3.17. Then we trace the trajectory backwards in time,
imposing the additional requirement that the maximum at t should not be farther than
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mr = 2 away from the maximum computed at t + dtout. The time evolution is truncated
at mt = −80. In the middle panels of this figure, we plot the time-development of the field
along this trajectory. In the right panels, we show the spectral content of the field along
this trajectory.

Notice from the middle and right panels of Fig. 3.17 that the field along the trajec-
tory oscillates with a characteristic oscillon frequency ωosc. This stands out as a peak in
the power spectrum. We associate a characteristic ωosc to each bubble precursor in our
ensemble. Their distribution is shown in blue in the left panel of Fig. 3.18. To highlight
the difference between oscillons and the background fluctuations, we pick random field
trajectories through each simulation and select the frequency where their respective power
spectra peak. This distribution is plotted in orange. Note that the peak of the power spec-
trum for oscillon trajectories is lower than the peak on random trajectories (appropriately
centered on ω = meff , the prediction from the dispersion relation for plane waves about the
false vacuum). This is consistent with the interpretation that oscillons are bound states.

Next, we compute the average power spectrum of all oscillons and the average power
spectrum of random trajectories and plot them side by side in the right panel of Fig. 3.18.
We also plot, for comparison, the power spectra of the field trajectories φ̄crit(r = 0, t) for
both the subcritical bare lattice solution in Fig. 3.3 and the precursor to the average bubble
critical solution shown in Fig. 3.15. These are shown in green and pink, respectively. Notice
that these peak at the same frequency as the average oscillon signal. This is highlighted
by the green band in both plots. This is strong evidence that the formation history of
bubbles in our simulations includes an oscillon precursor matching the oscillon that results
from collapse of a subcritical bubble (as in e.g. Fig. 3.3).

Here we considered the trajectory of the oscillons in the original simulations, be-
fore de-boosting. In principle the distribution of velocities for the oscillons should obey
⟨v2osc⟩ ∝ Teff/Eosc but the frequent collisions make it difficult to systematically measure
their velocities (such a collision which changes the direction of motion of the oscillon is
clearly visible in the top panel in Fig. 3.17). We will perform a more detailed study of the
properties of oscillon precursors in future studies.

3.4.6 Critical bubble energy

We can compare the observables we introduced up to this point by looking at how they re-
late to the critical bubble action B = Ecrit/Teff . In section 3.4.2 we have already shown that
in the effective IR temperature interpretation we find good agreement with the Euclidean
expectation for the decay rate. Here we show that the measurements of the average critical
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Figure 3.18: Left: In blue is the distribution of characteristic frequencies of the bubble pre-
cursors ωosc. In orange is the distribution of the peak frequencies in the power spectrum
of null field trajectories drawn from the same realizations. The oscillon distribution has
smaller variance and peaks at lower frequency than the null trajectories. This is consistent
with the bubble precursors being bound states of similar properties across the ensemble.
Right: The average oscillon (in blue) and the average null trajectory (orange) power spec-
tra. We also show in green the spectrum of the φ̄crit(r = 0, t) trajectory of the precursor in
Fig. 3.3 and in pink the subcritical average bubble solution from Fig. 3.15, for comparison.
With the exception of the null test line which peaks around ω ≈ meff , all other spectra
peak over the same frequency range, highlighted by the faded green band in both images.
The occupation numbers are also much larger on large scales for the three spectra that
measure oscillons, which supports their identification as bubble precursors.
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bubble and the velocity distribution are also compatible with the theoretical prediction.
The critical bubble energy is

Ecrit(φ) =
L∑

r

1

2
Π2

crit +
1

2
(∂rφcrit)

2 + φ2
0V (φcrit)− φ2

0V (φfv). (3.20)

The kinetic energy term is zero for the static Euclidean solution. Taking the Euclidean
solution φ̄crit computed for the bare potential (used as initial condition for the left panel of
Fig. 3.3 and plotted in dashed black in Fig. 3.14), we obtain a baseline value for the critical
energy. Dividing by the empirical effective temperature of each ensemble determined in
section 3.4.1, we arrive at our theoretical predictions for the action. The predictions are
plotted in blue in Fig. 3.19. Next, we can estimate the energy of the empirical average
critical bubble by taking the average field, gradient and momentum profiles on the critical
slice shown in Fig. 3.14 and integrating (3.20). Repeating the exercise for all four ensembles
differing by the value of T , we obtain the points shown in orange in Fig. 3.19. Lastly,
according to (3.16), the variance of the velocity distribution is a direct measurement of the
critical bubble action. This is shown in green. Overall, we find good agreement between
all measurements in each ensemble.

We have implicitly assumed that the critical energy is independent of temperature,
or even effective mass. We postpone a more detailed analysis of the effects related to the
running of these variables on the bubble solution to future work. However we note that this
approximation is supported by our empirical finding that the average bubble as well as the
time evolution of the field and conjugate momentum one-point functions shown in Fig. 3.16
are identical, up to statistical error bars, between the four different ensembles. This is in
spite of the fact that the averaging is done with respect to different set of parameters (ϕ̄, R)
(see section 3.4.4).

3.5 Discussion

In this Chapter we have identified the center-of-mass velocity distribution of bubbles, the
ensemble-averaged bubble in the nucleation rest frame, and oscillon precursors as promising
observables for vacuum decay. We investigated the properties of these observables using
ensembles of classical simulations in 1+1 dimensions. The initial conditions for the simula-
tions are drawn from a non-equilibrium distribution over phase space which we took to be
Bose-Einstein (as opposed to the equilibrium Rayleigh-Jeans spectrum). Generalizing our
results, we expect bubbles to have a distribution of center-of-mass velocities in any number
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Figure 3.19: The energy of the critical bubble solution, as measured from three different
lattice observables and compared against the Euclidean prediction shown in blue. The
prediction is given by (3.20) computed for φcrit corresponding to the solution to the static
equation of motion (3.3). The orange line corresponds to the critical field profile obtained
empirically from the average bubbles, as explained in section 3.4.4. The error bars on the
blue and orange are proportional to the systematic uncertainty on the effective temperature,
as explained in section 3.4.1. Finally, the green curve is obtained from taking the inverse of
the measured values for ⟨v2⟩. Here the error bars are the same as in Fig. 3.10, percentage-
wise. The data points have been offset slightly along the horizontal axis to help with
visualizing the error bars.
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of spatial dimensions and for any ensemble defining the initial conditions. The distribu-
tion likely depends on the ensemble from which the initial conditions are drawn, but it is
reasonable to expect that it is given by the Boltzmann factor involving the total bubble
energy if the ensemble is close to thermal. This will be a topic of future investigation. We
also expect that oscillon precursors play a role in thermal bubble nucleation in any num-
ber of spatial dimensions. Here, there could be interesting phenomenology related to the
potential, since this determines the properties of oscillons. There may also be dependence
on the ensemble of initial conditions, since the oscillons are infrared-sensitive objects. For
the ensemble-averaged bubble, there may also be important differences that depend on the
potential and the ensemble of initial conditions. For example, vacuum decay at zero tem-
perature is not described by the static thermal critical bubble, but by the O(4)-invariant
Euclidean bounce, which gives rise to an expanding bubble in real time. Can this be the
average bubble observed in semi-classical simulations such as those performed in [21]?

Our study could also have interesting implications for a number of phenomenological
scenarios involving first-order phase transitions. Models of electroweak baryogenesis involve
a first-order phase transition (see e.g. [198] for a review). The terminal velocity of the bub-
ble wall through the primordial plasma is a crucial element of these models, determining if
a sufficient baryon asymmetry can be accumulated. Incorporating the velocity distribution
outlined in this Chapter could have implications for this calculation if the expected velocity
of bubbles is comparable to the terminal wall velocity which is typically non-relativistic
and can be as low as v ∼ O(.1) [199, 200, 201] (though in some models can be close to
the speed of light, see e.g. [202]). Our results imply that the root-mean-square bubble
center-of-mass velocity is

√
⟨v2⟩ ∼ 1/

√
B, where B ≫ 1 is Euclidean critical bubble action

controlling the false vacuum decay rate. We can estimate B by requiring that the phase
transition occurs when Γ ∼ H(T )4, which for H2 ∼ T 4/M2

pl and assuming Γ ∼ T 4B3/2e−B

(appropriate in 3+1 dimensions) yields B ∼ 150 for a temperature of order TeV. The ex-
pected root-mean-square velocity of a bubble during electroweak baryogenesis is therefore√
⟨v2⟩ ∼ .1 - comparable to the terminal wall velocity! This simple estimate undoubt-

edly misses important physical effects, but it certainly motivates the inclusion of bubble
velocities in these models. Note that in existing simulations of electroweak baryogenesis
e.g. [203], bubbles are inserted by hand and do not include this effect. These simulations
could be augmented to include the velocity distribution outlined in this Chapter. The ve-
locity distribution may also have implications for the spectrum of stochastic gravitational
waves produced during electroweak baryogenesis or other early-Universe phase transitions
observable by LISA [158].

The oscillon precursor to bubble nucleation could also have implications for baryogen-
esis. This is because the oscillon core can sample regions of a symmetry-breaking phase.
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The role of oscillons in electroweak baryogenesis was discussed in [204], whose title reflects
their conclusion: oscillons are not present during an electroweak phase transition. Here, we
have shown that whenever bubbles are present, so are oscillons. This motivates revisiting
the question of whether a long-lived oscillon precursor could contribute significantly to the
dynamics and outcome of baryogenesis.

Early work on oscillons showed that their presence could affect the decay rate of a false
vacuum [29]. Here, we highlight that for thermal decay they are an essential component of
the nucleation process. What is their role in the Euclidean formalism - are they implicitly
captured in the saddle point corresponding to the critical bubble? The answer to this
question could have implications for the decay rate computation at zero temperature as
well: is vacuum decay preceded by a ‘virtual’ oscillon, or is vacuum decay fundamentally
different in this respect? We hope to investigate these, and other questions, in future
work.
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Summary of Part II

In this Part we introduce a new type of Cosmic Microwave Background (CMB) secondary
anisotropy – which we termed patchy dark screening – induced by dark photons and axions
with masses in the range 10−13−10−11 eV interacting with primordial photons inside large
scale structure (LSS).

We begin Chapter 4 by first reviewing photon to dark photon kinetic mixing and de-
scribe quantitatively the phenomenology of resonant conversion inside LSS. Next, we use a
halo model-based approach to statistically model the anisotropies due to a dark screening
optical depth. We derive correlation functions of CMB temperature and polarization fluc-
tuations induced by the conversion of photons into dark photons, and between these CMB
observables and LSS tracers. Next, we present a Fisher forecast to estimate the sensitivity
of existing and future CMB data on the various two- and three-point correlation functions.
The possibility to construct analogous correlation functions with various cosmological ob-
servables is discussed. In the appendices associated to this Chapter, we present details
about the modelling of dark matter and gas halos, and the technical details related to the
computation of correlation functions.

In Chapter 5 we extend the analysis introduced in Chapter 4 to the case of CMB photons
resonantly converting into axion particles. This Chapter is structured in analogy with
Chapter 4. Here, the background magnetic field inside virialized halos plays an important
role in the phenomenology and we investigate this aspect in detail. We include several
appendices including technical details of calculations and discussions on the domain of
validity of our analysis and methods, as well as an extension to the case of massless axions.
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Chapter 4

Patchy Screening of the CMB with
Dark Photons

4.1 Introduction

Cosmic microwave background (CMB) and large scale structure (LSS) surveys have pro-
vided some of the most important evidence for physics beyond the Standard Model (BSM)
of particle physics – dark matter and dark energy, as well as early-Universe cosmological
models such as inflation. These observations also provide powerful constraints on BSM
physics, such as the number of relativistic degrees of freedom, neutrino masses, and the
strength of interactions during an inflationary era. The next generation of CMB exper-
iments such as the upcoming Simons Observatory [205], as well as CMB-S4 [206] and
CMB-HD [89], and LSS surveys like DESI [207], Euclid [208], and LSST [209] promise to
further expand our ability to detect and characterize BSM physics. These new surveys
motivate the exploration of new observables that can exploit their full potential. In par-
ticular, a promising avenue of current and future effort is to use the CMB as a back-light
through which to study the intervening LSS (see e.g. [210, 211]).

Within the Standard Model of cosmology and particle physics, CMB photons can in-
teract with LSS via gravity (e.g. weak lensing or the integrated Sachs-Wolfe effect) and
electromagnetism (e.g. Sunyaev Zel’dovich effects). These effects lead to additional tem-
perature and polarization anisotropies in the CMB, the so-called secondary CMB, as well
as new correlations with tracers of LSS such as galaxy surveys. The slew of associated new
observables, and in particular cross-correlations between CMB and LSS, can be used to
extract valuable information about the initial conditions and the formation and growth of

110



structure in the early Universe. Several examples include: lensing reconstruction (see e.g.
[81] for a review), kinetic Sunyaev Zel’dovich velocity reconstruction [82, 83, 84, 212, 86],
moving-lens velocity reconstruction [87], and patchy reionization optical depth reconstruc-
tion [88].

In this Chapter, we discuss the possibility of using the CMB and its cross-correlation
with tracers of LSS to extract information about BSM physics that manifest in the low-
redshift Universe. In particular, we will discuss how a new type of CMB secondary
anisotropy and its correlation with LSS can be used to extend the reach in the param-
eter space of kinetically mixed dark photons [105, 106] by orders of magnitude.

As discussed briefly in Chapter 1, the dark photon is a hypothetical vector boson that
arises in various extensions of the Standard Model [99, 100]. An ultra-light dark photon
is an essential ingredient in dark matter models, either as a light bosonic dark matter
candidate [101, 102, 103], or as a mediator to a sector of dark matter particles (see [104]
and reference within). Despite recent evidence of various collective effects which cast
doubt on the validity of some of the models (vortex production during production of dark
photon dark matter [114] and the two stream instability in the case of freeze-in dark matter
models [213]), it is still of great interest to probe the existence of ultra-light dark photons
regardless of their cosmological abundance through superradiance [111, 112, 113, 114, 115],
cosmology [116, 117, 118, 119], stellar objects [120, 121, 122] and laboratory searches [123,
124, 125, 126, 127].

A dark photon and its coupling to the Standard Model can be described by the La-
grangian

L = −1

4
FµνF

µν − 1

4
F ′
µνF

′µν − m2
A′

2
A′

µA
′µ − ε

2
FµνF

′µν +AµJµ, (4.1)

where Aµ and A′µ are the photon and dark photon fields respectively, with F µν and F ′µν

their field strengths, and Jµ is the Standard Model electromagnetic current. The dark
photon has a mass mA′ and couples to the Standard Model photon through a kinetic
mixing parameter ε. This simple coupling leads to a plethora of observable consequences
(see [15] and references within). Most of these are based on the conversion, in particular
resonant conversion, between the photon and the dark photon in a medium. In the lab,
resonant conversion is facilitated with carefully prepared small scale experiments. In the
early Universe, resonant conversion happens in different astrophysical and cosmological
environments, as the dispersion relation of the photon (plasma frequency) is naturally
scanned. When the plasma frequency of the photon m2

γ over its trajectory x⃗ matches the
mass of the dark photon

m2
γ(x⃗) = m2

A′ , (4.2)
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CMB photons resonantly convert into dark photons.

In [116, 117, 118, 119, 214], the resonant conversion between CMB photons and dark
photons was studied both in the homogeneous early-time and inhomogeneous late-time lim-
its. Cosmic expansion and the inhomogeneous distribution of ionized gas were identified
as important scanners of the plasma frequency. In this Chapter, we examine the conver-
sion from CMB photons into dark photons inside non-linear structure, after the epoch of
reionization, where the amplitude of the density profile of ionized gas within dark matter
halos provides the primary scanner.

Resonant conversion leads to a frequency-dependent disappearance of CMB photons
that traces the distribution of matter in the Universe. Hence it can be treated as a frequency
(ω) and angle (n̂) dependent optical depth τ(ε, ω, n̂), after integrating along the line of
sight. The optical depth from resonant conversion can be extracted or constrained from
cosmological data, and we present five methods to search for dark photons, along with the
projected sensitivity on ε:

• Spectral distortions of the CMB: The spatially averaged ⟨τ(ε, ω)⟩ manifests as
a distortion of the blackbody spectrum of the CMB, and as a result is constrained
by COBE/FIRAS [77]. This effect, the late-time component of the effect studied
in [116, 117, 118, 119], scales as ε2.

• CMB temperature and polarization anisotropies: The optical depth correla-
tion function ⟨τ(ε, ω, n̂) τ(ε, ω, n̂′)⟩ can be obtained from the measured CMB through
the screening of the temperature and polarization anisotropies by resonant conver-
sion. Data from CMB experiments can be used to extract the amplitude of dark
screening, which scales like ε4. We show how the large signal-to-noise ratio of CMB
surveys, along with the characteristic frequency dependence of the screening signal,
implies that this method outperforms the COBE/FIRAS constraint.

• Correlating CMB anisotropies with templates from LSS: As described in
greater detail below, the morphology of the dark photon optical depth anisotropy
depends on the distribution of ionized gas in halos. With assumptions about the
galaxy-gas connection, a galaxy survey can be used to create a template for the dark
photon optical depth field τ̂(ω, n̂). Cross-correlating the CMB measurement with
this template ⟨τ(ε, ω, n̂) τ̂(ω, n̂′)⟩ scales as ε2, improving greatly on the CMB-only
reach.

• Correlation with Thomson screening: The standard optical depth due to Thom-
son scattering by free electrons (we will denote by τTh) is also present as a source
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of screening in the measured CMB. Since this anisotropic signal traces the same dis-
tribution of ionized matter as the dark screening component, the two signals will
be correlated yet distinguishable due to the latter being frequency dependent. The
cross-correlation ⟨τ(ε, ω, n̂) τTh(n̂′)⟩ also scales as ε2.

• The CMB bispectrum and optical depth reconstruction: Both conversion
to dark photons and Thomson screening induce non-Gaussian statistics in the CMB
anisotropies. The combined effect can be modelled via three-point correlation func-
tions (bispectra) that also scale as ε2. These bispectra hold additional information
compared to two-point functions since there are more modes; the associated statis-
tical anisotropy can additionally be used to reconstruct the dark screening optical
depth, allowing for its study at the field level.

In this Chapter, we demonstrate the possibility of using the aforementioned methods
to improve the reach on kinetically mixed dark photon in the mass range (10−13 eV ≲
mA′ ≲ 10−11 eV). The Chapter is organized as follows. We first review resonant photon to
dark photon conversion and compute the properties of conversion inside individual halos
in Section 4.2, before summing over halos to obtain a frequency dependent dark screening
optical depth in Section 4.3. In Section 4.4, we discuss the anisotropies of this dark screen-
ing optical depth, correlation functions, and CMB observables. In Section 4.5 we study the
cross-correlation between this dark screening optical depth and the LSS of our Universe,
and construct two-point cross-correlation functions between the CMB and LSS, as well as
three-point cross-correlation functions of CMB observables. In Section 4.6, we present a
forecast of the sensitivity of existing and future CMB data-sets to the various correlation
functions studied in this Chapter. The result of these forecasts are shown in Section 4.7,
along with a discussion of the prospect for constructing similar correlation functions in
other new physics scenarios. In the appendix, we present details about the modelling of
dark matter and gas halos (Appendix B.1) and the computation of correlation functions
of dark screening (Appendix B.2), as well as a list of useful two-point correlation functions
and quadratic estimators for the optical depth and other quantities (Appendix B.3).

4.2 Photon to dark photon conversion

In this section, we discuss how photons resonantly convert into dark photons within non-
linear structure in the context of the halo model of LSS, where matter is organized into
virialized dark matter halos populated by gas (see e.g. [59, 60] for a review). Resonant
conversion can be modelled via the same formalism that describes neutrino oscillation
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in medium, that is, the Mikheyev-Smirnov-Wolfenstein (MSW) effect [215, 216]. In the
following, we review the resonant conversion of photons into dark photons and present our
prescription for modelling the conversion probability as a sum over halos.

4.2.1 Resonant conversion probability

In an ionized medium, the Lagrangian in (4.1) leads to resonant conversion of photons to
dark photons. This can be described by the Schrödinger equation [116]:

i
d

dt

(
γ
A′

)
=

1

4ω(t)

(
m2
γ(x⃗(t))−m2

A′ 2εm2
A′

2εm2
A′ −m2

γ(x⃗(t)) +m2
A′

)(
γ
A′

)
, (4.3)

where γ is an incident photon with frequency ω(t) that follows a trajectory x⃗ parameterized
by time t. The photon acquires an effective mass m2

γ(x⃗(t)) (plasma frequency) as it crosses
an ionized medium due to its interaction with the collective oscillations in the free electron
density. Hence, to first order, the mass depends on the number density of electrons ne(x⃗(t))
along its trajectory:

m2
γ(x⃗(t)) ≃ 1.4× 10−21 eV2

(
ne(x⃗(t))

cm−3

)
. (4.4)

Here we assume all baryonic matter is ionized and therefore ignore an additional negative
contribution due to interactions with neutral atoms [116].

In the small-ε limit where conversion from dark photons back to photons can be safely
neglected, the conversion probability is given by

Pγ→A′ =
∑

tres

πεm2
A′

ω(tres)
× ε

∣∣∣∣
d

dt
lnm2

γ(x⃗(t))

∣∣∣∣
−1

t=tres

, (4.5)

where tres are the times when the resonance condition m2
γ(tres) = m2

A′ is met along the
path x⃗. This expression for the total probability is a combination of the conversion rate

Γres = πεm2
A′/ω(tres) and the resonance time scale ∆tres ≃ ε

∣∣ d
dt
lnm2

γ(x⃗(t))
∣∣−1

t=tres
.

4.2.2 Photon to dark photon conversion in non-linear structure

In the homogeneous and weakly inhomogeneous early Universe (z ≫ 10), the slowly dilut-
ing charged particle density caused by cosmic expansion provides a natural scanner of the
dark photon mass, and ensures efficient conversion for a wide range of dark photon masses.
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At low redshift (z ≲ 10), the scanner is mainly provided by the spatially varying electron
density inside non-linear structure, e.g. halos, which also ensures efficient conversion over
a range of dark photon masses due to the large density contrast.

Expression (4.5) is the integrated probability to convert along the line of sight. Working
in the halo model for LSS [59], this expression becomes a sum over halos, where each term
represents the probability that a photon converts within each. We re-write the probability
per halo in terms of the mass and redshift:

Pi(x⃗|zi,mi) =
πε2m2

A′

ω(zi)

∣∣∣∣
d

dt
lnm2

γ(x⃗|zi,mi)

∣∣∣∣
−1

t=tres

. (4.6)

This expression holds for any type of photon, but in what follows we will focus on the
conversion of CMB photons along their path from the surface of last scattering to the
Earth. In the remainder of this sub-section we explain how to simplify the term in the
modulus to account for a photon’s path across each halo.

The effective photon mass m2
γ(x⃗) depends on the baryon number density as well as the

ionization fraction. In a galactic halo, baryonic matter represents a fraction Ωb/Ωc ∼ 0.19
of the total halo mass m. Since baryonic matter is predominantly protons by mass, and the
Universe is electrically neutral, we approximate the number density of the electrons to be
the same as the number density of baryons. Furthermore, we are interested in the period
after reionization (z ≲ 6−10) therefore we assume throughout that the ionization fraction
is unity everywhere. Where relevant, we treat reionization as instantaneous at a redshift
in the range 6 < z < 10 to encapsulate uncertainties about the history of reionization.
Finally, we neglect the impact of He reionization. Further details of our modelling of
reionization and other assumptions can be found in Appendix B.1.

For the density profile of baryons, we use the Battaglia et al. ‘AGN Feedback’ gas density
profiles introduced in [217], which are based on hydrodynamic cosmological simulations.
We use a version of the profile where the fit parameters are based on simulations that
include a sub-grid model for active galactic nuclei (AGN) feedback. The profile is given
by an expression that parametrically resembles the standard Navarro-Frenk-White (NFW)
density profile of dark matter in halos [218]:

ρgas =
Ωb

Ωc

ρc(z)ρ0(z,m)

(
x

xc

)γ [
1 +

(
x

xc

)α(z,m)
]−β(z,m)+γ

α(z,m)

, x ≡ r

r200(z,m)
. (4.7)

The quantity ρc(z) is the critical density for a flat FRW Universe and r200 is the radius
where the gas density reaches 200ρc. The exponents α, β, γ fix the slope in the regimes
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where x ∼ 1, x ≫ 1 and x ≪ 1, respectively. There are two fixed quantities γ = −0.2
and the core scale xc = 0.5 that control the central region in each halo. The remaining
functions ρ0(z,m), α(z,m) and β(z,m) are fit with power laws:

A = a

(
m200

1014M⊙

)b
(1 + z)c, m200 =

4π

3
r3200, (4.8)

where the best-fit parameters {a, b, c} are in each case as follows: for ρ0 {4000, 0.29,−0.66},
for α {0.88,−0.03, 0.19}, and finally for β {3.83, 0.04,−0.025}. These values are taken from
Table 2 of [217]1.

As discussed in detail in later sections, the assumptions about how gas inhabits dark
matter halos has a significant effect on the signal and the resulting sensitivity. An extreme
case to contrast with is to assume that baryons track the dark matter density everywhere.
The parametric expression for the standard NFW profile is [218]:

ρNFW =
ρs

r
rs

(
1 + r

rs

)2 . (4.9)

Each halo has a physical scale radius and density that depend on its mass and redshift, i.e.
rs(zi,mi) and ρs(zi,mi). The assumption that the baryons follow dark matter is expected
to be reasonable in the outer regions of halos (e.g. beyond the scale radius). However it is no
longer valid in the inner regions where baryonic feedback processes are non-negligible. We
present a discussion on the model uncertainty in our sensitivity due to varying assumptions
about the electron profile in Appendix B.1, using the NFW and AGN Feedback models as
a proxy for the span of models.

The effective mass of a photon crossing a halo i centered at redshift zi with mass
mi depends on the number density of electrons ne along its path as defined in (4.4).
Assuming all baryonic mass inside halos is contained within protons, that are as numerous
as electrons, we can write this in terms of the halo gas density profile:

m2
γ(x⃗|zi,mi) = κ

[
ρgas(x⃗|zi,mi)

M⊙/Mpc3

]
, (4.10)

where the term in brackets is dimensionless and we have defined κ = 5.7× 10−38 eV2.

1Throughout Part II of this Thesis, unless m200 is written explicitly (e.g. when we define the gas profile
in (4.7) from [217]), the symbol m denotes the halo virial mass, defined such that within the virial radius
the halo density is 178 times the critical density of the universe, i.e. rvir ≡ r178 and m ≡ m178.
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For resonant conversion that occurs at a radius rres, the resonance time scale can be
broken into a radial and an angular part:

∆tres ≡ ε

∣∣∣∣
d lnm2

γ

dt

∣∣∣∣
−1

tres

=
ε

κ
m2

A′

∣∣∣∣
dρ(x⃗)

dt

∣∣∣∣
−1

tres

=
ε

κ

m2
A′

|dr(tres)/dt|

∣∣∣∣
dρ

dr

∣∣∣∣
−1

rres

, (4.11)

where the velocity term |dr(t)/dt| in (4.11) depends on the precise photon trajectory
through the halo and encapsulates the angular dependence of the probability. As shown
in Fig. 4.1, the direction to the center of halo i is n̂i and the direction of the test photon is
n̂. We assume each halo is located at a single redshift zi throughout the photon’s crossing
time (e.g. the halo size does not encompass cosmologically relevant distances), and take
advantage of azimuthal symmetry around the n̂i direction.

Figure 4.1: The trajectory of a photon x⃗(t) through a dark matter halo centered at χi, n̂i
on an observer’s sky. In a coordinate system whose origin is at the halo center, the photon
trajectory follows r(x⃗(t)) ≡ r(t). Resonant conversion to a dark photon occurs when the
photon crosses through a spherical shell at rres over a timescale ∆tres; each trajectory has
two crossings. We define the boundary of each halo by the virial radius rvir.
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In the small angle approximation where n̂||n̂i, the minimum comoving distance between
the halo center and the photon’s path is (1+zi) rmin = χi θ, where χi is the radial comoving
distance to the halo center at redshift zi and θ is a small angle. The velocity |dr(t)/dt| =
cosφ(t), where sinφ(t) = rmin/r(t).

Using this geometry, the conversion probability due to halo i is separable into a radial
part and an angular part. The latter one is a measure of how long the photon spends inside
the resonance region ∼ ∆tres. We have:

P i
γ→A′(χi,mi) = P (χi,mi)u(n̂− n̂i|χi,mi), (4.12)

where we define

P (χi,mi) =
2πε2m4

A′

κω(zi)

dρi
dr

∣∣∣
−1

rres
Θ(rres − rvir),

u(n̂− n̂i|χi,mi) =

[
1− (χiθ/rres)

2

(1 + zi)2

]−1/2

.

(4.13)

The Heaviside step function Θ(rres − rvir) arises since we consider only photon to dark
photon conversion happening inside the boundary of each halo, which we take here to be
the virial radius rvir. The step function is normalized so that Θ(rres−rvir) = 2 for rres < rvir
and Θ(rres−rvir) = 1 for rres = rvir to account for the fact that a photon crosses a resonance
twice, going in and then out of a halo, except when it exactly grazes the edge of the virial
radius. The effect of the sharp truncation at the boundary of the halo is significant for
masses mγ ∼ 10−13 eV that probe low densities. Note that the function u(n̂ − n̂i|χi,mi)
has the apparent singularity when θ = (1 + zi)rres/χi, where the conversion probability
blows up. However, the integral over the profile is finite and equal to

∫
d2n̂ u(n̂− n̂i|χi,mi) = 2π(1 + zi)

2r2res/χ
2
i . (4.14)

We close this section by noting that within the halo model, we make the rather drastic
assumptions that each halo (dark matter and gas) is spherically symmetric, identical at
each mass and redshift, and has properties independent of their formation history and local
environment. These assumptions will fail for individual halos. However, we expect that
quantities dependent on the statistical properties of the full distribution of halos, such as
power spectra, will be well-approximated (see e.g. recent analyses such as [219]). We are
primarily concerened with such statistical quantities in the following.
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4.3 The photon to dark photon conversion monopole

The total probability for a photon to convert over its trajectory is the sum of contributions
from each individual halo. In this section we focus on the sky-averaged probability and
explain why this effect induces a new type of optical depth. In the next section we introduce
the two-point function of optical depth fluctuations owing to the halos’ shapes on the sky.

The overall conversion probability is

Pγ→A′ =

〈∑

i

P i
γ→A′(χi,mi)

〉
=

∫
dm

∫
d3χn(χ,m)P (χ,m)u(n̂|χ,m), (4.15)

where d3χ = χ2dχd2n̂ and we have separated the resonant conversion probability Pγ→A′

into its radial and angular components that depend on each halo’s characteristics. To
obtain the expression above we also identified the number density of halos of mass m at
redshift χ as 〈∑

i

δ(m−mi)δ(χ− χi)δ2(n̂− n̂i)
〉
≡ n(χ,m), (4.16)

where ⟨. . .⟩ denotes a sky-wide ensemble average and the delta functions are evaluated at
each halo position and mass. The halo number density per volume per halo mass n(χ,m)
is the halo mass function. We use the Tinker mass function throughout [220].

Integrating the angular profile u(n̂|χ,m) over the sky we implicitly weight the prob-
ability by the effective projected area of each halo. Evaluating the angular integral and
simplifying we obtain:

Pγ→A′ = 4π

∫ zreio

0.01

dz
χ(z)2

H(z)

∫
dmn(z,m)P (z,m)u00(z,m), (4.17)

where u00 =
∫
d2n̂ u(n̂)/4π is the monopole of u(θ), and we changed the integration variable

to redshift z from radial comoving distance χ. Within our assumption of instantaneous
reionization, we impose a sharp upper limit on the integral over redshift at zreio.

Photon to dark photon conversion manifests itself as a frequency dependent optical
depth, encoding the removal of CMB photons along their path from recombination to CMB
telescopes on Earth. The sky-averaged magnitude of this optical depth is the integrated
probability in (4.17):

τ̄(ε, ω) ≡ Pγ→A′ ∝ ε2ω−1, (4.18)
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where from here onward the bar notation stands for the projected, i.e. integrated over
redshift, sky average. We introduce a new notation for the dimensionful average optical
depth

η̄ = τ̄ ε−2ω [eV], (4.19)

such that η̄ depends only on the dark photon mass m2
A′ and the cosmology. It is useful to

make this distinction because both ε and ω are parameters we vary later.

In Fig. 4.2, we show several examples of the differential optical depth along the line of
sight for a range of dark photon masses. Notice in this plot that the light dark photons are
only produced at low redshift. Light dark photons probe the outer-most regions of halos
and the abrupt fall-off is due to the truncation of halos at the virial radius. Physically, this
falloff would be broadened by the softer boundaries between halos and the intergalactic
medium. In contrast, the heaviest dark photons probe regions near the core of halos where
the gas density is highest. Since the gas profile is nearly flat near the core of halos, only the
heaviest and rarest halos contribute to the optical depth of photons with mA′ ≥ 10−12 eV.

10−2 1 2 3 4 5 6

z

0

2×104

4×104

6×104

8×104

d d
z
η̄

[e
V

]

Dark Photon Mass mA′ [eV]

3×10−13

6×10−13

9×10−13

2×10−12

Figure 4.2: The average dimensionful optical depth defined in (4.19) as a function of
redshift, for a range of dark photon masses. To obtain the full optical depth, one needs
to integrate over redshift and multiply by the unknown mixing parameter divided by the
frequency of the photon, ε2/ω. Notice that the lighter masses produce the strongest signal
at low redshift. Meanwhile, heavier dark photons probe redshifts all the way to reionization
but require crossing large densities in order for the resonant conversion to take place. These
are found within more massive halos whose number density is suppressed.
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In Fig. 4.3 we plot the total (e.g. integrated over the line of sight) dimensionful optical
depth assuming both zreio = 6 and zreio = 10. The change in magnitude is less than the
thickness of the blue curve, meaning that our model is insensitive to uncertainties related
to when the end of reionization takes place. From now on, unless otherwise stated, we
assume that reionization takes place instantaneously at zreio = 6. Notice that, unless
ε ≪ 1 photon to dark photon conversion is in the optically thick regime. For example,
τ̄ = η̄ ε2/ω = 1 for ∼ 100 GHz photons (near the peak of the CMB blackbody) at ε ∼ 10−4.
This is a preliminary indicator that photon to dark photon conversion at low redshift can
be a sensitive probe. The dark photon mass range over which there is a significant effect
spans roughly one order of magnitude, peaking at mA′ ∼ 6× 10−13 eV.

10−13 10−12 10−11

mA′ [eV]

0

2×104

4×104

6×104

8×104

105

η̄
[e

V
]

Milky Way

Extra-galactic

Figure 4.3: The dimensionful optical depth monopole as a function of dark photon mass
mA′ . The extra-galactic contribution η̄ (blue) is defined by (4.19). Under our assumptions,
resonant conversion occurs once reionization is completed and here we plot the case where
zreio = 6 and where zreio = 10. The maximum change in the amplitude of η̄ is of order
102 eV, less than the thickness of the blue line, and we conclude that the model is insensitive
to the details of reionization over the range of masses we are probing. We therefore assume
zreio = 6 in the remainder of this Chapter. At low mass, η̄ → 0 due to the constraint that
conversion only happens within the virial radius in each halo. The upper bound is set by
the shape of the gas profile and details about the halo model. The contribution due to gas
in the Milky Way ηMW (black) is defined in (4.20).

Baryonic feedback can affect the accessible dark photon mass range and strength of
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the photon to dark photon conversion monopole, in principle contributing a source of
modelling uncertainty in the expected signal. We explore this modelling uncertainty in
more detail in Appendix B.1 by comparing the AGN gas model used here [217] with the
results obtained by assuming that baryons trace the dark matter NFW density profile [218].
We show that the two models give nearly identical results for low masses mA′ where the
resonant conversion condition is met near the outermost region of a halo. This can be
understood as a consequence of the fact that the AGN gas profile and the NFW profile
are only different near the core of halos where the NFW density increases without bound,
while the gas density achieves a maximum; beyond the scale radius, the two density profiles
are nearly the same. Also for this reason, the predictions for the two models differ most
at large dark photon mass. Here, details about the gas population in each halo can have
a significant effect on the projected signal and resulting sensitivity, and it is important to
incorporate this modelling uncertainty in the interpretation of our results below. As we
will demonstrate in more detail below, the monopole signal is more strongly influenced by
this modelling uncertainty than correlation functions.

4.3.1 Contribution from the Milky Way

The gas halo surrounding the Milky Way is also a source of resonant photon to dark
photon conversion. In this section we model its contribution to the overall optical depth.
The Earth’s distance from the galactic center is well below the scale radius of the Milky
Way halo, therefore in our model we assume that there is only an appreciable contribution
to the optical depth monopole and not to optical depth anisotropies. We further assume
that the Milky Way is an average spherical halo, with average AGN feedback and model it
with the same gas profile of (4.7) computed for zMW = 0 and mMW from [221]. In reality,
the details of the gas distribution can affect both the monopole and anisotropies in the
optical depth. Nevertheless, we can estimate the relative magnitude of the galactic versus
extra-galactic conversion under these assumptions.

The expression for the optical depth is simply the contribution from a single halo with
appropriate properties:

τMW ≡ PMW
γ→A′ =

2πε2m4
A′

κω

dρgas
dr

∣∣∣
−1

rres
Θ(rres − rMW

vir ), (4.20)

where we discard the angular component by assuming the Earth is near the center of the
halo, and ω is the frequency of the CMB photons today. Assuming a virial radius and
virial mass for the Milky Way as found in [221], as well as the concentration-mass relation
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at redshift zero from [222], we calculate the conversion probability for the relevant range of
dark photon masses. The result is plotted in Fig. 4.3. Given the assumptions made in this
Chapter, the extra-galactic optical depth dominates the contribution due to conversion in
the Milky Way for all dark photon masses considered.

Since the Milky Way does not host an AGN, the gas profile assumed here may be too
diffuse. In the extreme scenario where gas traces dark matter, the magnitude of the Milky
Way contribution increases monotonically for higher dark photon masses. The increase
is cutoff at the core when gas no longer traces dark matter. The high dark photon mass
regime is where the extra-galactic contribution to the optical depth becomes small, and
the Milky Way therefore introduces additional modelling uncertainties at the upper end
of dark photon masses we consider. Note that such effects will only increase the reach
in sensitivity to conversion, making the neglect of contributions from the Milky Way a
conservative assumption.

4.4 Patchy dark screening

When photon to dark photon conversion occurs in non-linear structure, the associated
optical depth for conversion is strongly anisotropic on the sky. These anisotropies in the
optical depth serve as a screen of varying opacity through which the CMB must propagate
on the way from decoupling to our telescopes here on Earth. In addition to the sky-
averaged suppression in the intensity of CMB photons, new temperature and polarization
anisotropies are introduced due to the different conversion probability of CMB photons to
dark photons across different lines of sight.

The analogous effect in the standard cosmological model is the ‘screening’ of CMB
anisotropies due to the Thomson scattering of CMB photons by free electrons. For Thom-
son scattering, anisotropies in the optical depth couple to anisotropies in the CMB tem-
perature and polarization. This is known as ‘patchy screening’ of the CMB. Notably, there
is no coupling of optical depth anisotropies to the CMB temperature monopole – Thom-
son scattering doesn’t change the energy of photons and for every photon scattered out of
the line of sight, another is scattered into the line of sight. Therefore, patchy screening
of the CMB is always a small effect, i.e. second order in perturbations of the CMB and
optical depth anisotropies. Although small, the detection of patchy screening during [88]
and after [223] reionization is within the reach of future CMB experiments.

Photon to dark photon conversion produces patchy dark screening, which has two crucial
differences to Thomson screening: conversion does not preserve the blackbody spectrum
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and conversion only removes photons from the line of sight. Therefore, patchy dark screen-
ing couples the CMB monopole to fluctuations in the optical depth, and is a 1st order effect
(in anisotropies). Since the CMB monopole is ∼ 104 times larger than the temperature
anisotropies, patchy dark screening is far stronger at fixed optical depth than Thomson
screening. Furthermore, the characteristic frequency-dependence of patchy dark screening
can be used to separate it from the primary CMB and astrophysical foregrounds. In the
remainder of this section and the next section, we derive various correlation functions that
will be used to forecast the sensitivity of CMB experiments to the kinetic mixing parameter
and dark photon mass, assuming the frequency dependent dark screening anisotropies can
be separated from the primary CMB anisotropies. A detailed discussion of how well this
separation can be performed is presented in Section 4.6.2.

4.4.1 Anisotropic screening

Before computing CMB correlators, we must first describe anisotropies in the photon to
dark photon conversion optical depth, the anisotropies in the Thomson optical depth, and
the cross-correlation between these two fields. The halo model for large-scale structure is
a useful tool for these computations, since it is straightforward to populate dark matter
halos with the electron density (for Thomson screening) and the conversion probability
(for dark screening).

The standard optical depth to reionization is the integrated electron density along the
line of sight:

τTh = σT

∫
dχa(χ)ne(χ, n̂), (4.21)

where σT is the Thomson cross-section and a is the local scale factor. The inhomogeneous
matter distribution introduces spatial fluctuations in the electron number density ne(χ, n̂).
This can be measured via the directional dependence they introduce on the optical depth
field. The local perturbations in the electron density induce small fluctuations δτTh(n̂) in
the optical depth profile

τTh(n̂) = τ̄Th + δτTh(n̂), (4.22)

where τ̄Th is the standard cosmological parameter. Once again we work under the assump-
tions of the halo model where the integral above can be written as an average over halos
whose number density depends on mass and redshift, where the electron number density
fluctuations are related to the gas density profile. In the Limber approximation, the mul-
tipole expansion of the electron density from one halo centered on the north celestial pole
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(such that the azimuthal angular momentum m = 0) is [224]:

ρeℓ(z,m) =
a(z)

χ(z)2

∫
4πr2dr

sin ((ℓ+ 1/2) r/χ(z))

(ℓ+ 1/2) r/χ(z)
ρgas(r|z,m), (4.23)

where the ρgas is the Battaglia et al. AGN gas density profile [217] and ρe = nemp. The
Limber approximation works best for ℓ≫ 1, which is the regime we are in.

We now introduce the optical depth for photon to dark photon conversion. Consider
small anisotropic perturbations to the average extra-galactic optical depth τ̄ :

τ(n̂, ε, ω) = τ̄(ε, ω) (1 + δτ(n̂)) . (4.24)

Note that with this convention δτ(n̂) is independent of ε and ω. The next step is to
compute the two-point angular power spectra for these fields. Projecting onto spherical
harmonics, we define the power spectrum Cδτδτ

ℓ :

⟨δτℓm δτ ∗ℓ′m′⟩ = δℓ ℓ′δmm′Cδτδτ
ℓ , (4.25)

In the context of the halo model, the power spectrum can be described by a sum of an
intra-halo (1-halo) and an inter-halo (2-halo) contributions:

Cδτδτ
ℓ = Cττ

ℓ /τ̄
2 = C1−halo

ℓ + C2−halo
ℓ , ℓ ≥ 1. (4.26)

The quantity Cττ
ℓ is the angular power spectrum of the optical depth due to photon to

dark photon conversion (which depends on ε and ω). The terms on the right hand side
of (4.26) are computed in detail in Appendix B.2. The final expressions are:

τ̄ 2C1−halo
ℓ =

4π

2l + 1

∫
dz

χ(z)2

H(z)

∫
dmn(z,m) [P (z,m)uℓ0(z,m)]2 ,

τ̄ 2C2−halo
ℓ =

4π

2ℓ+ 1

[∏

i=1,2

∫
dzi

χ(zi)
2

H(zi)

∫
dmi n(zi,mi)b(zi,mi)P (zi,mi)uℓ0(zi,mi)

]
C lin
ℓ (z1, z2),

C lin
ℓ (z1, z2) =

2

π

∫
dk k2jℓ(kχ1) jℓ(kχ2)

√
P lin(k, χ1)P lin(k, χ2).

(4.27)
The quantity jℓ(kχ) is the spherical Bessel function and b(z,m) is the linear halo bias.
P lin(k, χ) is the linear matter power spectrum calculated using CAMB [69]. All quantities
are computed for fixed cosmology. Throughout this Chapter we used the following set
of parameters: dark matter density Ωch

2 = 0.12, baryon density Ωbh
2 = 0.022, Hubble
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constant H0 = 67.3 km s−1Mpc−1, scalar spectral index ns = 0.96, scalar amplitude As =
2.2× 10−9, and optical depth to reionization τ̄Th = 0.06.

In Fig. 4.4 we plot the optical depth power spectrum of δτ fluctuations for a range of
dark photon masses, assuming zreio = 6. In the left panel, we show the relative importance
of the 1-halo term compared to the total. The 1-halo term dominates at high ℓ, while the
2-halo term dictates the shape and amplitude on large scales ℓ ≲ 1000. The 1-halo term is
larger at the upper end of the dark photon mass range we consider. This is consistent with
the fact that conversion happens near the halo core in this regime. In the right panel we
show the total power spectrum Cδτδτ

ℓ for 4 choices of mA′ that span the parameter space
we probe for. Any changes can be attributed to the radius of the resonance surface at
that mass given the gas density profile ρgas as well as details about the halo model, for
e.g. the population of halos n(z,m), which also dictates the bias function b(z,m). The
total magnitude of the power spectrum, Cττ

ℓ , depends strongly on the dark photon mass
through η̄. Hence, it will be maximized by masses near the peak in the monopole τ̄(mA′),
which was depicted in Fig. 4.3.

Repeating the computation presented in Appendix B.2 for the dark screening case, we
find the 1-halo and 2-halo contributions to the Thomson screening auto-power spectrum.
The full expression is

CτThτTh

ℓ =
σ2
T

m2
p

(∫
dz

H(z)

χ(z)2

(1 + z)2

∫
dmn(z,m) ρeℓ0(z,m)2

∏

i=1,2

+

[∏

i=1,2

∫
dzi
H(zi)

χ(zi)
2

(1 + zi)

∫
dmi n(zi,mi)b(zi,mi)ρ

e
ℓ0(zi,mi)

]
C lin
ℓ (z1, z2)

)
.

(4.28)
The quantities have the same meaning as in expressions (4.27) above.

Anisotropies in the Thomson screening and dark screening optical depth fields trace sim-
ilar matter density profiles over the sky and across the line of sight. It is therefore expected
that the fluctuations in either field are correlated. The two-point function

〈
ττTh

〉
∼ ε2 has
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Figure 4.4: The angular power spectrum of dark screening fluctuations, Cδτδτ
ℓ , which is in-

dependent of ε and ω, for a range of dark photon masses that span the parameter space we
are probing. In the left panel, we compare the 1-halo term with the sum in (4.26) to show
that most power on large scales is due to the 2-halo term, while on small scales the 1-halo
term dominates. At large mass, when the transition from photon to dark photon occurs
nearer to the halo core where gas densities are largest, the two terms become comparable
and the spectrum is scale invariant. This feature also affects the signal amplitude hierar-
chy: although at large mA′ > 10−12 eV the monopole is subdominant (e.g. Fig. 4.3), the
additional structure on small scales causes Cττ

ℓ in this regime to be equivalent in terms of
constraining power for ε to spectra for mA′ < 10−12 eV. This will be relevant in Section 4.6
where we present our forecasts.

the following angular power spectrum:

τ̄CδττTh

ℓ =
σT
mp

√
4π

2ℓ+ 1

(∫
dz

H(z)

χ(z)2

(1 + z)

∫
dmn(z,m)F(z, z,m,m)

∏

i=1,2

+

[∏

i=1,2

∫
dzi
H(zi)

χ(zi)
2

(1 + zi)

∫
dmi n(zi,mi)b(zi,mi)

]
F(z1, z2,m1,m2)C

lin
ℓ (z1, z2)

)
,

(4.29)

F(z1, z2,m1,m2) = P (z1,m1)uℓ0(z1,m1) ρ
e
ℓ0(z2,m2), (4.30)

where all quantities are real. The Thomson auto-power spectrum is shown in Fig. 4.5,
alongside examples for the power spectrum of the dark screening optical depth and their
cross-correlation for fixed mA′ and ε ( CτThτTh

ℓ is independent of ε). The power spectra
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involving dark screening scale differently with ε, so that for ε around 7×10−7, CττTh

ℓ > Cττ
ℓ .

The magnitude of Cττ
ℓ varies over the range of dark photon masses we study such that it

peaks around mA′ ≃ 10−12 eV and falls abruptly for mass values towards both ends of the
interval.
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Figure 4.5: We show the angular power spectrum of the two-point function of Thomson
screening (blue), dark screening (orange), as well as their cross-correlation (green). We
chose the value of ε = 10−6 and fixed mA′ = 6 × 10−13 eV and ω = 30 GHz. We also

present the ε-independent combination
(
CττTh

ℓ

)2
/Cττ

ℓ (pink), which will be useful for the

sensitivity forecast in Section 4.6.

4.4.2 Patchy dark screening of the CMB

We now describe in detail how the optical depth anisotropies of the previous section man-
ifest as anisotropic spectral distortions in the CMB temperature and polarization. The
largest effect arises from patchy dark screening of the CMB temperature monopole. In
addition to this, there are new spectral anisotropies from the screening of temperature and
polarization anisotropies. An additional novel signature of patchy dark screening is the
production of B-modes (curl) from pure E-mode (divergence) polarization anisotropies, as
occurs in any scenario with screening [225]. This leads to statistically anisotropic correla-
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tions between the temperature, E modes, and B modes dependent on the specific realization
of the anisotropic optical depth and CMB anisotropies in our Universe.

In analogy with patchy screening from Thomson scattering, the photon to dark photon
optical depth fluctuations suppress the CMB temperature fluctuations and polarization
Stokes parameters. The combined effect of dark and Thomson screening on the observed
temperature and polarization are

T obs(n̂, ω) = T̄ + T Sc(n̂) + T dSc(n̂, ω),

(Q± iU)obs(n̂, ω) = (Q± iU)Sc(n̂) + (Q± iU)dSc(n̂, ω),
(4.31)

where
T Sc(n̂) ≃

[
1− τTh(n̂)

]
T (n̂),

T dSc(n̂, ω) ≃ −τ(n̂, ω)
[
T̄ + T (n̂)

]
,

(Q± iU)Sc(n̂) ≃
[
1− τTh(n̂)

]
(Q± iU)(n̂),

(Q± iU)dSc(n̂, ω) ≃ −τ(n̂, ω)(Q± iU)(n̂).

(4.32)

The label obs stands for observed anisotropies, Sc for screening from Thomson scattering,
and dSc for dark screening. We have explicitly isolated the dependence on the CMB
blackbody temperature monopole T̄ = 2.725K, where in our notation the sky average of
T (n̂) is zero while the sky average of T (obs) is not. As our first approximation, we assume
that T (n̂) and (Q± iU)(n̂) are the lensed CMB temperature and polarization anisotropies.
This neglects the lensing of the screened CMB along the line of sight, which is a small
higher order effect. We neglect extra-galactic foregrounds, such as the cosmic infrared
background, point sources, and Sunyaev Zel’dovich effects. We assume that no significant
kinetic mixing happened between recombination and the end of reionization. Finally, we
work in the limit where τ(n̂, ω), τTh(n̂)≪ 1.

The total spectral distortion to the blackbody spectrum due to photons’ conversion
into dark photons is given by

B(n̂, ω, T ) = B0(ω, T ) (1− Pγ→A′(n̂, ω)) , (4.33)

where Pγ→A′ is the overall conversion probability and B0(ω, T ) represents the intensity of
the theoretical Planckian spectrum. In natural units this is:

B0(ω, T ) =
ω3

2π2

(
e

ω
T − 1

)−1
. (4.34)

The dependence on frequency ω in (4.32) is relative to the blackbody spectrum of the
CMB in units of temperature, not intensity (see, e.g. also [226]). To convert, we take the
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leading order expansion in temperature fluctuations δT (n̂) of (4.33):

B(ω, n̂) = B0(ω, T̄ ) + δB(ω, n̂)

≃ B0(ω, T̄ ) +
∂B0(ω, T )

∂T

∣∣∣∣
T=T̄

δT (n̂)−B0(ω, T̄ )Pγ→A′(n̂, ω).
(4.35)

Therefore, in CMB temperature units, the temperature fluctuation function of frequency
is

1

∂B(ω,T )
∂T

∣∣∣∣
T=T̄

δB = δT − 1

∂B(ω,T )
∂T

∣∣∣∣
T=T̄

B(ω, T̄ )Pγ→A′ = δT − 1− e−x
x

T̄Pγ→A′ , (4.36)

where x = ω/T̄ in natural units. A factor of

ζ(ω) =
1− e−x

x
, (4.37)

appears when converting the frequency dependence in the absorption optical depth to the
frequency dependence in the standard temperature units, and the full frequency dependence
of the dark screening signal in units of temperature is ζ(ω)/ω.

Next, we decompose the lensed CMB temperature and optical depths into spherical
harmonics and the Stokes parameters into spin-2 spherical harmonics:

T (n̂) =
∑

ℓm

TℓmYℓm(n̂),

τ(n̂) =
∑

ℓm

τℓmYℓm(n̂),

(Q± iU)(n̂) =
∑

ℓm

[Eℓm ± iBℓm] ±2Yℓm(n̂),

(4.38)

where Eℓm and Bℓm are the moments of the E- and B-mode polarization anisotropies.
Note that the latter is induced only by lensing in the absence of primordial gravitational
waves and is therefore substantially smaller than E-mode polarization. We neglect the
dark screening of lensing B-modes below.

Given multi-frequency observations of the CMB, it is possible to separate the black-
body and dark screening components of the temperature and polarization anisotropies.
Assuming perfect separation of the blackbody and patchy dark screening components (we
discuss the scenario where this separation is imperfect in Section 4.6.2), we construct
correlation functions between Thomson-screened and dark-screened temperature and po-
larization anisotropies, that is, T Sc and T dSc, respectively. Note that there will be both
statistically isotropic and statistically anisotropic components of the correlation functions.
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4.4.3 Dark screening auto-correlation functions

As a warm up, in the Standard Model (ε = 0 and hence T dSc = 0), the anisotropies
in optical depth τTh lead to temperature anisotropies, which are captured in the auto-
correlation function for the Thomson-screened blackbody anisotropies:

⟨T Sc
ℓmT

Sc
ℓ′m′⟩ = (−1)mCTScTSc

ℓ δℓℓ′δm−m′

−
∑

ℓ1m1

(−1)m1

(
ℓ ℓ′ ℓ1
m m′ −m1

)√
2ℓ1 + 1W 000

ℓℓ′ℓ1

[
CTT
ℓ + CTT

ℓ′
]
τTh
ℓ1m1

,
(4.39)

where we have defined

Wmm′m1

ℓℓ′ℓ1 =

√
(2ℓ+ 1)(2ℓ′ + 1)

4π

(
ℓ ℓ′ ℓ1
m m′ −m1

)
. (4.40)

The statistically isotropic component of the correlator is [225]

CTScTSc

ℓ ≡ CTT
ℓ +

∑

ℓ′ℓ′′

CτThτTh

ℓ′′ CTT
ℓ′ (W 000

ℓℓ′ℓ′′)
2 +NTScTSc

ℓ . (4.41)

CTT
ℓ is the lensed primary CMB temperature power spectrum, CτThτTh

ℓ is the Thomson
optical depth power spectrum, and NTScTSc

ℓ encompasses all other contributions to the
blackbody CMB such as instrumental noise, foregrounds, etc. The statistically anisotropic
component of the correlator is induced by the particular realization of patchy Thomson
screening in our Universe. We have explicitly kept this term, which would vanish for a full
ensemble average over all fields. As we describe in detail below, this statistical anisotropy
can be used to reconstruct the anisotropies of optical depth τTh, and induces various three-
point correlation functions.

Similarly, anisotropies in the dark screening optical depth τ(n̂, ω) lead to anisotropies
in T dSc(ω), which is captured by the auto-correlation function of the dark screening com-
ponent of the observed CMB temperature:

〈
T dSc
ℓm (ω)T dSc

ℓ′m′(ω′)
〉
= (−1)mCTdScTdSc

ℓ (ω, ω′)δℓℓ′δm−m′+

+
∑

ℓ1m1

(−1)m1

(
ℓ ℓ′ ℓ1
m m′ −m1

)√
2ℓ1 + 1W 000

ℓℓ′ℓ1 [C
ττ
ℓ (ω, ω′) + Cττ

ℓ′ (ω, ω
′)] T̄ Tℓ1m1 ,

(4.42)

where Cττ
ℓ (ω, ω′) is the dark screening optical depth, for which we have retained the fre-

quency dependence with respect to the blackbody, namely a factor of (ζ(ω)/ω)2. The
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statistically isotropic contribution to the correlator is

CTdScTdSc

ℓ (ω, ω′) ≡ T̄ 2Cττ
ℓ (ω, ω′) +

∑

ℓ′ℓ′′

Cττ
ℓ′′ (ω, ω

′)CTT
ℓ′ (W 000

ℓℓ′ℓ′′)
2 +NTdScTdSc

ℓ (ω, ω′)

≃ T̄ 2Cττ
ℓ (ω, ω′) +NTdScTdSc

ℓ (ω, ω′).

(4.43)

The contribution from instrumental noise and foregrounds is NTdScTdSc

ℓ (ω, ω′). Because the
CMB anisotropies are so small in comparison to the monopole, the first term completely
dominates the statistically isotropic contribution to the correlator. As a result, measuring
CTdScTdSc

ℓ can be extremely sensitive to photon to dark photon conversion. However, such
an auto-correlation function is proportional to the small kinetic mixing parameter ε4, which
limits the reach of measurements of the dark-screened CMB power spectrum. We forecast
the reach of such an analysis in Section 4.6.3.

Similar dark-screened auto-correlations can be computed for the TE, EE and BB CMB
spectra. These are listed in Appendix B.3. In determining the sensitivity of CMB experi-
ments to ε in Section 4.6, we use all isotropic components of the two-point auto-correlators.
However, the temperature auto-correlation provides the best sensitivity because of the cou-
pling of τ to T̄ .

The statistically anisotropic component of the dark screening auto-correlation is pro-
portional to the un-screened temperature anisotropies, and we explore in the next section
how this can be used to search for photon to dark photon conversion. We can also construct
cross-correlations functions in the form of ⟨T dSc

ℓm (ω)T Sc
ℓ′m′⟩, the discussion of which we also

leave to the next section.

4.5 Cross-correlating dark screening

In this section, we study the cross-correlation between observables that contain the dark
screening optical depth τ(n̂, ω) and those that do not. The essential qualitative understand-
ing that motivates the construction of these correlation functions is the following: Dark
screening occurs in halos, and is therefore correlated with observables (within the Standard
Model) that are sensitive to either the halos’ locations or their electron density distributions.
As we showed, both Thomson screening and photon to dark photon conversion depend on
the electron density profile. Therefore, there is a non-zero cross-correlation between the
Thomson-screened and dark-screened temperature and polarization anisotropies. In the
following, we discuss two ways of combining these maps: we consider first cross-correlation
between the Thomson-screened and dark-screened CMB, and then their correlation with
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LSS tracers. We compute the relevant two- and three- point correlation functions for each
method and identify the ones that are most sensitive to dark screening.

4.5.1 Two-point cross-correlation

Based on the discussions in the last section, an obvious candidate for the correlation
function we want is:

⟨T dSc
ℓm (ω)T Sc

ℓ′m′⟩ = (−1)mCTdScTSc

ℓ (ω)δℓℓ′δm−m′

−
∑

ℓ1m1

(−1)m1

(
ℓ ℓ′ ℓ1
m m′ −m1

)√
2ℓ1 + 1W 000

ℓℓ′ℓ1C
TT
ℓ′ τℓ1m1(ω)

+ T̄
∑

ℓ1m1

(−1)m1

(
ℓ ℓ′ ℓ1
m m′ −m1

)√
2ℓ1 + 1W 000

ℓℓ′ℓ1C
ττTh

ℓ (ω)Tℓ1m1 ,

(4.44)

where CττTh

ℓ (ω) was defined in (4.29) and

CTdScTSc

ℓ (ω) ≡
∑

ℓ′ℓ′′

CττTh

ℓ′′ (ω)CTT
ℓ′ (W 000

ℓℓ′ℓ′′)
2. (4.45)

Note that for this correlator there are statistically anisotropic contributions proportional
to both the dark screening optical depth and the un-screened temperature anisotropies.
The cross-correlation between the Thomson-screened and dark-screened temperature scales
as τ̄ ∼ ε2. This is more favorable than the ε4 scaling found in (4.42). However, un-
like for (4.42), only the second statistically anisotropic term depends on the temperature
monopole T̄ (Thomson screening doesn’t couple to the temperature monopole). The con-
sequence is that this cross-correlation is less competitive than the dark-screened auto-
correlation at fixed noise.

Before moving on, let’s turn to polarization. E and B modes are defined with the
relation in (4.38). Combined with the assumption that the Thomson-screened temperature
anisotropies can be separated from the dark-screened anisotropies through the frequency
dependence, we can construct a variety of two-point correlation functions – 12 in total!
These can be found in Appendix B.3. Unlike for temperature auto- and cross-correlations,
some correlators involving polarization vanish in the absence of screening, and only receive
statistically anisotropic contributions. These include

〈
T dSc
ℓ1m1

iBSc
ℓ2m2

〉
=
∑

ℓm

Eℓm(−1)m
(
ℓ1 ℓ2 ℓ
m1 m2 −m

)√
2ℓ+ 1oℓ1ℓ2ℓW

220
ℓ2ℓℓ1

T̄CττTh

ℓ1
(4.46)
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and

〈
ESc
ℓ1m1

iBdSc
ℓ2m2

〉
= −

∑

ℓm

τℓm(−1)m
(
ℓ1 ℓ2 ℓ
m1 m2 −m

)√
2ℓ+ 1oℓ1ℓ2ℓW

220
ℓ2ℓ1ℓ

CEE
ℓ1
, (4.47)

where CEE
ℓ is the lensed primary CMB E-mode power spectrum and

oℓℓ′ℓ′′ ≡
1

2

[
1− (−1)ℓ+ℓ′+ℓ′′

]
. (4.48)

These correlations are also potential sensitive probes of patchy dark screening, as demon-
strated in greater detail below.

4.5.2 Correlating patchy dark screening with LSS

Expanding our focus beyond CMB observables, photon to dark photon conversion happens
inside halos, and therefore the patchy dark screening signal is correlated with the LSS. It
is most natural to look for correlations between patchy dark screening and tracers of LSS,
such as galaxy redshift surveys. Given a tracer and various model assumptions, one can
build a template for patchy dark screening, which we will denote by τ̂(ε0). In this section
we build the intuition of how to use such a template to improve our sensitivity to ε. As
one example, the template can be built in the following way:

τ̂ gℓm(ε0, ω) =
[
(Cττ

ℓ (ε0, ω)C
gg
ℓ )−1 ·Cgτ

ℓ (ε0, ω)
]
· gℓm, (4.49)

where gℓm are the moments of the galaxy overdensity field and the vector notation denotes
the redshift information; Cττ

ℓ is the model photon to dark photon optical depth power
spectrum, Cgg

ℓ is the redshift × redshift galaxy overdensity covariance matrix, and Cgτ
ℓ

is a vector of the dark photon optical depth × galaxy overdensity cross-spectra at each
redshift. We have explicitly indicated that the model power spectra involving the patchy
dark screening optical depth depends on the fiducial choice ε0 for the kinetic mixing pa-
rameter. Note that the template defined in (4.49) can be improved by going beyond this
simple linear filter, for example using machine learning techniques as in Ref [227].

The largest contribution to the cross-correlation of the template with the patchy dark
screening component of the CMB is statistically isotropic and given by

⟨T dSc
ℓm τ̂ gℓ′m′(ε0, ω)⟩isotropic = −T̄Cτ τ̂g

ℓ (ε, ε0, ω) δℓℓ′δmm′ , (4.50)

where Cτ τ̂g

ℓ is the cross-power spectrum between the template and real photon to dark
photon optical depth. Importantly, Cτ τ̂g

ℓ (ε, ε0, ω) ∝ ε2, and therefore this quantity scales
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more favorably with ε in the small-ε limit than the monopole contribution to the temper-
ature auto-spectrum (which scales ∝ ε4). In addition to the more favorable scaling with
the mixing parameter, cross-correlation with a template can be beneficial for mitigating
systematic effects and galactic or extra-galactic foregrounds in the observed CMB. We
forecast the reach of such analysis in Section 4.6.4.

4.5.3 Reconstruction

Coming back to the CMB, the discussion in the previous section suggests searching for
correlation functions that would allow us to reconstruct the map τTh(n̂) from CMB ob-
servables. τTh(n̂), depending on the same electron density distribution in the Universe as
τ(n̂, ω), would be correlated with T dSc, just like τ̂ g. The statistically anisotropic compo-
nents of the two-point correlation functions in (4.39) can be used to construct quadratic es-
timators for patchy Thomson screening optical depth τTh(n̂). Similarly, patchy dark screen-
ing, as well as the un-screened primary CMB temperature and polarization anisotropies can
be reconstructed e.g. from equations (4.42), (4.44), (4.47). An exhaustive list of quadratic
estimators is presented in Appendix B.3. Similar quadratic estimators are used to mea-
sure weak lensing of the CMB (see e.g. [81] for a review), and are employed in a wide
variety of other contexts in CMB science, in particular for the reconstruction of patchy
Thomson screening during reionization [88] and kinetic Sunyaev Zel’dovich velocity recon-
struction [82, 83, 84, 212, 86].

Starting again with a Standard Model example, the reionization optical depth can be
found from (4.39) as:

τ̂Th
LM =−N τTh;TScTSc

L

∑

ℓm

∑

ℓ′m′

(−1)M
(
ℓ ℓ′ L
m m′ −M

)√
2L+ 1GτTh;TScTSc

ℓℓ′L T Sc
ℓmT

Sc
ℓ′m′ , (4.51)

where

N τTh;TScTSc

L =

[∑

ℓℓ′

(
W 000
ℓℓ′L

[
CTT
ℓ + CTT

ℓ′
])2

2CTScTSc

ℓ CTScTSc

ℓ′

]−1

, GτTh;TScTSc

ℓℓ′L =
W 000
ℓℓ′L

[
CTT
ℓ + CTT

ℓ′
]

2CTScTSc

ℓ CTScTSc

ℓ′
. (4.52)

The weights and prefactor are chosen such that the estimator is unbiased if the input power
spectra provide an accurate model, i.e.

⟨τ̂Th
LM⟩ = τTh

LM , (4.53)
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as well as has minimum variance when all fields in the problem are Gaussian:

⟨τ̂Th
LM τ̂

Th
L′M ′⟩ = (CτThτTh

L +N τ̂Th;TScTdSc

L )δLL′δMM ′ . (4.54)

The prefactor N τ̂Th;TScTdSc

L is the noise on the reconstruction.

Similarly, one can reconstruct τ̂Th from measurements of polarization, notably from
EScBSc. The relevant quadratic estimators are presented in Appendix B.3. Estimators
for the Thomson optical depth found there are equivalent those presented in Ref. [88].
The two-point function that would result from cross-correlating the dark-screened CMB
temperature with the Thomson optical depth map, i.e. ⟨τ̂ThT dSc⟩, is another means to
construct the correlation function in (4.50).

More quadratic estimators can be built from the dark screening anisotropies T dSc. The
leading term that contains the dark screening optical depth is:

τ̂ qe ∗LM = −N τ̂ ;TdScTSc

L

∑

ℓm

∑

ℓ′m′

(−1)M
(
ℓ ℓ′ L
m m′ −M

)√
2L+ 1Gτ̂ ;TdScTSc

ℓℓ′L T dSc
ℓm T Sc

ℓ′m′ , (4.55)

where

N τ̂qe;TScTdSc

L =

(∑

ℓℓ′

(W 000
Lℓℓ′)

2(CTT
ℓ′ )2

CTScTSc

ℓ CTdScTdSc

ℓ′

)−1

, (4.56)

Gτ̂qe;TScTdSc

ℓℓ′L =
CTScTSc

ℓ′ CTdScTdSc

ℓ W 000
Lℓℓ′C

TT
ℓ′ − (−1)ℓ+ℓ′+LCTScTdSc

ℓ CTScTdSc

ℓ′ W 000
Lℓ′ℓC

TT
ℓ

CTScTSc

ℓ CTScTSc

ℓ′ CTdScTdSc

ℓ CTdScTdSc

ℓ′ − (CTScTdSc

ℓ )2(CTScTdSc

ℓ′ )2

≃ W 000
Lℓℓ′C

TT
ℓ′

CTScTSc

ℓ CTdScTdSc

ℓ′
. (4.57)

We used the fact that the product of the screened auto-spectra is larger than the product
of the screened cross-spectra in the second line.

It is important to note that in constructing the weights Gτ̂ ;TScTdSc

ℓℓ′L and the prefactor

N τ̂ ;TScTdSc

L that the input power spectra come from a theoretical model for the un-screened
CMB temperature power spectrum CTT

ℓ as well as contributions from noise and foregrounds
to both CTScTSc

ℓ and CTdScTdSc

ℓ′ . The model for CTScTSc

ℓ and CTdScTdSc

ℓ′ can be checked against
the measured power spectra of these maps. However, since we cannot directly measure
CTT
ℓ , there is inevitably some residual model uncertainty. This manifests as a bias on the

reconstruction:

⟨τ̂ qeLM⟩ = bτL τLM , bτL = N τ̂ ;TScTdSc

L

∑

ℓℓ′

(W 000
Lℓℓ′)

2(CTT
ℓ′ )model(C

TT
ℓ′ )actual

CTScTSc

ℓ CTdScTdSc

ℓ′
. (4.58)
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When the model and actual power spectra are identical, the bias factor is unity. Impor-
tantly, it is possible to measure this bias by comparing e.g. τ̂ qeLM to τ̂ gLM . In principle, the
bias can be measured without cosmic variance since the comparison is done at the level of
the modes and not the power spectra; this is an example of ‘sample variance cancellation’
(e.g. [228]). This procedure is elucidated in greater detail in Section 4.6.

As a third example, a quadratic estimator for the un-screened temperature anisotropies
is

T̂LM =N T̂ ;TdScTSc

L

∑

ℓm

∑

ℓ′m′

(−1)M
(
ℓ ℓ′ L
m m′ −M

)√
2L+ 1GT̂ ;TdScTSc

ℓℓ′L T dSc
ℓm T Sc

ℓ′m′ , (4.59)

where

N T̂ ;TdScTSc

L =



∑

ℓℓ′

T̄ 2
∣∣∣W 000

ℓℓ′LC
ττTh

ℓ

∣∣∣
2

CTdScTdSc

ℓ CTScTSc

ℓ′




−1

, GT̂ ;TdScTSc

ℓℓ′L ≃ W 000
ℓℓ′LT̄C

ττTh

ℓ

CTdScTdSc

ℓ CTScTSc

ℓ′
. (4.60)

The weights and reconstruction noise in this case depend on a theoretical model for CττTh

ℓ ,
an object we have no prior knowledge of and hope to search for. This implies that the
reconstruction of the un-screened temperature anisotropies will be significantly biased.
However, as described above, one can measure the bias by comparing to a template for
TLM , which at least on large angular scales, can be provided by T Sc. That is, a correlation
function ⟨T̂ T Sc⟩, can also be used to search for anisotropic dark screening.

4.5.4 Three-point correlation functions

The discussion in the previous section suggests that one should correlate maps recon-
structed from CMB observables, such as τ̂Th, τ̂ and T̂ , with CMB observables (e.g. T Sc or
T dSc) or itself. In terms of CMB observables, these correlation functions will be three-point
or four-point correlation functions. In other words, the statistically anisotropic contribu-
tions to the two-point correlation functions in the previous section imply that there are
many non-vanishing three-point correlation functions even in the case where the tempera-
ture, polarization, and optical depth fields are Gaussian.

For example, the correlation functions

⟨τ̂ThT dSc⟩ ∼ ⟨⟨T ScT Sc⟩T dSc⟩ and ⟨T̂ T Sc⟩ ∼ ⟨⟨T dScT Sc⟩T Sc⟩ (4.61)
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both come from the three-point correlation function ⟨T dScT ScT Sc⟩. Therefore, rather than
working with the more intuitive two-point correlation functions involving reconstructed
maps, we can forecast the sensitivity directly using three-point functions; we present this
forecast in Section 4.6.5.

Three-point functions are described by the angle-average bispectrum, defined as

BXY Zℓℓ′ℓ′′ =
∑

mm′m′′

(
ℓ ℓ′ ℓ′′

m m′ −m′′

)
⟨XℓmYℓ′m′Zℓ′′m′′⟩. (4.62)

There are many bispectra to consider between temperature, polarization, and templates
for the optical depth. Here we focus on the largest bispectra that scale like ε2, since these
will be most sensitive to photon to dark photon conversion.

The most relevant bispectra involving only CMB temperature and polarization are
(see (4.44) and (4.46))

BTdScTScTSc

ℓℓ′ℓ′′ = T̄
√
2ℓ′′ + 1W 000

ℓℓ′ℓ′′
(
CTT
ℓ′ + CTT

ℓ′′
)
CττTh

ℓ (ω) (4.63)

and
BTdScEScBSc

ℓℓ′ℓ′′ = T̄
√
2ℓ′′ + 1W 022

ℓℓ′ℓ′′oℓℓ′ℓ′′
(
CEE
ℓ′ + CEE

ℓ′′
)
CττTh

ℓ (ω). (4.64)

Note that both are proportional to the CMB monopole. The most relevant bispectra that
scale like ε2 and involve both the CMB and an optical depth template are

BEScBdScτ̂
ℓℓ′ℓ′′ =

√
2ℓ′′ + 1W 220

ℓℓ′ℓ′′oℓℓ′ℓ′′
(
CEE
ℓ + CEE

ℓ′
)
Cτ τ̂
ℓ′′ (ω) (4.65)

and
BTScEdScτ̂
ℓℓ′ℓ′′ = BTdScEScτ̂

ℓℓ′ℓ′′ =
√
2ℓ′′ + 1W 000

ℓℓ′ℓ′′eℓℓ′ℓ′′
(
CTE
ℓ + CTE

ℓ′
)
Cτ τ̂
ℓ′′ (ω). (4.66)

These bispectra, similar to the cross-correlation with LSS in (4.50), are proportional to
the CMB monopole T̄ , while at the same time, scales as ε2. This, as we will demonstrate
in more detail in Section 4.6, makes these bispectra almost as sensitive as the two-point
functions ⟨T dScT dSc⟩ (scaling as ε4), and more sensitive than ⟨T dScT Sc⟩ (proportional to
CTT
ℓ ).

4.6 Forecast

In this section we forecast the projected sensitivity of several CMB experiments to the
mixing parameter ε over a range of fixed values for the dark photon mass mA′ . We consider
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each of the five techniques mentioned in the introduction, and identify the most promising
observables for each experimental configuration. These relevant correlation functions are
summarized in Table 4.1. We first compute the constraint on ε from the monopole spectral
distortion using COBE/FIRAS. We then describe our forecast assumptions, and compute
the reach of existing and future CMB anisotropy experiments.

ε CTT
ℓ τTh CEE

ℓ〈
T dSc

〉
2 0 0 -〈

T ScT Sc
〉

0 1 2 -〈
T dScT dSc

〉
4 0 0 -〈

T ScT dSc
〉

2 1 1 -〈
T dScτ̂ g

〉
2 0 0 -〈

T ScT ScT dSc
〉

2 1 1 -〈
T dScEScBSc

〉
2 - 1 1

Table 4.1: The scaling of various correlation functions with the small parameters: kinetic
mixing ε, primary CMB power CTT

ℓ , primary E-mode polarization power CEE
ℓ and optical

depth of Thomson screening τTh. The correlation functions ⟨T ScT Sc⟩ and ⟨T ScT dSc⟩ are
also shown for comparison.

4.6.1 FIRAS bounds

First we look at the CMB monopole constraint given by the COBE satellite. This method
has been used in the past to forecast the constraint on ε from different models for the
distribution of ionized gas since recombination [119, 116, 214].

The CMB monopole was measured by the FIRAS instrument on the COBE satellite
and was discovered to have a near perfect blackbody spectrum [77]. The data consists
of 43 measurements of the sky-averaged temperature over frequencies in the range ω =
68.05− 639.46 GHz 2. This gives a best fit blackbody temperature of T̄ = 2.725± 0.002K,
with residuals of order roughly 10−4 below the peak intensity and 1σ uncertainties of the
same magnitude. This remarkable precision already gives a constraint on the amplitude
of the conversion probability for CMB photons of order the uncertainty Pγ→A′ ≲ 10−4. In

2Data was taken from https://lambda.gsfc.nasa.gov/data/cobe/firas/monopole_spec/firas_

monopole_spec_v1.txt
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this section we improve this bound by considering the full available frequency spectrum.
To constrain our model we use the method described in [116].

Assuming an isotropic conversion of photons into dark photons, the CMB blackbody
spectrum is distorted according to

B(ω, T, ε,mA′) = B0(ω, T ) (1− Pγ→A′(τ̄tot,mA′)) , (4.67)

where B0(ω, T ) is the theoretical blackbody spectrum defined in (4.34) and τ̄tot, the total
dark screening monopole including the galactic component, implicitly depends on ω and
ε. The reduced χ2 estimator is an average over all available frequency channels of the
difference between the measured data and the expected signal Bexp in each frequency bin:

χ2 =
1

N − 1

N∑

i

1

σexp
i

(Bexp
i −Bi(T, ε,mA′)) . (4.68)

This estimator is minimized by some value of T at each point in the plane spanned by ε
and mA′ . In Fig. 4.6 we show the 95% and 99% confidence limit contours in this parameter
space, for the χ2 of a distribution with 42 degrees of freedom. The exclusion regions are
similar in both cases, indicating that the regression method is robust, i.e. the χ2 changes
rapidly with temperature around the minimum.

Over the accessible range of dark photon masses, the constraint on ε reaches up to
≃ 10−6, roughly two orders of magnitude better than the naive limit set by the error
bar on the blackbody temperature. In Appendix B.1 we explore the model uncertainty
implicit in our constraint, which arises primarily from our lack of knowledge of the gas
profile. Comparing the constraints obtained in our fiducial model for gas profiles with
those obtained for a model in which gas perfectly tracks dark matter (e.g. a model without
any baryonic feedback), we conclude that the constraints at low dark photon mass are
robust. At high dark photon mass, the constraint is strengthened in a model where baryons
perfectly track dark matter. We can extrapolate that if our fiducial gas model has too
little baryonic feedback, the constraints could further weaken at high dark photon mass.
Incorporating information from measurements of the Sunyaev Zel’dovich effect (e.g. [229]),
the dispersion measure of fast radio bursts (e.g. [230, 231])), 21 cm intensity mapping (e.g.
[232]), and other tracers of baryons will be helpful in mitigating this modelling uncertainty
and will be explored in future work.

4.6.2 Forecast assumptions for CMB anisotropy experiments

In Section 4.4.2, we assumed that the frequency-dependent anisotropies due to resonant
conversion (T dSc, EdSc, BdSc) could be perfectly separated from the blackbody Thomson-
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Figure 4.6: Exclusion contours on coupling constant ε function of dark photon mass mA′

from COBE/FIRAS [77] data. We see that the uncertainty in the measurement of T̄ gives
a constraint on the magnitude of the dark-screened temperature monopole

〈
T dSc

〉
. Here

we used the total dark screening optical depth due to both galactic and extra-galactic
contributions τ̄ + τMW. This constraint provides an upper bound on ε of at most 10−6.

screened anisotropies (T Sc, ESc, BSc). Here, we explore the degree to which this separation
can be made in the presence of instrumental noise and measurements in only a small
number of frequency channels. We estimate the residual noise on the dark-screened and
Thomson-screened maps achievable with existing and future CMB experiments, which is
used in the following forecasts based on two- and three-point correlation functions.

We consider three different CMB experiments: the combination of the Low Frequency
Instrument (LFI) [233] and High Frequency Instrument (HFI) [234] on the Planck satel-
lite, CMB Stage-4 [206] and CMB-HD [89, 235]. In the context of our analysis, a CMB
experiment is characterized by the sensitivity and resolution at a set of measured frequen-
cies.Throughout, we assume Gaussian beam and white uncorrelated noise for all instru-
ments, as well as full-sky coverage and no foregrounds.

Before proceeding, it is important to comment on the potential impact of CMB fore-
grounds. There are a variety of galactic foregrounds (see e.g. [236] for an overview) that fall
with frequency, with a similar power law in the power spectra to the patchy dark screening
signal (falling as ω−2−ω−3) including: synchrotron, free-free, and spinning dust. These are
strongest in the galactic plane, and their influence can be mitigated by masking the most
contaminated regions of the sky, or by incorporating information about the morphology of
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the signal. Nevertheless, these foregrounds can in principle add significant extra power at
low-frequencies and on large angular scales. Extra-galactic radio point sources, which are
dominated by synchrotron emission, are also a potentially important foreground to con-
sider. Resolved point sources can again be dealt with by masking, however the unresolved
point sources can add power at low frequencies and on small angular scales. This signal is
also correlated with other tracers of LSS, limiting the power of cross-correlations to miti-
gate foregrounds. The extent to which galactic and extra-galactic foregrounds degrade the
forecast we present below requires a detailed analysis, which we defer to future work.

The instrumental noise considered throughout our analysis is modelled as:

NTT
ℓ = ∆2

T exp

[
ℓ(ℓ+ 1)

θ2FWHM

8 log 2

]
[1 + (ℓ/ℓknee)

αknee ] ,

NEE
ℓ = NBB

ℓ =
√
2NTT

ℓ , NTE
ℓ = 0.

(4.69)

Here, ∆T [µKrad] represents the sensitivity in temperature, while θFWHM [rad] is the full
width at half maximum of our assumed Gaussian beam, which characterizes the resolu-
tion of the instrument. The sensitivity and resolution vary with frequency. Furthermore,
ground-based measurements are subject to atmospheric contamination on large angular
scales. To account for this effect, in the analysis for both CMB-S4 and CMB-HD we in-
clude the additional ‘red noise’ term in the second bracket with αknee = −3 and ℓknee = 100
in all frequency bins. This contribution diverges at low-ℓ, and becomes increasingly irrele-
vant for ℓ > ℓknee. The values we choose to represent each experiment are shown in Table
4.2. Note, throughout this section, we denote by ν the photon frequency in GHz such that
ν ≡ ω/2π.

Later, when we compute the Fisher information, we will need to estimate the noise co-
variance for the dark screening two-point functions of Section 4.4.3. These power spectra
have an intrinsic inverse frequency squared dependence CXdScXdSc

ℓ ∝ ε4/ω2. It is possi-
ble to disentangle this signal from the measured CMB by cross-correlating measurements
across multiple frequency channels. We do this by applying a harmonic Internal Linear
Combination (ILC) algorithm [237] which we now describe.

Recall that the expected isotropic measured CMB signal consists of the primary CMB
which is screened by the inhomogeneous field τ plus instrumental noise. For example, in
the temperature case we have from equations (4.31), (4.32), (4.43):

CTT obs
ℓ (ωi, ωj) = CTT

ℓ − CTdScTdSc

ℓ (ωi, ωj) +NTT
ℓ (ωi)δωiωj

≃ CTT
ℓ − T̄ 2Cττ

ℓ (ωi, ωj) +NTT
ℓ (ωi)δωiωj

,
(4.70)
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Frequency ν (GHz) 30 44 70 100 143 217 353 545 857

∆T (µKarcmin) 195.1 226.1 199.1 77.4 33. 46.8 153.6 818.2 40090.7
θFWHM (arcmin) 32.41 27.1 13.32 9.69 7.3 5.02 4.94 4.83 4.64

(a) Parameters used for the Planck forecast. Sensitivities and temperatures taken from [234] for
frequencies 100 GHz and higher (HFI instrument), and [233] for the lowest three frequencies (LFI
instrument).

Frequency ν (GHz) 20 27 39 93 145 225 278

∆T (µKarcmin) 10.41 5.14 3.28 0.50 0.46 1.45 3.43
θFWHM (arcmin) 11.0 8.4 5.8 2.5 1.6 1.1 1.0

(b) Sensitivity and resolution for CMB-S4 V3R0 configuration.

Frequency ν (GHz) 30 40 90 150 220 280 350

∆T (µKarcmin) 6.5 3.4 0.7 0.8 2.0 2.7 100.0
θFWHM (arcmin) 1.25 0.94 0.42 0.25 0.17 0.13 0.11

(c) CMB-HD forecast parameters, taken from Table 2 of [235].

Table 4.2: Noise parameters for Fisher forecasts. We model the noise covariance as in (4.69)
where in the case of ground-based CMB-S4 and CMB-HD we include the red noise term
with parameters αknee = −3 and ℓknee = 100 in all frequency bins.

The instrumental noise term is frequency dependent as displayed in Table 4.2, where
the i and j labels above denote each available channel. Let us re-write the dark screening
two-point function term in the frequency explicit form Cττ

ℓ (ωi = 1, ωj = 1)/ωiωj. To build
the covariance matrix for all temperature measurements we simply choose a frequency for
the signal, ω0, and measure all entries in reference to it. Overall we find:

Cℓ = Ω−1CTT
ℓ − ee†T̄ 2 ζ(ω0)

2

ω2
0

Cττ
ℓ (ω = 1) + diag

(
Ω−1NTT

ℓ (ω)
)
. (4.71)

The frequency-dependent matrix has entries Ω−1
ij = (ζ(ω0)

2/ω2
0) (ωiωj/ζ(ωi)ζ(ωj)) and e =

(1, 1, . . . , 1). The ILC method consists of weighting each matrix element appropriately in
order to minimize a frequency-independent residual. This is constructed like

ÑTdScTdSc

ℓ = w†
ℓ ·
(
Ω−1CTT

ℓ +Ω−1NTT
ℓ

)
·wℓ, (4.72)

where the weights wℓ satisfy

wℓ =
(Cℓ)

−1 e

e† (Cℓ)
−1 e

. (4.73)
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In our analysis, we use a fixed baseline frequency ω0 = 30 GHz. For the CXX
ℓ terms of the

primary CMB we compute the lensed temperature and polarization power spectra using
CAMB [69], using the cosmological parameters listed in Section 4.4. Fig. 4.7 shows the
weights computed for CMB-S4 specifications. On large scales, the 93 and 145 GHz maps,
which are the lowest noise, are used to subtract off the blackbody CMB, with the other
channels weighted inversely with frequency.

A similar computation can be used to find the weights and residual noise for polariza-
tion. The ILC-cleaned spectrum of the temperature map includes the frequency-dependent
term, computed at the baseline frequency ω0, plus the noise residual:

C̃TdScTdSc

ℓ =
ζ(ω0)

2

ω2
0

CTdScTdSc

ℓ (ω = 1) + ÑTdScTdSc

ℓ . (4.74)

Henceforth, the .̃ notation will refer to an ILC-cleaned map, or its associated residual
defined as in (4.72). Note the factor of ζ(ω) defined in (4.37). The CMB peaks in intensity
around 160 GHz. The factor of ζ(ω) approaches unity for frequencies below the CMB peak,
and vanishes for frequencies ω ≫ 160 GHz. Since a ω−1 scaling weighs small frequencies
more strongly, the additional ζ(ω) factor does not affect the analysis significantly.
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Figure 4.7: Illustration of the weight functions wℓ as defined in (4.73) for the frequencies of
CMB-S4 with noise parameters defined in Table 4.2. Notice that the dominant frequency
is the ω = 93 GHz channel, but this changes at higher ℓ. This is because the ILC favors
the Nℓ(ω) with the lowest magnitude at a given ℓ.
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Not only does ÑTdScTdSc

ℓ do a good job of removing the primary CMB signal, it also
gives a lower noise amplitude at high ℓ compared to the noisiest frequency channels. This
can be seen by comparing the solid purple line in Fig. 4.8 depicting ÑTdScTdSc

ℓ with the
dotted lines that show NTT

ℓ (ω) for CMB-S4. In the limit of infinitely many frequency
measurements, one could in principle fully isolate the frequency-dependent signal from the
blackbody component.

Finally, to compute the ILC for the strictly blackbody signal of the Thomson-screened
CMB of (4.39), we set Ω−1

ij = 1. The residual ÑTScTSc

ℓ in this case is a linear combination
of the instrumental noise spectra, once again weighted heavily by the middle frequencies
with lowest magnitude, but this time all weights are positive. Again, if we had access to
infinitely many frequency channels, the ILC would perfectly recover the Thomson-screened
CMB.

4.6.3 CMB auto-correlation

The first method we look at considers the cross-correlation of all dark-screened CMB auto-
power spectra. The covariance matrix takes the following form:

Cℓ =



C̃TdScTdSc

ℓ C̃TdScEdSc

ℓ 0

C̃TdScEdSc

ℓ C̃EdScEdSc

ℓ 0

0 0 C̃BdScBdSc

ℓ


 , (4.75)

where each noise term contained in C̃ℓ is the post-ILC residual for the particular T , E or
B measurement. The Fisher matrix is defined as:

Fij = fsky
∑

ℓ

2ℓ+ 1

2
Tr
[
(Cℓ)

−1 · ∂iCℓ · (Cℓ)
−1 · ∂jCℓ

]
. (4.76)

where (Cℓ)
−1 is the matrix inverse of Cℓ evaluated at a fiducial value for parameters i and

j; ∂iCℓ is the derivative of the covariance matrix with respect to parameter i evaluated
at the fiducial parameters i and j. The observed sky-fraction is assumed to be fsky = 0.7
for Planck and fsky = 0.5 for CMB-S4 and CMB-HD. We are interested in expanding the
reach for the mixing parameter ε at a variety of values for mA′ . Since in this case we only
have access to dark screening power spectra, we are constraining ε4. The Fisher ‘matrix’
has a single entry given by Fε4ε4 . To find the exclusion region, we compute the the 1-
sigma constraint on ε4, given a fiducial value ε4 = 0: σε4 = 1/

√
Fε4ε4 . The Fisher matrix
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Figure 4.8: Scale comparison between the primary CMB, screening two-point func-
tions, CMB-S4-like instrumental noise and total noise remainder after ILC. We fixed
mA′ = 10−12 eV and ε as shown in each panel. We show the isotropic component to
the XX = TT,EE power spectra due to dark screening CXdScXdSc

ℓ ∝ ε4 (orange), Thom-
son screening CXScXSc

ℓ (pink), and their cross-correlation CXScXdSc

ℓ ∝ ε2 (green). Notice
CTdScTdSc

ℓ dominates due to the additional factor ∝ T̄ 2. Due to the different scaling with
ε, the cross-spectrum CTScTdSc

ℓ in green is comparable in magnitude to the orange curve
around a value ε ∼ 8× 10−11. In the case of EE, the switch happens around ε ∼ 7× 10−7.
The lensed primary CMB spectra (blue) and the ILC leftover noise (purple) computed
at the baseline ω0 = 30 GHz are shown for comparison. The dotted lines represent the
instrumental noise Nℓ(ω) for each channel in CMB-S4, as defined in Table 4.2. The colors
of the dotted lines are the same as their corresponding weights’ in Fig. 4.7.

simplifies in this case to:

Fε4ε4|ε4=0 = fsky
∑

ℓ

2ℓ+ 1

2

∑

X=T,E,B

(
CXdScXdSc

ℓ (ε4 = 1)

ÑXdScXdSc

ℓ

)2

, (4.77)

and the 1-sigma sensitivity is roughly given by σε4 ∼ 1/(S/N)ε4=0.

To obtain the variance on ε, we assume a Gaussian posterior for the probability dis-
tribution of the positive real-valued ε4. The sensitivity on ε is then well approximated
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by:

σε ≃ 0.7


fsky

∑

ℓ

2ℓ+ 1

2

(
T̄ 2Cττ

ℓ (ε4 = 1)

ÑTdScTdSc

ℓ

)2



−1/8

. (4.78)

Notice from the expression above that the value of σε improves as ∼ ℓ−1/4 with the number
of modes with significant S/N. This feature is general, regardless of the observable we use
in the forecast. In terms of signal, most of the sensitivity of the CMB auto-correlation is
due to the CTdScTdSc

ℓ ∼ T̄ 2 term. Finally, the shape of the sensitivity as a function of mass
mA′ will trace the optical depth monopole as η̄−1/2. This sensitivity is shown in Fig. 4.9 for
Planck and CMB S4. As explained above, the sensitivity is bounded at low dark photon
mass from imposing a hard cutoff at the virial radius in each halo, while at high mass it
is given by the fact that the halo mass function n(z,m) falls to zero. The boundaries of
the contours are also sensitive to our assumptions about the lower bound on the mass of
halos described by the AGN gas profiles. We comment on the impact of this modelling
uncertainty in Appendix B.1. Overall, the sensitivity is superior to the FIRAS bound due
to the dependence on the CMB monopole T̄ .

4.6.4 CMB cross-correlation with a conversion template

Cross-correlating the measured CMB with other probes increases the forecasted sensitivity
to ε. To investigate the degree of improvement that could eventually be possible, we assume
in this section that a perfect template for patchy screening occurring at z < 2 is available.
Such a template could be created from a massive galaxy survey and a detailed model for
the relation between galaxy density and ionized gas density, as described in Section 4.5.2.
The choice of z < 2 is motivated by the redshift range that will be covered by near-term
surveys. When referring to the template, we will write τ̂ and its amplitude will depend on
a fiducial choice of coupling strength denoted by ε20. In the presence of a dark photon, the
measured dark-screened CMB depends on an unknown ‘true’ τ ∝ ε2.

One can write the first order in δτ contributions to the two-point function between the
template τ̂ and the dark-screened temperature T dSc from (4.32) as:

C τ̂TdSc

ℓ = ε2ε20 T̄ C
τ̂ τ
ℓ (ε = 1, ε0 = 1). (4.79)

Notice that another advantage of this method is that it allows us to be sensitive to ε2

directly, which is the same power of the coupling that appears in the dark screening optical
depth monopole (in Section 4.6.1). There is no statistically isotropic component of the
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cross-correlation between polarization and the template, and so we do not discuss them
here. Note that for the template power spectrum, anisotropies are calculated up to z = 2
but the monopole ˆ̄τ corresponds to the full contribution up to reionization, i.e. τ̄ = ˆ̄τ .
Breaking up the two-point function into an integral over redshift, one can see that C τ̂ τ

ℓ

simplifies to C τ̂ τ̂
ℓ for a perfect template. For an imperfect template, this result would

include a (scale-dependent) correlation coefficient describing the imperfect overlap of the
template with the actual dark screening optical depth.

The covariance matrix assuming a perfect template is the following:

Cℓ =

(
C τ̂ τ̂
ℓ C τ̂TdSc

ℓ

C τ̂TdSc

ℓ C̃TdScTdSc

ℓ

)
. (4.80)

With a fiducial ε→ 0, the Fisher estimator in this case simplifies to:

ε40F(ε/ε0)2(ε/ε0)2 = fsky
∑

ℓ

(2ℓ+ 1) T̄ 2 C
τ̂ τ̂
ℓ (ε2 = 1)

ÑTdScTdSc

ℓ

, (4.81)

and the uncertainty on the coupling constant is

σε = 0.76

[
fsky

∑

ℓ

(2ℓ+ 1) T̄ 2 C
τ̂ τ̂
ℓ (ε2 = 1)

ÑTdScTdSc

ℓ

]−1/4

. (4.82)

This sensitivity is plotted in Fig. 4.9 for the various CMB experiments we consider. Notice
here that the sensitivity contour corresponding to this estimator is improved by around
one order of magnitude compared to the dark-screened CMB-only result. In short, this is
due to the ε2 scaling instead of ε4 that brings about a more favorable scaling ∼ ℓ−1/2 with
the number of modes that are measured with appreciable S/N.

4.6.5 Correlations with Thomson screening, the bispectrum and
reconstruction

Recall from Section 4.4.3 that there are statistically anisotropic contributions to the two-
point function between the CMB temperature and polarization anisotropies. These sta-
tistically anisotropic contributions form the basis of the reconstruction of the un-screened
CMB temperature and polarization anisotropies as well as the Thomson and photon to
dark photon optical depth introduced in Section 4.5.3 and enumerated in Appendix B.3.
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These statistical anisotropies also imply the existence of the three-point functions intro-
duced in Section 4.5.4. In this section, we explore how this non-Gaussian information can
be used to search for dark photons.

We first consider the
〈
T dScT ScT Sc

〉
bispectrum, which is proportional to CττTh

ℓ (ω).
Factoring out the dependence on ε:

BTdScTScTSc

ℓℓ′ℓ′′ = ε2T̄
√
2ℓ′′ + 1W 000

ℓℓ′ℓ′′
(
CTT
ℓ′ + CTT

ℓ′′
)
CττTh

ℓ (ε = 1), (4.83)

we see that forecasting the limits on ε2 is a straightforward exercise in estimating the am-
plitude of this bispectrum, a problem whose optimal solution is already known from studies
of primordial non-Gaussianity (for an overview, see e.g. [238]). The simplest bispectrum
estimator is

ε̂2 = σ2
ε2

∑

ℓm

∑

ℓ′m′

∑

ℓ′′m′′

BTdScTScTSc

ℓℓ′ℓ′′ (ε2 = 1)

C̃TdScTdSc

ℓ C̃TScTSc

ℓ′ C̃TScTSc

ℓ′′

(
ℓ ℓ′ ℓ′′

m m′ −m′′

)
T dSc
ℓm T Sc

ℓ′m′T Sc
ℓ′′m′′ , (4.84)

where the resulting constraint is related to the estimator variance by

σε ≈ 0.76
√
σε2 = 0.76


fsky

∑

ℓℓ′ℓ′′

1

2

(
BTdScTScTSc

ℓℓ′ℓ′′ (ε2 = 1)
)2

ÑTdScTdSc

ℓ ÑTScTSc

ℓ′ ÑTScTSc

ℓ′′




−1/4

. (4.85)

Note that just as for the quadratic estimators discussed above, the weights in the bispec-
trum estimator are constructed from models for CTT

ℓ and CττTh

ℓ (ω, ε = 1). The factor of
1/2 comes from having two indistinguishable T Sc fields.

An alternative starting point would be to first use T dSc and T Sc to reconstruct T
(see (4.59)) and then correlate this with T Sc. If we assume that the model for CττTh

ℓ is
known up to the value of ε2 then the reconstruction of T will have a bias of ε2 such that:

⟨T̂LM T̂LM⟩ ≃ ε4CTT
L +NT ;TdScTSc

L (ε = 1), ⟨T̂LMT Sc
LM⟩ ≃ ε2CTT

L , (4.86)

where we have neglected small contributions that appear at higher order in ε, higher order
in τTh or lower order in T̄ . Computing the Fisher matrix we have:

Fε2ε2 =
∑

L

fsky(2L+ 1)
(CTT

L )2

NT ;TdScTSc

L (ε = 1)C̃TScTSc

L

=
∑

ℓℓ′L

T̄ 2fsky(2L+ 1)(W 000
ℓℓ′L)

2 CττTh

ℓ (ε = 1)2(CTT
L )2

C̃TdScTdSc

ℓ C̃TScTSc

ℓ′ C̃TScTSc

L

,

(4.87)
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It is informative to compare this result to the variance on the bispectrum estimator
in (4.85). Since ℓ2CTT

ℓ falls with ℓ (at sufficiently high ℓ), the two results agree in the
limit where the dominant contributions to the sum in (4.85) come from squeezed config-
urations with ℓ ≫ 1 – the triangle rule then implies that either the term proportional
to CTT

ℓ′ or CTT
ℓ′′ dominates the bispectrum. Said differently, because the reconstruction of

T improves by measuring many small-scale modes, we mainly capture information about
squeezed configurations of the bispectrum where T Sc is evaluated at low-ℓ while the other
power of T Sc and T dSc are evaluated at high-ℓ. We expect to be in this regime, since
screening occurs mainly on small scales (e.g. it is associated with halos). Note that a com-
pletely analogous situation arises in kinetic Sunyaev Zel’dovich velocity reconstruction, as
described in detail in Ref. [212].

Including polarization, the best sensitivity on ε can be obtained from the
〈
T dScEScBSc

〉

bispectrum, where the estimator variance is

σε = 0.76


fsky

∑

ℓℓ′ℓ′′

(
BTdScEScBSc

ℓℓ′ℓ′′ (ε2 = 1)
)2

ÑTdScTdSc

ℓ ÑEScESc

ℓ′ ÑBScBSc

ℓ′′




−1/4

, (4.88)

where BTdScEScBSc

ℓℓ′ℓ′′ was defined in (4.64). This bispectrum can yield a competitive sensitivity
compared to the temperature-only bispectrum above since CBScBSc

ℓ′′ ≪ CEE
ℓ′′ in the signal-

dominated regime.

The sensitivities to ε using the
〈
T dScT ScT Sc

〉
and

〈
T dScEScBSc

〉
bispectra are shown in

Fig. 4.9. The sensitivity of the bispectrum estimator for the experimental configurations
studied here is slightly weaker than the result from the CMB auto-correlation. This is
due to the smallness of τTh, which, parametrically, suppresses the sensitivity compared
to CMB auto-correlation as well as LSS cross-correlation by an ε-independent factor of
(CττTh

ℓ )2/Cττ
ℓ ∼ 10−11 − 10−12, depending on mA′ (see Fig. 4.5). However, this estimator

also scales as ε2, and brings about the most favorable scaling ∼ ℓ−3/4 with the number of
modes measured at significant S/N. Notable is also the improvement of

〈
T dScEScBSc

〉
over〈

T dScT ScT Sc
〉
between the analyses for Planck and HD-like noise, due to predicted noise

drop especially in polarization measurements.

To explore the improved sensitivity on ε from small-scale modes we evaluate he bispec-
trum estimators (4.85) and (4.88) for Planck and CMB-HD. For Planck we capture most
of the SNR by summing from ℓ = 2 up to ℓ = 3000, while for CMB-HD there is significant
SNR up to ℓ = 6000. From Fig. 4.4, at large dark photon mass, there is a lot of structure
at high ℓ in the dark screening optical depth coming from the 1-halo term. Due to the
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favorable scaling with ℓ in the bispectrum constraints, the CMB-HD sensitivity is greatly
enhanced by the additional support on small scales of the cross-power spectrum, despite
the decreasing monopole τ̄ and the smallness of τ̄Th. Note that if we extended the range of
halo masses in our halo model below the conservative 1011M⊙, the sensitivity on ε would
increase. However, this would also bring about larger uncertainties in what the appropriate
gas profile to be used on those small scales might be.

4.7 Discussion

In this Chapter, we have studied the resonant conversion of CMB photons to a hypothetical
dark photon inside LSS at low redshift. Conversion leads to a frequency dependent patchy
‘dark’ screening of the CMB. Observationally, dark screening manifests as an anisotropic
and frequency dependent optical depth τ(ω, n̂), which can in principle be extracted from
CMB data. The sensitivity to ε for a variety of two- and three-point correlation functions
are shown in Fig. 4.9, which we summarize in the following (see also Table 4.1).

The patchy dark screening optical depth τ(ω, n̂) can be measured using CMB data
alone. The global signal, i.e. the τ(ω) monopole, leads to a spectral distortion which
is constrained by COBE/FIRAS [77] and can potentially be measured with future ex-
periments targeting spectral distortions. The constraint from conversion at low-redshift
in non-linear structure that we obtain using existing FIRAS data [77] is consistent with
previous limits obtained from conversion over a wider range of redshift and a different
treatment of inhomogeneities.

Extending previous analyses, we have demonstrated that CMB and LSS correlation
functions are in principle a far more powerful probe of photon to dark photon conversion.
The two-point function of dark screening (⟨τ(ω, n̂)τ(ω, n̂′)⟩) can be extracted from existing
and future CMB data by measuring ⟨T dSc(ω, n̂)T dSc(ω, n̂′)⟩. The patchy dark screening
map T dSc(ω, n̂) can be separated from the blackbody CMB by taking advantage of multi-
frequency observations of the CMB. As shown in Fig. 4.9, such a correlation function can
be more sensitive than the existing FIRAS constraints by up to 2 orders of magnitude
despite scaling with the small kinetic mixing parameter as ε4.

A better reach on the mixing parameter can be obtained by cross-correlating τ(ω, n̂)
with other observables that are sensitive to the underlying distribution of electron density in
the Universe. One such correlation function is ⟨T dSc(ω, n̂)τ̂(n̂′)⟩, where τ̂(n̂′) is a template
for the dark screening optical depth. This correlation function takes advantage of the fact
that for a dark photon with mass ≲ 10−12 eV, conversion mostly happens at late times,
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Figure 4.9: The projected sensitivity of several estimators for Planck, as well as future
surveys CMB-S4 and CMB-HD. The gray shaded region is excluded from analysis [119,
116] with data from COBE/FIRAS [77]. The blue shaded region shows the equivalent
constraint using our model, as explained in Section 4.6.1. The solid lines show the projected
sensitivity of the CMB auto-correlation functions in Section 4.4.3 and 4.6.3 with uncertainty
given by (4.78). The dashed contours were computed using (4.82) and show the projected
sensitivity from the cross-correlation between CMB and LSS in Section 4.5.2 and 4.6.4. The
dotted and dot-dashed contours given by (4.85) and (4.88) respectively show the projected
sensitivities of the bispectra presented in Section 4.5.4 and 4.6.5. The projected sensitivity
from CMB-S4 and CMB-HD are similar for the CMB auto-correlation and cross-correlation
between CMB and LSS, whereas bispectra sensitivity with CMB-HD is superior to CMB-
S4. We used fsky = 0.7 for Planck and fsky = 0.5 for CMB-S4 and CMB-HD.

creating a strong correlation between tracers of LSS and patchy dark screening. As shown
in Fig. 4.9, the reach obtained from this correlator can be an order of magnitude better
than the CMB-only result.

Cross-correlation functions can also be constructed from the dark-screened and Thomson-
screened CMB alone. Qualitatively, these correlation functions can be understood as a
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correlation between the dark screening τ(ω, n̂) and the Thomson screening optical depth
τTh from halos. Three-point correlation functions offer the best sensitivity to this correla-
tion. In particular, the

〈
T dScT ScT Sc

〉
and

〈
T dScEScBSc

〉
bispectra (both shown in Fig. 4.9)

offer the best sensitivity, and are comparable to the reach anticipated with CMB auto-
correlation functions. Compared to the cross-correlation with a template, the reduction
in sensitivity is mainly a result of the smallness of the Thomson screening optical depth
τTh, which suggests that these three-point correlation functions could be better probes of
photon to dark photon conversion in the weakly inhomogeneous Universe around recom-
bination, when τTh was much larger. Compared to the CMB auto-correlation functions,
the sensitivity of these three-point correlation function scales much more favorably with
ℓ, and hence improves with increased sensitivity and high resolution – the regime targeted
by future surveys. The similarity in the reach of the CMB auto-correlation functions and
these three-point correlation functions for future CMB survey is a numerical coincidence,
and the relative strength of these two methods in a real data analysis likely depend on
systematics and foregrounds, an investigation that we postpone to future work. Finally,
we note that in the event of a detection, a combination of the two-point and three-point
functions can be used to break degeneracies between the dark photon mass, kinetic mixing
parameter and electron density profile, which is essential for extracting detailed informa-
tion about the dark screening optical depth and how it correlates with the distribution of
ionized gas. The methodologies we developed in this Chapter can be used to search for
conversions of photon to dark photon in various other environment in the early-Universe,
the details of which we will work out in a few follow up studies.

The study presented in this Chapter is a novel example of using cross-correlations be-
tween an observable in the Standard Model (SM) of cosmology (ΛCDM) and signals of a
model beyond the Standard Model (BSM) of particle physics. Experimentally, the measure-
ment of these correlators is enabled by the rapid improvement of cosmological experiments.
Theoretically, these ⟨SM × BSM⟩ correlators allow us to use the ultra-high precision cos-
mological data on the anisotropic Universe to study BSM signals at the same order of the
small BSM parameter as the monopole signal ⟨BSM⟩. We expect similar ⟨SM × BSM⟩
correlators will allow us to better probe other BSM signals with the rapidly improving
cosmological CMB and LSS datasets, and take advantage of the synergy between the up-
coming CMB experiments like the Simons Observatory [205], as well as future experiments
CMB-S4 [206] and CMB-HD [89], with upcoming LSS surveys like DESI [207], Euclid [208],
and LSST [209]. Constructing new observables of this kind can allow us to better search
for new interactions between the Standard Model and dark sectors, including dark matter
annihilation, decay, and mixing between the visible and dark sector particles. In the next
Chapter, we extend this analysis to the case of axions coupling to CMB photons.
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Chapter 5

Axion Dark Screening

5.1 Introduction

As discussed briefly in Chapter 1, the QCD axion and axion-like particles, generally re-
ferred to as axions, are among the most well-motivated additions to the Standard Model
(SM) [128, 129, 130, 131, 132, 99]. Axions provide a solution to the strong CP prob-
lem [128, 129, 130, 131], and can be good dark matter candidates [135, 239, 240]. Axions
can couple to the SM through the strong or electromagnetic force. Here, we will be con-
cerned with the coupling between the axion and the photon, described by the Lagrangian:

Laγ = −
1

4
gaγγ aF

µνF̃µν = gaγγ aE ·B, (5.1)

where F µν is the electromagnetic field-strength tensor and F̃ µν ≡ 1/2 ϵµναβF
αβ its dual.

The above coupling allows the photon to oscillate into an axion in the presence of an
external magnetic field transverse to the photon three-momentum.

Searches for photon-axion conversion have been conducted over a wide range of the
electromagnetic spectrum and axion parameter space both in terrestrial laboratory exper-
iments and through astrophysical observations 1. These efforts have probed axions from
effectively zero mass to masses up to a TeV, and down to a coupling of gaγγ ∼ 10−11GeV−1.
In this Chapter, we focus on very low-mass axions, ma ∼ O(peV), where the best exist-
ing limit on the axion-photon couplings gaγγ comes from the CERN Axion Solar Tele-
scope (CAST) experiment [241] and various astrophysical observations. CAST uses a large

1For a comprehensive summary of ongoing effort to look for axions, see [136, 16].
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magnetic field to induce the conversion of axions produced in the Sun to photons, plac-
ing a limit of gaγγ < 6.6 × 10−11GeV−1 [242] at low mass. The strongest astrophysical
constraints arise from scenarios where sources of axions (from stars [137, 243] or super-
novae [138]) are converted to photons in the galactic magnetic field or scenarios where
photons from a background source are converted to axions in extragalactic magnetic fields
(e.g. [139]). The strongest existing astrophysical constraints are from the latter category,
yielding gaγγ < 6 − 8 × 10−13GeV−1 for ma ≲ 10 peV, from the impact on AGN spectra
of photons converting to axions in the magnetized intracluster medium [139]. Constraints
that are independent of the axion-photon coupling in this mass range also comes from
black hole superradiance [244], which can be affected by axion self-interactions [245].

The cosmic microwave background (CMB) is an exquisitely calibrated source: it has
an almost perfect blackbody frequency spectrum, anisotropies are small and follow simple,
Gaussian statistics, and it is only weakly polarized. Measurements of the CMB are there-
fore extremely sensitive to secondary anisotropies and spectral distortions produced by the
interactions of CMB photons with large-scale structure (LSS) as they propagate through
cosmic history to our telescopes. Secondary anisotropies are a primary target of future
CMB surveys such as Simons Observatory [205] (SO), CMB-S4 [206], and CMB-HD [89]
which lie on the high-resolution, low-noise frontier; their true potential will be unleashed
through cross-correlation with upcoming galaxy surveys performed by Vera Rubin Ob-
servatory Legacy Survey of Space and Time (LSST) [209], Dark Energy Spectroscopic
Instrument [207] (DESI), Euclid [208], and Spectro-Photometer for the History of the Uni-
verse, Epoch of Reionization, and Ices Explorer [246] (SPHEREx). Standard Model sources
of secondary anisotropies include Sunyaev Zel’dovich effects (scattering from charges) and
weak lensing (scattering from masses). Measurements of these secondaries have broad ap-
plication, from determining the sum of neutrino masses to narrowing down the properties
of inflationary cosmology [205, 206, 89]. Any beyond the SM (BSM) physics scenarios
that involves new interactions between CMB photons and LSS will lead to new sources
of secondary anisotropies. The high sensitivity and resolution of existing and upcoming
surveys motivates identifying the range of BSM models that lead to new CMB secondaries
and designing optimal search techniques for their signatures.

In this Chapter we investigate scenarios where CMB photons are converted to axions
in magnetic fields associated with LSS. As CMB photons transit a magnetic field B⊥,
perpendicular to the photon’s direction of propagation, the polarization state alongB⊥, A∥,
mixes with an ultra-relativistic axion (ω ≫ ma) according to the equation of motion [247,
248, 249] [

ω − i∂z +
1

2

(
−m2

γ/ω gaγγ|B⊥|
gaγγ|B⊥| −m2

a/ω

)](
A∥
a

)
= 0, (5.2)
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where ma is the axion mass and m2
γ = e2ne/me denotes the photon plasma mass in an

ionized medium with electron density ne. The probability for a CMB photon to resonantly
convert to an axion is computed using the Landau-Zener expression [250, 251, 252]:

P res
A∥→a ≃

πωg2aγγ|B⊥|2
m2

a

∣∣∣∣
d lnm2

γ

dt

∣∣∣∣
−1

tres

, (5.3)

which is a good approximation for the scenarios considered throughout this Chapter 2.
CMB photons propagating along different lines of sight encounter varying magnetic fields
in media with varying density. From (5.3), the removal of CMB photons due to conversion
into axions therefore leads to an anisotropic spectral distortion of the CMB intensity and
polarization.

Early work on the imprint of photon-axion conversion in the CMB used the absence
of significant spectral distortions of the CMB monopole observed by COBE/FIRAS [77]
to rule out proposals for axion-induced supernova dimming [253] 3. Ref. [254] proposed
to look for anisotropic spectral distortions of the CMB due to inhomogeneous plasma
densities and magnetic fields, but assumed unrealistically shallow plasma density gradients
to maintain the resonance condition over long distances, leading to an overestimate and
incorrect frequency dependence of the conversion probability. Ref. [255] studied the spectral
distortion in intensity from individual clusters, and obtained upper limits from Planck
CMB temperature anisotropies of gaγγ ≲ O(10−11GeV−1), subject to assumptions about
magnetic field profile in clusters.

Subsequently, Ref. [256] performed a detailed study of the CMB polarization and in-
tensity signature from resonant and non-resonant conversion in the Milky Way’s magnetic
fields (with resonant conversion happening in coherent magnetic domains and non-resonant
conversion in turbulent domains). Achieving a strong constraint from this signal requires
high spectral resolution. The near-term space-based Lite-Bird [257] mission was forecasted
to yield limits down to gaγγ ∼ 10−12GeV−1 [256], with stronger limits requiring futuristic
missions such as PIXIE [258]. An analysis of the non-resonant signal using Planck tempera-
ture anisotropies provided a far weaker constraint of gaγγ ≲ 10−9GeV−1 [256]. Ref. [259] re-
visited the extragalactic signal first examined in [255], modeling the detectability of the po-
larization signal. Subject to assumptions about magnetic fields, gas profiles, and the num-
ber of detectable clusters, they demonstrate that sensitivity of beyond gaγγ ∼ 10−13GeV−1

2We provide a detailed derivation of this formula and its range of validity in the context of this work in
App. B.4. A complimentary scenario where the axion mass is too light (effective massless) to satisfy the
resonant condition anywhere in the universe is discussed in App. B.9.

3It was also pointed out that, due to the photon plasma mass, the conversion probability acquires a
frequency dependence, making it hard to account for achromatic dimming of SNe [248].
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could be achieved with next-generation CMB experiments such as CMB-S4. These works
indicate that the CMB signature of photon to axion conversion could be competitive with
the laboratory and astrophysical constraints described above.

This Chapter proposes a new framework to look for the spectral secondary CMB tem-
perature and polarization anisotropies, sourced by the resonant conversion of CMB photons
into axion radiation within the magnetic field of structure in the late universe. The ef-
fect is analogous to the case of CMB photons converting into dark photons studied in the
previous Chapter, and manifests as an anisotropic absorption optical depth with a charac-
teristic linear frequency dependence, τ a(ω, n̂) ∝ ω that is strongly correlated with LSS. The
radial profile of the electron density inside halos provides a natural scanner of the photon
plasma mass, which allows for resonant conversion between CMB photons and light axions
in the halo magnetic fields for more than a decade in axion masses around ma ≃ 10−12 eV.
Following Chapter 4, we use the halo model to compute two-point correlation functions of
the resulting secondary CMB temperature anisotropies, and their correlations with trac-
ers of LSS. Photon-axion conversion generates an anisotropic polarization signal from the
unpolarized CMB monopole. We derive the corresponding CMB two-point function and
the CMB polarization-LSS three-point function. To compute the signal strength, halo
magnetic fields are modeled according to state of the art hydrodynamical cosmological
simulations. Depending on the axion mass, photon-axion conversion predominantly occurs
at different halo radii, inducing a characteristic scale dependence in the correlations. Our
results provide a simple framework for computing correlation functions, which can be eas-
ily adapted to future analyses with differing assumptions. As in Chapter 4, the known
frequency dependence of the signal is crucial to disentangle the axion-induced CMB sec-
ondary anisotropies from the primary anisotropies. We use the signal two- and three-point
functions to project the sensitivity of CMB and LSS surveys to the axion-photon coupling.

We forecast that current data from Planck and unWISE galaxies are complementary
to the best existing constraints from AGN spectra described above. The component-
separated temperature-galaxy correlator ⟨T ag⟩ is the most sensitive, and can in principle
achieve gaγγ ≲ 3×10−12GeV−1. Other correlators have a slightly weaker sensitivity, which
can be helpful in confirming any possible detection. This strongly motivates an analysis
using existing measurements, which we pursue in a separate publication [260]. Even though
the region in the axion parameter space that can be currently probed seems disfavoured
by other astrophysical searches, we stress that, given the assumptions required to derive
those bounds, it is nevertheless interesting to have complementary probes which rely on a
different set of assumptions and completely different observations. Moreover, we find that
a future search using results from the CMB-S4 experiment could be sensitive to up to an
order of magnitude smaller couplings compared to Planck, providing the most sensitive
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probe of axions in this mass range. Data from ACT [261] and Simons Observatory [205]
will continuously extend the reach in parameter space as we approach the S4 era.

The Chapter is organized as follows. We describe photon-axion conversion inside an
individual halo in Sec. 5.2.1 and the resulting sky-averaged optical depth in Sec. 5.2.2.
In Sec. 5.3 we derive the CMB temperature and polarization anisotropies, computing the
temperature and polarization auto-correlation functions in Sec. 5.3.1, the temperature-
galaxy cross-correlation function in Sec. 5.3.2, and the polarization-galaxy bispectrum in
Sec. 5.3.3. In Sec. 5.4.1 we investigate how CMB maps at different frequencies can be
used to separate the photon-axion conversion signal from the primary CMB as well as
galactic and extragalactic foregrounds. We forecast the sensitivity of existing and future
CMB and galaxy surveys to photon-axion conversion in Sec. 5.4.2 and comment on the
limit of (effectively) massless axions in Sec. 5.4.3. Finally, we conclude in Sec. 5.5. We
include a set of appendices containing various technical discussions and derivations. In
App. B.4 we derive the photon-axion conversion probability and discuss the domain of
validity in the context of our analysis. In App. B.5 and B.7 we derive the two- and three-
point correlators involving polarization. In App. B.6 we detail the model used for the
galaxy distribution and their power spectra. In App. B.8 we describe the foreground and
instrumental noise models used in our forecasts. In App. B.9 we sketch the utility of
our formalism to the study of photon-axion conversion for (effectively) massless axions.
In App. B.10 we provide a qualitative order-of-magnitude estimate of the effect and the
expected sensitivity. Finally, in App. B.11 we derive the likelihood for the axion signal.
Natural units are used throughout, with ℏ = c = kB = 1.

5.2 Photon-axion conversion inside large-scale struc-

ture

To model photon-to-axion conversion, we first need a model for the distribution of LSS.
Here, we work within the halo model (see e.g. [262, 60] for a review), where dark and
baryonic matter is assumed bound in virialized halos. The mass and redshift of halos de-
termines the properties of the baryonic matter and galaxies that inhabit them. Correlation
functions are then computed from the distribution of matter between and within halos.
The halo model is extremely flexible, allowing for a unified framework to incorporate a wide
variety of observables. Below, we first compute the photon-axion conversion probability in
individual halos and then compute the sky-averaged (monopole) signal over all halos.
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5.2.1 Individual halo conversion

In this section, we derive the rate for resonant photon-axion conversion inside an individual
halo, which is the main ingredient needed to compute the axion-induced CMB spectral
distortions and anisotropies we study in the following sections. An important feature of
the conversion into axions is that only the photon polarization parallel to the magnetic
field mixes with the axion [247]; therefore there are two types of signal that can be looked
for: a reduction (screening) in the intensity of the CMB and an induced polarization.

In analogy with Chapter 4, we compute the probability that photons traveling along
the direction n̂ convert to axions inside a halo with mass mi, at comoving distance χi(zi),
and redshift zi according to the Landau-Zener expression (5.3). We assume halos to be
spherically symmetric and centered at n̂i. While individual halos could be far from spher-
ical, we will only be concerned with ensemble averages below, where spherical symmetry
is a good approximation. Due to the gradient in the halo’s gas density profile, at some
distance rres(χi,mi) from the halo center, the resonance condition will be satisfied, with
mγ(rres) = ma. Within these assumptions, the conversion probability is azimuthally sym-
metric with respect to the halo center, and can be written as

P i
γ→a(χi,mi, n̂i − n̂) = P (χi,mi)Nres(χi,mi)u(n̂i − n̂|χi,mi) γ(n̂|χi), (5.4)

where

P (χi,mi) = πω(1 + zi)g
2
aγγ|B(rres, zi,mi)|2

∣∣∣∣
dm2

γ(r, zi,mi)

dr

∣∣∣∣
−1

rres

, (5.5)

Nres(χi,mi) =

{
2, rres < rvir,

1, rres = rvir,
(5.6)

u(n̂i − n̂|χi,mi) =

[
1− (χiθ/rres)

2

(1 + zi)2

]−1/2

. (5.7)

In the above expressions, θ ≃ |n̂i − n̂| ≤ rres(1 + zi)/χi ≪ 1 is the small angle between
the halo center and the photon trajectory. Nres counts the number of resonance crossings
for rres within the virial radius rvir; it is set to one for rres = rvir to smooth the sharp
transition, i.e. the conversion only happens half of the time at the edge. |B(rres, zi,mi)|
denotes the magnitude of the magnetic field inside the halo at the resonance radius. In
general, the magnetic field within the halo has a finite coherence length – much smaller
than rvir or rres – and will take a random orientation in different domains. To account
for the random angle of the magnetic field along each photon propagation direction, we
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multiply the conversion probability by γ(n̂). This function takes a different form – and has
different statistical properties – depending on whether we are computing the contribution
of the conversion to the intensity or polarization signals, since a different combination of
the magnetic field components enters in each case. We will therefore write γ(n̂) explicitly
in Sec. 5.3, when computing the axion-induced signal to CMB intensity and polarization
anisotropies.

The radial profile of the photon plasma mass within a spherically symmetric halo can
be modeled using the baryonic gas density profile ρgas(r, zi,mi) based on hydrodynamical
cosmological simulations from Ref. [217], the widely-used Battaglia et al. AGN Feedback
profile (see e.g. Ref. [85] for an example in a different context). Assuming that protons
account for all the baryonic mass and that there is an equal number of electrons and
protons, m2

γ(r, zi,mi) = e2ρgas(r, zi,mi)/(memp), where e is the electric charge, me and mp

the electron and proton masses, and the expression for ρgas is given in Sec. 4.2 of Chapter 4.

To model the magnetic field profile within halos we use recent results from the high res-
olution cosmological magneto-hydrodynamical zoom simulations from the Auriga project.
The structure of the magnetic field in the circumgalactic medium and its time evolution
has been analysed for Milky Way-like galaxies [263] and a broad range of halo masses [264].
We use the interpolated magnetic field radial profiles provided by the authors of Ref. [264]
for z < 1.9 in 7 halo mass bins between 1010M⊙ and 1013M⊙; for heavier halos, we con-
servatively use a flat extrapolation, i.e. we assume the same magnetic field profile for all
halo masses above the highest mass bin available. The magnetic field we use only includes
the smooth halo component and no contributions from sub-structure (such as satellite
galaxies) within the halos, which represent additions to the smooth density profile. For
Milky Way-like halos, the magnetic field at z = 0 reaches a value of about 0.1µG at the
virial radius, with larger (smaller) values for heavier (lighter) halos. While in an individual
halo the magnetic field is far from being spherically symmetric, we are only interested in
statistically averaged quantities, in which case the averaged |B(r)| profiles should give a
good approximation.

Similar to Chapter 4, we compute only the conversion in the smooth circumgalactic
medium, in regions where the density is well characterized by the Battaglia density pro-
file [217]. Making use of, for example, the central region of disk galaxies will extend the
sensitivity to higher axion masses. Similarly, the sensitivity can be extended to lighter
axions by utilizing the regions outside the virial radius of a halo, where the baryon density
slowly decreases to the average density of the universe. Both extensions come with more
modeling uncertainties associated with the density profile of matter and amplitude of the
magnetic field in these regions. As a result, we defer these studies to a future publication.
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We emphasise that the resonance conversion formula in (5.4) is valid even for a finite
coherence length of the magnetic field, as long as it varies slowly compared to the oscillation
length between the two mass eigenstates in vacuum, 4πω/m2

a. For the smallest axion masses
considered here, this is equivalent to a minimum coherence length of about a parsec, which
is much smaller than the smallest spatial resolution of the cosmological simulations, of
O(kpc). The magnetization of the circumgalactic medium is driven by galactic outflows
transporting magnetised gas from the disk into the halo and later amplified by a turbulent
dynamo acting in the halo. Both of these processes operate at length scales much larger
than a parsec and strongly suggests that the magnetic field to be coherent over long enough
length scales for (5.4) to be valid. The results of the simulations additionally show that
the magnetic energy power spectra are dominated by scales ≳ 10 kpc [263], which support
the assumption made here that the magnetic field is dominated by relatively large-scale
fluctuations, while rapidly oscillating components can be neglected. Importantly, in this
regime, the conversion probability scales linearly with frequency and it is insensitive to the
exact value of the magnetic field coherence length. For a more detailed discussion on the
derivation of the conversion probability and its range of validity see App. B.4.

5.2.2 Conversion monopole and optical depth

The total photon-axion conversion probability is given by the sum of the individual halo
contributions from (5.4) along the line of sight. Since the magnetic field orientation changes
randomly in each halo (and also between the two resonance crossings in the same halo), the
axion-induced polarization will have a random positive or negative sign at each crossing
of the conversion surface, yielding a zero mean but non-zero variance. The photon-axion
conversion always removes photons, therefore reducing the intensity and screening the
CMB monopole 4. On average, only one component of the magnetic field contributes to
the intensity axion-induced screening, such that the γ factor in (5.4) averages to 1/3. We
define the axion-induced screening optical depth in the direction n̂ as

τ a(n̂) ≡
∑

i

P i
γ→a(χi,mi, n̂i − n̂) =

∑

i

P (χi,mi)Nres(χi,mi)u(n̂i − n̂|χi,mi)γ(n̂|χi)

=

∫ zmax

zmax

dz
dτ a(n̂, χ)

dz
, (5.8)

4This is analogous to Thomson scattering of CMB photons from free electrons in the post-reionization
universe screening the primary CMB anisotropies. Two crucial differences here are that while Thom-
son screening preserves the blackbody spectrum, axion-induced screening does not and while Thomson
screening couples only to temperature anisotropies, axion-induced screening couples to the temperature
monopole.
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where we have defined the differential optical depth as a function of redshift

dτ a

dz
≡ χ2

H

∫
d2n̂′ dm

∑

i

δ(χ− χi)
χ2

δ2(n̂′ − n̂i)δ(m−mi)
1

3
P (χ,m)Nres(χ,m)u(n̂′ − n̂|χ,m),

(5.9)

where H is the Hubble parameter at redshift z, we performed a change of variables from
comoving distance χ(z) to redshift, and we replaced explicitly the average value of the γ
factor. Notice that, similarly to the dark photon case of Chapter 4, the axion-induced
screening has a simple scaling with frequency and photon-axion coupling, in this case
τ a ∝ ωg2aγγ. We will leverage this frequency dependence to appropriately combine CMB
measurements across multiple frequency channels and maximize the signal-to-noise ratio,
as described in Sec. 5.3. The ensemble average of the optical depth is

⟨τ a(n̂)⟩ =
∫ zmax

zmax

dz

〈
dτ a(n̂, z)

dz

〉

=

∫ zmax

zmax

dz
χ2

H

∫
dmn(χ,m)

1

3
P (χ,m)Nres(χ,m)

∫
d2n̂′ u(n̂′ − n̂|χ,m),

(5.10)

where n(χ,m) denotes the isotropic average halo number density per volume per halo
mass, i.e. the halo mass function. Since the halo number density is isotropic, the average
optical depth in (5.10) does not depend on the direction and we can evaluate it at the
north pole, n̂ = ẑ, to get the expected screening monopole

τ̄ a ≡ ⟨τ a(0)⟩ =
∫ zmax

zmax

dz
χ2

H

∫
dmn(χ,m)

1

3
P (χ,m)Nres(χ,m)

∫
d2n̂ u(n̂|χ,m)

=

∫ zmax

zmin

dz
χ2

H

∫
dmn(χ,m)τ00(z,m). (5.11)

For later convenience, we have introduced the notation

τ00(z,m) ≡
√
4π

3
Nres(χ,m)P (z,m)u00(z,m), (5.12)

u00(z,m) ≡ 1√
4π

∫
d2n̂ u(θ|z,m) =

√
π
(1 + z)2r2res
χ(z)2

, (5.13)

for the optical depth monopole at each redshift and halo mass, and the monopole of the
angular part of the conversion probability u, respectively. In the next sections, these will
be generalized to higher multipoles.
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We choose the limits of integration to range between a minimum redshift of zmin = 0.005
and up to a maximum redshift for which the halo magnetic field profile is available
zmax = 1.9, which is well below the redshift at which reionization is complete. We checked
for all our observables that the lowest redshift bins give a subdominant contribution; how-
ever note that, in general, the effect from individual particularly nearby objects can be
significant [255], in particular, if we can resolve and model the central regions of these
objects, for the upper end of the axion masses. To perform numerical computations we
assume the mass-function of [220] that fixes the bias function [265], and the concentration-
mass relation from [266], which fixes the free parameters in the halo density profile. We also
work under the assumption that the halo boundary is at the virial radius where the over-
density is ≈ 178 greater than the background density, so that the halo mass is defined in a
sphere of radius rvir in units of M⊙. We assume 100 halo mass bins logarithmically spaced
in the 1011 − 1017M⊙ interval. Finally, throughout this Chapter we assume a flat ΛCDM
cosmology, with parameters fixed by the best-fit Planck 2018 data [10]: Ωcdm = 0.11933,
Ωb = 0.02242, H0 = 67.66 km/s/Mpc, ln(1010As) = 3.047, ns = 0.9665 and τreio = 0.0561.
Note, these parameters are slightly different from those assumed in Chapter 4.

Fig. 5.1 shows the differential optical depth dτ̄ a/d ln z, the integrand of (5.11), as a
function of redshift for three choices of axion masses. The conversion mostly happens at
low redshifts for the smallest masses and at high redshift for the heavier masses, as expected
following the redshift evolution of the photon plasma mass. The range of redshifts where
we have a reliable model for the circumgalactic magnetic field limits the range of heavy
axion masses accessible in our analysis. Therefore, our result for the integrated optical
depth is conservative, as it would in principle receive additional contributions at higher
redshifts.

The total optical depth over the sky from (5.11) represents a spectral distortion of the
blackbody CMB spectrum from photon-axion conversion inside structure in the late uni-
verse, and can be used to derive a bound on the axion-photon coupling from COBE/FIRAS
[77]. The resulting constraint obtained from a chi-square test identical to what was imple-
mented in Chapter 4 is shown in Fig. 5.2. Spectral distortions can only probe couplings as
small as 10−9GeV−1, which are well within the excluded region from the axion helioscope
CAST [242]. Note that COBE/FIRAS can only exclude an optical depth of τ̄ a ≳ 10−2 (see
Fig. 5.1); the reason for such a weak bound is that the effect from an optical depth with
linear frequency scaling can be partially compensated by increasing the best fit black body
temperature. In fact, in the high frequency tail, where the axion-induced screening effect
is strongest, exp

[
−ω/(T̄ +∆T̄ )

]
≃ exp

(
−ω/T̄

)
(1+ω ∆T̄ /T̄ 2); for example, we find that a

change of the best fit CMB temperature T̄ by a small fractional amount of ∆T̄ /T̄ ≲ 10−4

is enough to wash out the axion screening spectral distortions for gaγγ = 10−10 GeV. The
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Figure 5.1: The axion-induced differential optical depth (see (5.11)) as a function of redshift
for three choices of axion mass ma. The coupling constant gaγγ is fixed as labeled and we
use a reference frequency ω/(2π) = 145 GHz. The latter is adopted for all the figures
throughout this Chapter. At the low-end of the axion masses accessible in our analysis,
the conversion takes place in the outermost regions of low-redshift halos, where electron
densities reach the lowest amplitude. For heavier axions, the density required to undergo
resonant conversion increases, and a broader range of redshift becomes relevant. The non-
smooth features in these curves are due to the magnetic field profiles evaluated in discrete
coarse halo mass bins as provided by Ref. [264]. We work under the assumption that
there are no significant magnetic fields in the circumgalactic medium for virialized halos
beyond z > 1.9. This represents a boundary on the axion-induced screening that results
in a natural cutoff at ma ≃ 3× 10−12 eV for the range of axion masses accessible with this
method.
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bound is therefore coming from higher order terms and from the low frequency tail, where
the effect is weaker. This constraint could be strengthened slightly if additional contribu-
tions to the spectral distortion were taken into account, such as contributions from higher
redshift, the conversion in the intercluster medium (which contains a larger volume com-
pared to structure, but also weaker magnetic fields), and the contribution to the conversion
inside the Milky Way.

However, as shown in the rest of this Chapter, the sensitivity to the photon-axion
coupling can be improved by a few orders of magnitude by considering the anisotropies
induced by the photon-axion conversion inside structure. In the next section, we introduce
the anisotropic axion-screened CMB temperature and polarization fields and compute the
most promising observables to look for an axion signal: the two-point auto-correlation func-
tions, the two-point temperature and LSS cross-correlation function, and the polarization
and LSS three-point function.

5.3 Axion-induced patchy screening

Conventionally, the CMB temperature and polarization anisotropies are given with respect
to the mean brightness temperature, i.e. the CMB blackbody temperature T̄ = 2.726K.
The photon-axion conversion effect from (5.4) removes CMB photons, or equivalently re-
duces the intensity of the blackbody spectrum, in a frequency dependent way. The corre-
sponding axion-induced fluctuations to the temperature and polarization Stokes parameters
are:

T a(n̂) = −1− e−x
x

T̄

∫ zmax

zmin

dz
dτ a(n̂, χ)

dz
γI(n̂, χ), (5.14)

(Q± iU)a(n̂) = −1− e−x
x

T̄

∫ zmax

zmin

dz
dτ a(n̂, χ)

dz
γ±(n̂, χ), (5.15)

where x ≡ ω/T̄ , the multiplicative factor arises when converting from intensity to tem-
perature units [254], and the differential contribution to axion-induced screening is defined
in (5.9). Throughout this Chapter and in the associated appendices, we keep explicit the
factor of (1 − e−x)/x when defining axion screening induced CMB power spectra. In the
equations above we have considered only the dominant contributions proportional to the
CMB temperature monopole T̄ , neglecting the screening of CMB anisotropies; because the
axion-induced screening couples to the monopole, we can hope to differentiate it from the
primordial CMB anisotropies, which are about 5 orders of magnitude smaller, despite the
suppression from the small photon-axion coupling.
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Figure 5.2: The region of interest in the parameter space of axion mass ma and coupling
to photons gaγγ. In grey we show the existing bounds reproduced from the repository [16],
which include: the CAST helioscope [242] (shaded gray), the non-observation of γ-rays
from axions produced in the SN1987A that convert to photons in the galactic magnetic
field [138] (solid dark gray), the non-observation of X-rays from axions produced in stars
that convert to photons in the galactic magnetic field [137] (solid gray), and the absence
of spectral distortions in the X-ray spectra of cluster-hosted quasars due to photon-axion
conversion [139] (solid light gray). Note that Ref. [243] recently placed a limit comparable
to the NCG 1275 line from the non-observation of X-rays from stellar axions produced in
M82 and M87 which is not shown here. The blue shaded region represents the param-
eters excluded at 99% confidence level from requiring that the CMB spectral distortions
from photon-axion conversion inside halos is compatible with the COBE/FIRAS measure-
ments [77], using the optical depth described in Sec. 5.2.2 (see (5.11)) and a χ2-squared
test identical to what was implemented in Chapter 4.

The fields γI,±(n̂, χ) in (5.14) and (5.15) encode the information about the magnetic
field components perpendicular to the line of sight that contribute to the conversion. Ex-
plicitly,

γI(n̂, χ) = 3
Bθ(n̂, χ)

2 +Bϕ(n̂, χ)
2

|B(n̂, χ)|2 ,

γ±(n̂, χ) =
3

2

(Bθ(n̂, χ)∓ iBϕ(n̂, χ))
2

|B(n̂, χ)|2 ,

(5.16)
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where Bθ,ϕ are the polar and azimuthal components along each line of sight n̂ and |B| is
total magnitude (evaluated at the location of the resonance at comoving distance χ). The
overall factor of 3 is just due to the choice of normalization of dτ a/dz to include a factor
of 1/3 (see (5.9)). For simplicity, we model the magnetic field as a random Gaussian field
roughly constant over a domain of characteristic physical size rdom ∈ [1, 10] kpc, which is
independent of halo mass and redshift. If the magnetic fields have a random orientation
in each domain, averaging over many domains gives

〈
γI(n̂, χ)

〉
= 1,

〈
γ±(n̂, χ)

〉
= 0. (5.17)

The corresponding two-point functions are

〈
γI(n̂1, χ)

∗γI(n̂2, χ)
〉
≃
〈∣∣γI(n̂1)

∣∣2
〉
= 1, (5.18)

〈
γ±(n̂1, χ)

∗γ±(n̂2, χ)
〉
=
〈∣∣γ±(n̂1, χ)

∣∣2
〉
× e−|n̂1−n̂2|2/(2θ2dom) =

9

Nres

2

15
e−|n̂1−n̂2|2/(2θ2dom),

(5.19)

where θdom(z) = rdom(1+z)/χ(z). Any cross-correlation between I,+ or − vanishes5. The
factor of Nres in the denominator of (5.19) is to account for the fact that, for polarization,
there is no cross-correlation between the resonant crossings going in and out of the halo
(so that the polarization correlation should scale as Nres and not N2

res)
6.

In the following subsections we present the expressions for the signal contribution to
the relevant two- and three- point functions in harmonic space. These will be used to
forecast the sensitivity of current and future CMB and LSS surveys to axions that couple
to photons in Sec. 5.4. A schematic representation of the terms that enter the axion-signal
n-point statistics computed here is given in Fig. 5.3 for illustrative purposes.

5For the temperature two-point function
〈
γI(n̂1)

∗γI(n̂2)
〉
we neglect a second, sub-leading, contribution

of 4/5 e−|n̂1−n̂2|2θ2
dom/2 that is non-zero only for small angular separations |n̂1− n̂2| inside the same domain,

which are mostly unresolved. Depending on the domain size and the resolution of the CMB experiment,
this term could contribute detectable small-scale power.

6Strictly speaking, Nres is not the same in each halo, so it cannot be factorized outside of the sum
over halos; however it is just equal to 2 in most cases and we adopt this factorization for simplicity, so
as to use the same dτa/dz in Eqs. (5.14)-(5.15) and keep the same notation in the computation of the
temperature and polarization power spectra. Operationally, this means that we use the τa power spectra
with the appropriate power of Nres in each case.

167



Figure 5.3: Schematic representation of the axion-induced screening n-point functions con-
sidered in this Chapter. The green circle represents the distance from the halo’s center
at which mγ = ma; all the photon trajectories crossing the halo within the circle undergo
resonant photon-axion conversion. For the temperature (top row) the leading-order observ-
ables in gaγγ are: ⟨T aT a⟩ auto-correlation (left, see Sec. 5.3.1) and ⟨T ag⟩ cross-correlation
(center, see Sec. 5.3.2), both with non-vanishing 1-halo and 2-halo terms. We checked that
the bispectrum ⟨T aT ag⟩ does not improve the sensitivity compared to the two-point func-
tions considered. For polarization (bottom row) the leading-order observables are: ⟨BaBa⟩
auto-correlation (left, see Sec. 5.3.1), with the 1-halo term only, and ⟨BaBag⟩ bispectrum
(right, see Sec. 5.3.3), with 1-halo and 2-halo terms (both dominated by squeezed trian-
gles). The orange shaded region in the bottom row represents a magnetic field domain,
where the polarization signal is correlated (see (5.19)). Note that the figures are not to
scale and are given for illustrative purposes only.

168



5.3.1 CMB temperature and polarization auto-correlation func-
tions

In the previous section we explored the effect of resonant axion-photon conversion on the
temperature and polarization of the CMB at the field level. Here, we derive the two-point
angular correlation functions of these fields. In analogy with Chapter 4 we use a halo model
approach [267, 268, 262, 60]. Below we report power spectra in harmonic space following
the usual notation for statistically isotropic correlators, with

⟨X∗
ℓmX

′
ℓ′m′⟩ = CXX′

ℓ δℓℓ′δmm′ , (5.20)

where X(′) denotes a general field on the sky, X
(′)
ℓm its corresponding spherical harmonic

coefficients and δℓℓ′ is a Kronecker delta. Real space correlators can be written in terms of
their power spectra as

ξXX
′
(n̂1 − n̂2) =

ℓmax∑

ℓ=0

ℓ∑

m=−ℓ
CXX′
ℓ Y ∗

ℓm(n̂1)Yℓm(n̂2) =
ℓmax∑

ℓ=0

4π

2ℓ+ 1
CXX′
ℓ Pℓ(n̂1 · n̂2), (5.21)

where Yℓm are the spherical harmonic functions and Pℓ denotes the Legendre polynomial
of degree ℓ and ℓmax is set by the angular resolution of the survey. If X is a spin-2 function,
analogous expressions hold for expansions in spin-2 spherical harmonics.

The first quantities to model are anisotropies in axion-induced screening τ a, specifically
the angular power spectrum, Cττ

ℓ . This quantity carries two crucial features of the signal:
the small-scale dependence on the halo profile and the large-scale clustering of structure.
In the halo model, these are captured by the 1-halo and 2-halo terms contributing to the
power spectrum, respectively. The full expression was derived in detail in Chapter 4 and
the associated appendices. Here we simply report the result, expressing the harmonic-space
screening optical depth as

τ aℓ0(z,m) ≡
√

4π

2ℓ+ 1

1

3
Nres(z,m)P (z,m)uℓ0(z,m), (5.22)

uℓ0(z,m) ≡
√

2ℓ+ 1

4π

∫
d2n̂ u(θ|z,m)Pℓ(cos θ), (5.23)

which generalizes Eqs. (5.12) and (5.13) to higher multipoles. The power spectrum is given
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by

Cττ
ℓ = Cττ, 1−halo

ℓ + Cττ, 2−halo
ℓ ,

Cττ, 1−halo
ℓ =

∫ zmax

zmin

dz
χ(z)2

H(z)

∫
dmn(z,m) [τ aℓ0(z,m)]2 ,

Cττ, 2−halo
ℓ =

∫ zmax

zmin

dz
χ(z)2

H(z)

[∫
dmn(z,m)b(z,m)τ aℓ0(z,m)

]2
P lin

(
ℓ+ 1

2

χ(z)
, z

)
.

(5.24)

where P lin is the linear matter power spectrum evaluated at comoving wavenumbers k =(
ℓ+ 1

2

)
/χ and redshift z, b(z,m) is the linear halo bias and n(z,m) is the halo mass

function. The expression given here is the result obtained after taking the Limber approx-
imation to simplify the halo-halo power spectrum [269, 270].7

The axion-induced screening CMB power spectra are based on Cττ
ℓ and the properties

of the γI,± coefficients. Due to the latter, the only non-vanishing terms are the temperature
and polarization auto-correlations, while any cross-correlation vanishes.

The temperature auto-correlation function takes a simple form, given that the coeffi-
cients γI are defined with unit variance and do not add any angular dependence. Therefore,
the temperature power spectrum is simply proportional to the τ a screening auto-power
spectrum and reads

CT aT a

ℓ =

(
1− e−x

x
T̄

)2

Cττ
ℓ , (5.26)

including both 1-halo and 2-halo contributions.8

The polarization auto-correlation has a slightly more involved expression. Due to the
finite magnetic field coherence length, the polarization signal is correlated only on small
angular scales, at or below the angular size of the projected magnetic field domain –
see (5.19). In recent simulations, the magnetic field energy power spectra are dominated

7We have verified numerically that, over the range of scales considered here, the Limber approximation
is equivalent to the full expression given in App. B.2.2 of Chapter 4,

Cττ, 2−halo
ℓ =


 ∏

i=1,2

∫ zmax

zmin

dzi
χ(zi)

2

H(zi)

∫
dmi n(zi,mi)b(zi,mi)τ

a
ℓ0(z,mi)


 Clinℓ (z1, z2) ,

Clinℓ (z1, z2) =
2

π

∫
dkk2jℓ(kχ1)jℓ(kχ2)

√
P lin(k, χ1)P lin(k, χ2).

(5.25)

Further details on how to reduce the result above to (5.24) are also given in App. B.7 (see (B.128)-(B.129)).
8The monopole of the axion-induced temperature is given by ⟨T a⟩ = −(1− e−x)/x T̄ τ̄a.
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by scales between 1 and 100 kpc over the halo masses considered [264]. Therefore, except
for the nearest and more massive halos, the projected angular size of a magnetic field
domain, θdom, is small and will not be resolved with existing and future surveys (ℓ ∼ 104

corresponds to a physical scale of about 100 kpc at a distance of 1 Gpc).

The scaling of the axion-induced polarization with magnetic field domain size can be
understood as follows: the contribution to the signal integrated over the angular area of
one halo of size θvir adds up incoherently from the unresolved Ndom domains within the
halo and scales as Ba ∝ θ2dom

√
Ndom; on the effectively two dimensional conversion surface

there are Ndom ≃ (θvir/θdom)
2 domains; therefore, the polarization two-point function will

scale as (θdomθvir)
2. Despite the suppression from the small angle θdom, there are several

handles on the polarization signal that can be leveraged for detection: it induces B-modes
(the signal contributes equally to E (curl-free) and B (gradient-free) modes, but as we
see below, the noise is lower for B-modes), it has a characteristic frequency dependence,
and it is correlated with the location of galaxies. For these reasons, we find it can be
competitive and complementary to the temperature observables, although it is sensitive to
the unknown value of the magnetic field coherence length.

Here we report the power spectra for the E and B modes. These are derived in App. B.5
from the two-point functions of the Stokes parameters Q and U , following the standard
expansion in spin-2 spherical harmonics for the polarization tensor. The final result is9

CEaEa

ℓ = CBaBa

ℓ =

=

(
1− e−x

x
T̄

)2 ∫
dz

χ(z)2

H(z)

∫
dmn(z,m)

∑

LL′

(
W 220
ℓL′L

)2
[τ aL0(z,m)]2Cpol

L′ (z,m),
(5.27)

where the factor W 220
ℓL′L, defined in (B.99), arises due to the appropriate weighting by

Wigner 3j-symbols when combining the product of spherical harmonics, and Cpol
ℓ denotes

the power spectrum of the appropriate combination of γ functions from (5.16) with two-
point function from (5.19), which captures the correlation length of magnetic domains.
These are

Cpol
ℓ (z,m) ≡ 1

4

[
C+
ℓ (z,m) + C−

ℓ (z,m)
]

=
9

Nres(z,m)

1

15
2πθ2dom(z) exp

[
−ℓ(ℓ+ 1)θ2dom(z)/2

] (5.28)

where θdom(z) = rdom(1+ z)/χ(z) and we fix the physical size of the magnetic field domain
rdom ∈ [1, 10] kpc. Comparing (5.24) with (5.27), notice that there is no contribution from

9Note that within this assumption of randomly oriented magnetic field in each domain, the correlation
function ⟨EaBa⟩ vanishes.
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the 2-halo term for the polarization screening. Since the magnetic field direction varies
randomly in different domains, the polarization signal has a non-zero correlation only for
points within the same domain.

The resulting power spectra are shown in Fig. 5.4, where the temperature power spec-
trum from (5.26) is compared to the polarization power spectra spectra from (5.27), for
one choice of axion mass and coupling. From the flat shape of the CEaEa

ℓ /CBaBa

ℓ , we see
that the polarization signal is predominantly coming from unclustered positive and neg-
ative sources. At large-scales, where the 2-halo term dominates, the signal in ⟨T aT a⟩ is
significantly larger than ⟨EaEa⟩ , ⟨BaBa⟩. Notice that the relative size between the tem-
perature and polarization power spectra will change slightly at different values of the axion
mass: lighter axions correspond to conversions at smaller redshifts, when the angular size
of the magnetic field domain is less suppressed for nearby halos; therefore the polarization
signal is stronger (relative to ⟨T aT a⟩) for smaller masses and becomes more suppressed
at larger masses. This will be apparent when comparing the sensitivity to photon-axion
couplings from ⟨T aT a⟩ and ⟨BaBa⟩, whose relative importance will depend on the axion
mass (see Sec. 5.4.2). Finally, the fact that the signal in polarization is weaker than the
one in temperature at almost all scales, does not mean that the polarization does not con-
tribute to the overall signal sensitivity. In fact, ⟨BaBa⟩ gives a much cleaner channel to
look for non-SM effects, due to the small amplitude of lensing B-modes, making it possible
to distinguish a smaller signal compared to the ⟨T aT a⟩ channel.

5.3.2 CMB temperature-LSS cross-correlation

Since axion-induced screening occurs inside LSS, the cross-correlation of the CMB with
a tracer of LSS will be more sensitive than the CMB auto-correlations discussed in the
previous section. On one hand, the cross-correlation contains only one power of the small
coupling squared g2aγγ - compared to the double insertion in the auto-correlation func-
tions - which translates into a more favourable scaling of the sensitivity with the highest
accessible multipole ℓmax, as can be seen from the signal-to-noise ratio described below
in Sec. 5.4.2 (see also App. B.10 for a qualitative order-of-magnitude comparison of the
sensitivity of different observables). Additionally, having a template based on the distri-
bution of LSS helps in the detection of a weak signal. Finally, cross-correlation minimizes
the impact of uncorrelated foregrounds and systematics that contribute strongly to the
individual auto-spectra, increasing the sensitivity of the measurement. The simple cross-
correlation between the axion-induced polarization signal and LSS vanishes due to the
random orientation of the magnetic field in different domains (there are, however, non-
vanishing higher-point functions that will be described in Sec. 5.3.3). Therefore, here we
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Figure 5.4: Axion-screening induced CMB power spectra for fixed axion parameters as
labeled and reference frequency ω/(2π) = 145 GHz. The temperature power spectrum
CT aT a

ℓ is given in (5.26) and shown by the black solid line, while the polarization power
spectrum CBaBa

ℓ is given in (5.27) and shown by the blue dotted, dashed, and solid lines, for
magnetic domain size of rdom = 1, 5, and 10 kpc, respectively. The amplitude of the power
spectrum scales as r2dom, as expected. The ratio between the temperature and polarization
power spectra at fixed ℓ changes depending on the axion mass. In general, for the range of
magnetic domain sizes chosen, the temperature power spectrum is stronger on all scales.
This is in part due to the fact that the polarization auto-correlator does not receive inter-
halo contributions proportional to the linear matter power spectrum. On small scales of
ℓ > O(103), where the 1-halo term dominates, the polarization signal can be competitive
with the temperature, especially at low axion mass where there is no redshift-dependent
suppression from Cpol

ℓ (see (5.28)).
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focus on the two-point correlation function between the axion-induced temperature signal
and LSS,

⟨T a(n̂1)g(n̂2)⟩ , (5.29)

where T a(n̂) is defined in (5.14) and g(n̂) represents the projected galaxy overdensity field.
Since the axion-induced screening signal in the CMB is projected along the line-of-sight
and receives contribution from a wide range of redshifts, we do not require precise redshift
measurements. The ideal tracer has a high number-density, to leverage both the clustering
signal on large angular scales and the small-scale structure within halos. In the following,
we adopt the unWISE galaxy sample [271, 272] as our fiducial tracer. We focus on the
blue sample, which contains ∼ 50 million objects over roughly 60% of the sky with a
well-characterized redshift distribution. The galaxy field template g(n̂) is defined as an
overdensity in the counts of a galaxy survey, weighted by the fractional number of galaxies
in the sample per redshift bin and integrated over the line-of-sight [273, 274]:

g(n̂) =

∫
dz

dNg

dz

ng(z, n̂)− n̄g(z)
n̄g(z)

, (5.30)

where n̄g is the mean number density of galaxies per redshift bin and dNg/dz is the

galaxy redshift distribution normalized so that
∫
dz dNg

dz
= 1. To model how the observed

galaxies populate the underlying dark matter halo distribution, we use the Halo Occupation
Distribution (HOD) [275] as described in Ref. [276]. The full details of the HOD can be
found in App. B.6; here we report only the resulting galaxy field auto power-spectrum and
the cross-correlation with the axion-induced signal.

Within this framework, the unWISE galaxy sample is modeled by a population of
galaxies at the center of their dark matter halo, ‘centrals’, and a population of ‘satellite’
galaxies distributed according to the dark matter density profile in each halo. Following
Ref. [277], the result is

Cgg
ℓ = Cgg, 1−halo

ℓ + Cgg, 2−halo
ℓ + ASN,

Cgg, 1−halo
ℓ =

∫
dz
χ(z)2

H(z)

∫
dmn(z,m)

〈
|ugℓ(z,m)|2

〉
,

Cgg, 2−halo
ℓ =

∫
dz
χ(z)2

H(z)

[∫
dmn(z,m)b(z,m)ugℓ(z,m)

]2
P lin

(
ℓ+ 1

2

χ(z)
, z

)
,

(5.31)

where ugℓ(z,m) describes the mean distribution of galaxies and their distribution inside ha-

los,
〈
|ugℓ(z,m)|2

〉
is the second moment of the distribution, and ASN denotes the shot noise
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contribution and is an empirically determined parameter of the model. These functions
depend on the details of the HOD, and are defined in App. B.6.

The cross-power between the axion-induced screening temperature anisotropies and
unWISE galaxies is a straightforward generalization of the galaxy-galaxy power spectrum.
Noting that T a

ℓ (z,m) ∝ τ aℓ (z,m), the cross-power is

CT ag
ℓ =

1− e−x
x

T̄
[
Cgτ, 1−halo
ℓ + Cgτ, 2−halo

ℓ

]
,

Cgτ, 1−halo
ℓ =

∫
dz
χ(z)2

H(z)

∫
dmn(z,m)τ aℓ (z,m)ugℓ(z,m),

Cgτ, 2−halo
ℓ =

∫
dz
χ(z)2

H(z)

[∏

i=1,2

∫
dmi n(z,mi)b(z,mi)

]
τ aℓ (z,m1)u

g
ℓ(z,m2)P

lin

(
ℓ+ 1

2

χ(z)
, z

)
.

(5.32)
The cross-power depends on the redshift overlap in the axion-induced optical depth and the
distribution of unWISE galaxies described by ugℓ(z,m). As discussed in App. B.6, ugℓ(z,m)
is proportional to the redshift distribution of galaxies in the unWISE blue sample, which
spans the range 0.2 ≲ z ≲ 0.8. Comparing with Fig. 5.1, the overlap is greatest at low
axion mass ma. The strength of the auto- and cross-correlations depends on the statistical
power of the halo model: when the distribution of structure is known to high precision, the
signal-to-noise of the estimator is enhanced. In principle, the best sensitivity is achieved
when the location of all halos and distribution of galaxies therein is known.

An example of the axion-induced cross-correlation power spectra CT ag
ℓ at fixed coupling

constant gaγγ is shown in Fig. 5.5 for three different values of the axion mass ma. For
ℓ < 1000, the curves follow the linear matter power spectrum P lin

ℓ (through the 2-halo
term) and have similar shapes but different amplitudes. On smaller angular scales, where
the 1-halo term dominates, the cross-spectra hold information about the resonance scale
characteristic of each mass.

Fig. 5.5 also shows the galaxy auto-spectra corresponding to the full unWISE sample
Cgg
ℓ defined in (5.31), as well as for central galaxies only Cgg,cen

ℓ defined in (B.110). As
explained in the next section, when deriving expressions for the axion-induced bispectrum,
we use a centrals-only galaxy template to simplify the calculation. This simplification
should be a conservative choice, which only mildly affects the forecasted sensitivity to
the axion coupling strength. Notice that on large-scales both curves trace the matter
power spectrum, but with a slightly larger amplitude for the full galaxy power spectrum;
the reason for this discrepancy is that both the number of satellite galaxies and the bias
function are larger for heavier halos, while the number of centrals is constant above a

175



102 103

`

10−8

10−7

10−6

10−5

C
g
T

a

`
[µ

K
]

gaγγ = 10−11 GeV−1

Cgg
`

Cgg, cen
`

ma/10−13 eV

3
7
9

Figure 5.5: Cross-correlation of the axion-induced CMB temperature screening with a
tracer of LSS for fixed photon-axion coupling as labeled and reference frequency ω/(2π) =
145 GHz. The signal angular cross-power spectrum is defined in (5.32) and shown by the
blue, orange, and green solid lines for ma = 3, 7, and 9× 10−13 eV, respectively. On large
scales, the main difference in the three spectra is the amplitude, while the spectral shape
is dictated by the proportionality with the linear matter power spectrum P lin

ℓ . On small
scales, the spectra hold some information about the conversion radius rres characteristic for
each axion mass. Also shown are the galaxy-galaxy and centrals-only power-spectra Cgg

ℓ

(black dashed line) and Cgg, cen
ℓ (black dotted line), defined in (5.31) and (B.110) respec-

tively. On large-scales, the galaxy auto-spectra trace the linear matter power spectrum,
while at small scales they asymptote to the shot noise terms (ASN and Acen

SN ). The HOD
parameters used to model the properties of the galaxies are the best-fit values from the
unWISE blue catalog obtained in Ref. [276] (see App. B.6).
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certain mass threshold; therefore, removing satellites removes a preferential weighting of
large-bias halos, in turn reducing the amplitude of the 2-halo term (cf. definitions (5.31)
and (B.110)). At small scales, on the other hand, Cgg,cen

ℓ becomes larger due to a larger
shot noise term in a sample with fewer galaxies, Acen

SN > ASN.

5.3.3 CMB polarization and LSS bispectrum

Similarly to the CMB-LSS cross-correlation observable constructed in the previous sec-
tion for the axion-induced temperature map, it is possible to leverage the fact that the
polarization signal originates in structure. In this case, however, the leading-order non-
vanishing observable is the three-point function containing two polarization fields and one
galaxy field. The simple cross-correlation vanishes because it has only one insertion of the
polarization field. Therefore we are interesting in obtaining the signal contribution to

⟨(Q± iU)a(n̂1)(Q± iU)a(n̂2)g(n̂3)⟩ , (5.33)

where (Q±iU)a(n̂) is defined in (5.15) and g(n̂) represents the projected galaxy overdensity
field as defined in (5.30). To simplify the calculation of the bispectrum, we only include
galaxies at the center of each halo, neglecting satellite galaxies. The HOD modeling with
centrals-only is outlined in App. B.6 and the corresponding auto-power spectrum is given
in (B.110) and shown in Fig. 5.5.

Since the polarization signal is non-zero only for small angular separations that fall
within the same magnetic field domain (within the same halo), the three point function
above will receive a non-vanishing contribution only for |n̂1 − n̂2| ≲ θdom(χ). There are
then two contributions to (5.33): a 1-halo term, where n̂3 is taken to be at the center of a
halo while n̂1 and n̂2 are two points in the same halo, and a 2-halo term, where n̂3 is taken
to be at the center of a different halo than n̂1 and n̂2. Since the magnetic domain size is
typically much smaller than both the characteristic resonance conversion radius and the
separation between two halos, both 1-halo and 2-halo terms are dominated by squeezed
configurations of the bispectrum. Similar to the case of the auto-correlation functions, the
1-halo term will be sensitive to the small-scale shape of the halos, while the 2-halo term
holds information about the modulation of small-scale power by the density field as traced
by LSS. We find the the two terms are comparable, but the 2-halo terms slightly dominates
across the full range of axion masses considered.

The full derivation is presented in App. B.7 and here we report the final expressions for
the angle-averaged bispectrum, which is the quantity appearing in the signal-to-noise ratio
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used for the sensitivity forecast. In terms of the B-mode (the same expression applies to
the E-mode), the result is

BBaBag
ℓℓ′ℓ′′ = BBaBag, 1−halo

ℓℓ′ℓ′′ + BBaBag, 2−halo
ℓℓ′ℓ′′ , (5.34)

BBaBag, 1−halo
ℓℓ′ℓ′′ =

√
(2ℓ+ 1)(2ℓ′ + 1)(2ℓ′′ + 1)

4π

(
ℓ ℓ′ ℓ′′

+2 −2 0

)
eℓℓ′ℓ′′×

(
1− e−x

x
T̄

)2 ∫
dz

χ(z)2

H(z)

∫
dmn(χ,m)ug,cen(χ,m)×

∑

LL′

(
W 000
ℓ′′LL′

)2
τ aL0(χ,m)τ aL′0(χ,m)

Cpolℓ (χ) + Cpolℓ′ (χ)

2
,

(5.35)

BBaBag, 2−halo
ℓℓ′ℓ′′ =

√
(2ℓ+ 1)(2ℓ′ + 1)(2ℓ′′ + 1)

4π

(
ℓ ℓ′ ℓ′′

+2 −2 0

)
eℓℓ′ℓ′′×

(
1− e−x

x
T̄

)2 ∫
dz

χ(z)2

H(z)

[∏

i=1,2

∫
dmi n(z,mi)b(z,mi)

]
ug, cen(χ,m2)×

∑

LL′

(W 220
ℓL′L)

2
+ (W 220

ℓ′L′L)
2

2
[τ aL0(χ,m1)]

2 CpolL′ (χ)P
lin

(
ℓ′′ + 1

2

χ(z)
, z

)
,

(5.36)
where W 220

ℓL′L is defined in (B.99) and eℓℓ′ℓ′′ in (B.120) and all the other quantities have
been introduced in Sec. 5.3.1- 5.3.2. Since we have included central galaxies only in our
LSS tracer for the bispectrum calculation, our prediction of the signal is conservative,
and additional contributions are expected from satellites galaxies in the sample. The
above bispectrum contribution to the signal have been derived in the limit of the squeezed
triangles ℓ, ℓ′ ≫ ℓ′′ and are symmetric under the exchange of ℓ↔ ℓ′, as expected.

The axion-induced n-point statistics derived above will be used in the next section to
estimate the sensitivity of Planck and CMB-S4 measurements, together with the unWISE
galaxy catalog, to photon-axion couplings.

5.4 Sensitivity forecasts

In this section, we forecast the ability of existing and near-term datasets to detect the
axion-induced screening signal. We first assess how measurements of the CMB at multiple
frequencies can be used to isolate the spectral dependence of the axion-induced screening
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signal from foregrounds and the primary CMB. We then determine the sensitivity of the
correlation functions described in the previous section to gaγγ as a function of ma for
existing CMB data from Planck and the unWISE blue galaxy distribution, as well as for a
future CMB experiment – CMB-S4 [206].

5.4.1 Isolating the axion-induced screening signal using CMB
component separation

The multi-frequency information available in a CMB experiment can be used to enhance the
axion-induced screening signal relative to the primary CMB and astrophysical foregrounds.
Similar to the approach taken in Chapter 4, we estimate the ability of the harmonic internal
linear combination (ILC) method [237] to isolate this signal. The ILC is a weighted sum of
individual frequency maps in harmonic space, with weights chosen to minimize the variance
of a signal with known frequency dependence. The ability of this method to isolate the
axion-induced screening signal is limited by the available frequency channels, instrumental
noise, and the spectral dependence/amplitude of foregrounds. Inevitably, there will be
some residual with which the signal must compete. We estimate the residual contribution
to the ILC for two CMB experiments: the completed Planck satellite mission and CMB-S4.
The assumed resolution of each frequency channel, quantified by the width of a Gaussian
beam, for each experiment is recorded in the top two panels of Table 4.2 as follows: the
top panel shows the frequency bins and beam parameters used for the Planck forecast,
while the middle panel shows frequencies, sensitivity and resolution parameters for the
CMB-S4 V3R0 configuration. Recall that ν denotes the photon frequency in GHz such
that ν ≡ ω/2π.

The input to the ILC is the full Nfreq × Nfreq covariance matrix between the power
spectra measured in Nfreq channels:

Cℓ = Ω−1CTT
ℓ + ee†ζ(ω0)

2CT aT a

ℓ (ω = 1) +Ω−1
(
NTT
ℓ (ω)/Gℓ(ω)

)
, (5.37)

where CTT
ℓ is the primary blackbody CMB angular power spectrum,CT aT a

ℓ was defined
in (5.26), NTT

ℓ is the overall noise covariance (defined to include instrumental noise and
astrophysical foregrounds) and Gℓ the beam model. We also used the notation ζ(ω) ≡(
1− e−x(ω)

)
ω/x(ω) for x ≡ ω/T̄ . The second term in (5.37) represents the axion-induced

screening contribution in temperature. This term can be neglected in the small-signal limit
we are interested in when computing the ILC. Equivalent expressions can be written for
the E and B-mode polarization spectra. We also defined the matrix Ω−1 with entries
Ω−1
ij = ζ(ω0)

2/ (ζ(ωi)ζ(ωj)), e = (1, 1, . . . , 1) which characterize the frequency dependence
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of the axion-induced screening signal. The ILC method identifies the linear combination
of harmonic coefficients that minimizes the variance of a map with the target frequency
dependence. This residual is given by

ÑT aT a

ℓ = w†
ℓ ·
(
Ω−1CTT

ℓ +Ω−1NTT
ℓ /Gℓ

)
·wℓ, (5.38)

where the weights wℓ satisfy

wℓ =
(Cℓ)

−1 e

e† (Cℓ)
−1 e

. (5.39)

To evaluate the residual (5.38) we need the lensed primary CMB contributionCTT
ℓ , which is

independent of experiment and computed using CAMB [69] with cosmological parameters
described in Sec. 5.3.1. Additionally, we need a model for the noise covariance NTT

ℓ . We
refer the reader to App. B.8 for a complete description of our methodology. For Planck,
we estimate NTT

ℓ from publicly available CMB-subtracted maps from the Public Data
Release 3 [278] (PR3) at 30, 44, 70, 100, 143, 217, and 353 GHz (we do not include the
strongly foreground-dominated 545 and 857 GHz channels in our analysis; we confirmed
that including them does not change our results). The entries of NTT

ℓ are simply the
auto and cross-power spectra of these maps after applying a galactic cut retaining 40%
of the sky. An analogous analysis is performed for polarization. For CMB-S4, the low-
ℓ spectra are expected to be the same as those measured by Planck. We fit the low-ℓ
CMB-subtracted spectra from Planck to a power law. We add this component to a noise
power spectrum incorporating atmospheric effects, with parameters appropriate for CMB-
S4 (see Table 4.2). On small-angular scales and at high frequencies, the cosmic infrared
background (CIB) is expected to be the dominant foreground. We use simulated CIB maps
from the Websky suite of simulations [279] to compute the contributions to NTT

ℓ at high-ℓ.
For polarization, we include the Planck low-ℓ power-law spectra and instrumental noise
only. For both Planck and CMB-S4, we chose a baseline frequency ω/(2π) = 145 GHz,
and assume 40% sky coverage in the forecasts below, together with a maximum resolution
of ℓmax = 3000 for Planck and ℓmax = 6000 for S4.

For both experiments, the frequencies in the ∼ 100 − 200 GHz range are weighted
most strongly in the ILC, as they have the lowest overall noise, and they are favoured by
the increase of the axion signal with frequency. The highest frequencies, i.e. 353 GHz for
Planck and 278 GHz for S4, suffer from large foreground contamination (mainly CIB) and
are penalized. Together with frequencies below ∼ 70 GHz, these channels do not contribute
significantly to the sensitivity. Fig. 5.6 illustrates the total noise level for the ILC used
in our CMB-S4 forecast. As mentioned, the scaling of the axion-induced screening signal
with frequency causes the ILC residuals ÑT aT a

ℓ and ÑBaBa

ℓ to trace the least noisy and
highest-frequency channels.
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Figure 5.6: Comparison between lensed blackbody CMB and noise model before and after
implementing the ILC for CMB-S4 temperature (left panel) and polarization (right panel).
Without an ILC procedure, the axion-induced screening signal competes against the sum
of the measured CMB CXX

ℓ (solid black) and our estimate for the noise model in each
frequency channel NXX

ℓ /Gℓ (coloured dotted), where X ∈ {T,E,B}. The residual noise
post-ILC is ÑXaXa

ℓ (solid blue). Note that its amplitude is proportional to the Ω−1 matrix
defined in the text. In the temperature case shown on the left, at our chosen baseline
frequency ω/(2π) = 145 GHz, the ILC removes three orders of magnitude in the total
noise amplitude (cf. the sum of the dotted lines with the black line versus the blue line).
For polarization, the ILC simply minimizes the total noise so that it follows the optimal
(i.e. least noisy) channel at any given scale.
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Figure 5.7: Axion-induced auto-correlation functions for temperature (black lines, left)
and polarization (black line, right) compared to the corresponding ILC residual noise (blue
lines). The signal amplitude is calculated for fixed axion parameters as labeled; both
signal and noise are evaluated at the reference frequency ω/(2π) = 145 GHz. The noise
residuals are given in (5.37) and correspond to CMB-S4 observations. The signal is clearly
detectable in both channels for this choice of parameters and can be rescaled as g4aγγ to
infer the magnitude at different couplings. For temperature, we show the total CT aT a

ℓ (solid
black) as well as the 1-halo (dotted black) and 2-halo (dashed black) terms individually
– see Eqs. (5.24) and (5.26). The signal-to-noise ratio is driven by small angular scales
(high-ℓ modes), where the 1-halo term dominates. For polarization B-modes, the signal
contains only the 1-halo term – see (5.27) – and is above the noise level on small angular
scales.
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In Fig. 5.7 we compare the ILC residual noise in temperature and polarization B-mode
with a sample curve for each auto-correlation axion signal CT aT a

ℓ and CBaBa

ℓ respectively,
at fixed coupling and axion mass. The ratio between the axion-induced dark screening
signal and residual noise is most favourable on small angular scales, ℓ > 1000, where most
of the sensitivity of a CMB experiment will come from.

5.4.2 Results

To determine the sensitivity of the two- and three-point correlation functions described
above to the coupling constant gaγγ as a function of ma, we assume that the measurements
follow a Gaussian likelihood and are compatible with the hypothesis of no axion-signal, i.e.
gaγγ = 0. For a given axion mass, all the observables considered in this Chapter have a
simple dependence on the coupling ∝ gnaγγ, with n = 2 or 4. The likelihood in this case
takes the form ⟨logL⟩ ∝ g2naγγ. Following a Bayesian approach and adopting a flat prior
for gaγγ ≥ 0, we derive the posterior over gaγγ in App. B.11. To define the sensitivity of
a measurement, we compute the value of gaγγ containing 68% of the posterior probability
(for the Gaussian case, equivalent to a 1-σ bound). The best sensitivity would be given by
summing over all observables that contain an axion signal. However, to understand which
one is the most sensitive, here we consider them separately.

The results for CMB auto-correlation functions CXaXa

ℓ , with X ∈ {T,E,B} – see (5.26)
and (5.27), CMB temperature-LSS cross-correlation function CT ag

ℓ – see (5.29), and CMB
polarization-LSS bispectrum BBaBag – see (5.34), are

σgaγγ ≃ 0.7 (σ4,XX)
1/4 , σ2

4,XX =



fsky

∑

ℓ

2ℓ+ 1

2

[
CXaXa

ℓ (gaγγ = 1)

ÑXaXa

ℓ

]2


−1

, (5.40)

σgaγγ ≃ 0.76 (σ2,T g)
1/2 , σ2

2,T g =




fsky

∑

ℓ

(2ℓ+ 1)

[
CT ag
ℓ (gaγγ = 1)

]2

Cgg
ℓ Ñ

T aT a

ℓ





−1

, (5.41)

σgaγγ ≃ 0.7 (σ4,BBg)
1/4 , σ2

4,BBg =




fsky

∑

ℓℓ′ℓ′′

1

2

[
BBaBag
ℓℓ′ℓ′′ (gaγγ = 1)

]2

ÑBaBa

ℓ ÑBaBa

ℓ′ Cgg, cen
ℓ′′





−1

. (5.42)

where the derivation of the expressions for σgaγγ is presented in App. B.11. In the equa-
tions above, fsky represents the fraction of the sky covered and is fixed to 0.4 throughout.
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The CMB noise terms ÑXaXa
are the corresponding ILC-minimized noise levels defined

in (5.38), while the LSS noise terms Cgg
ℓ and Cgg, cen

ℓ′′ correspond to the unWISE galaxy
auto-power spectra described in App. B.6 and given in (5.31) (all) and (B.110) (centrals-
only). Here we have neglected the noise contribution to ⟨T ag⟩ and ⟨Bag⟩, but we note
that residual foregrounds in the component-separated CMB, in particular the CIB, have
non-negligible correlation with unWISE galaxies [280], which should be taken into account
in a data analysis. The factor of 1/2 in the signal-to-noise ratio of the bispectrum in (5.42)
comes from having two indistinguishable Ba fields (see e.g. Ref. [238] for an overview).

From Eqs. (5.40), (5.41) and (5.42), it can be seen that the sensitivity to the photon-
axion coupling from CMB auto-correlation functions and the bispectrum scale as signal-
to-noise ratio squared to the negative power of 1/8, while for CMB temperature-galaxy
cross-correlation there is a negative power of 1/4. For this reason, the latter observable
benefits more from the sum over many ℓ modes and will give the best sensitivity.

Fig. 5.8 and Fig. 5.9 show the sensitivities for the observables computed above in the
gaγγ-ma parameter space for Planck and CMB-S4 respectively. We project that, with
current data, our method can be complementary to existing astrophysical searches for
axions, improving significantly compared to the most sensitive existing laboratory experi-
ment, while future observations can marginally exceed the strongest astrophysical bounds
currently in place.

Regarding auto-correlators, we show results for X = T (blue dashed) and X = B (or-
ange dashed-dotted), since the signal for E and B modes is the same, but the latter has
lower noise. The three auto-correlators can be easily combined by summing the individual
signal-to-noise ratios squared, if one neglects TE correlations in the primary CMB, which
provide a negligible contribution to the final answer. The signal-to-noise ratio for both
temperature and polarization is dominated by very high ℓ-modes (see Fig. 5.7). This is
different from the dark photon case considered in Chapter 4, where the ILC residual noise
was more suppressed at large scales and the signal-to-noise ratio in TT was dominated by
intermediate values of ℓ where the 2-halo term dominates. For polarization, the strength
of the axion-induced signal is suppressed and sensitive to the small size of the coherent
magnetic domains. We incorporate this uncertainty as a shaded band whose upper and
lower bounds correspond to rdom = 1 and rdom = 10 kpc, respectively. Unless a significant
component of the magnetic field is coherent on larger scales, the TT channel always domi-
nates the total sensitivity of CMB auto-correlation functions (with the exception of axion
masses at the lower boundary of the range considered, where TT and BB have comparable
sensitivities).

As expected, the CMB temperature cross-correlation with the unWISE galaxy catalog
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Figure 5.8: Forecasted sensitivity to the axion-photon coupling for Planck CMB measure-
ments and the unWISE blue galaxy sample. The ⟨T aT a⟩ (blue dashed) and ⟨BaBa⟩ (orange
dashed-dotted) sensitivities are obtained from (5.40) for X = T and X = B, respectively.
The strongest sensitivity is from ⟨T ag⟩ (solid green), which is obtained from (5.41). We
also show the three point function (pink dotted) between CMB B-modes and the unWISE
template for central galaxies, from (5.42). For both observables involving polarization
fields, the coloured shaded band shows the effect of varying the magnetic domain size rdom
between 1 and 10 kpc, and the central line corresponds to 5 kpc. The bump in the orange
and pink contours around ma ≈ 8 × 10−13 is due to jumps in the magnetic field ampli-
tude between discrete and wide bins in halo mass at a redshift z ≈ 1.3; the effect does
not appear in all the observables due to different weightings of each halo contribution in
each case. Existing bounds on the photon-axion coupling (all in gray) are also shown and
described in Fig. 5.2.
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Figure 5.9: Same as Fig. 5.8, but assuming CMB-S4 measurements and the unWISE blue
galaxy sample. The lower CMB instrumental noise level and higher angular resolution
translate into an improved sensitivity by a factor of O(10) compared to the Planck forecast,
with a similar hierarchy between different observables.
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is more sensitive than CMB auto-correlators, as can be seen from the green solid lines
in Fig. 5.8 and 5.9. The performance of this observable should improve as catalogs with
larger number of galaxies become available. Additionally, with a catalog that has better
redshift resolution, one could properly weight the cross-correlators in different redshift
bins leveraging the redshift dependence of the photon-axion conversion at different axion
masses (see Fig. 5.1) to further increase the signal-to-noise ratio. For CMB-S4 (Fig. 5.9),
the increased sensitivity is enough to go beyond existing astrophysical constraints on gaγγ
by a factor of up to ≈ 1.7 for axion masses around ma ≈ 4× 10−13 eV.

Finally, the pink dotted lines in Fig. 5.8 and 5.9 show the sensitivity of the CMB
polarization-galaxy bispectrum ⟨BaBag⟩. Similarly to the ⟨BaBa⟩ observable, the shaded
region corresponds to magnetic field correlation lengths between rdom = 1 and rdom =
10 kpc. We find that the three-point function including a tracer of LSS does not improve
the sensitivity compared to the CMB-only polarization auto-spectrum. Naively, this finding
seems to contradict the expectation that the correlation with galaxies should enhance the
signal-to-noise ratio, by properly weighting regions of the sky where the signal is expected.
In practice, however, existing galaxy catalogs are incomplete and therefore the signal from
the halos whose central galaxy is not seen by unWISE is effectively removed in ⟨BaBag⟩.
We checked that computing the bispectrum with a ‘perfect’ galaxy catalog that contains
all central galaxies, improves the sensitivity beyond the auto-spectrum. Future surveys
could be expected to lie between these two limiting cases. We find that the 1-halo and 2-
halo terms in the bispectrum (see (5.35) and (5.36)) give a comparable contribution to the
total signal, with the latter larger by a factor of a few. Note that, since we have included
central galaxies only to simplify the derivation of the bispectrum, we are not leveraging
the fact that axion-induced screening traces the angular profile of the satellite distribution
and we are neglecting part of the signal, particularly at small scales where most of the
signal-to-noise ratio should come from. If a signal is present in the data, it could therefore
be larger than what is estimated here. Finally, we would like to stress the importance of
having multiple correlators involving different maps of comparable sensitivity, in particular
to confirm any possible future detection.

The results described in this section are consistent with, and complementary to the
study of axion-induced polarization signals in clusters presented in Ref. [259]. There, the
authors propose to use aperture photometry on identified clusters to detect the square
of the polarization signal induced by resonant photon-axion conversion. The bispectrum
⟨BaBag⟩ considered here should be similar in spirit to the stacking technique considered in
Ref. [259]10. However, it is difficult to perform a direct comparison due to differing assump-
tions about the coherence length of the magnetic field, a parameter which strongly affects

10For CMB-LSS bispectra involving the kinematic Sunyaev Zel’dovich contribution to CMB temperature,
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the magnitude of the signal. Another crucial difference is that the correlators considered
here target statistical signals, while aperture photometry or other filtering techniques tar-
get only the objects contributing most strongly to the signal. Arguably, the statistical
signal is less sensitive to assumptions about the magnetic field and density profiles around
individual halos, a primary uncertainty in any approach. Finally, the authors of Ref. [259]
cite the difficulty in distinguishing extragalactic CMB foregrounds from the signal as a
challenge for using temperature data in correlation with LSS. Although our analysis does
not account for this correlation explicitly in the ⟨T ag⟩ correlator, we note that it is pos-
sible to exactly deproject foregrounds with known spectral energy distribution (see e.g.
Ref. [281]), and that the axion signal in temperature always corresponds to a reduction
in intensity (in contrast to e.g. radio or CIB emission). An interesting future direction
would be to study in more detail the synergy of n-point correlators and various filtering
and stacking techniques for both the temperature and polarization axion-induced screnning
signals.

5.4.3 Extension to the case of effectively massless axions

So far, we have focused on axion masses where resonant conversion happens inside galactic
halos. For lighter axion masses, between 2× 10−13 eV and roughly 10−15 eV, the resonance
condition can be met in regions outside the boundary of halos, where diffuse ionized gas
traces the cosmic web. Independent of the exact location where resonant conversion occurs,
axion-induced screening has the same frequency scaling and can therefore be searched
for using the same maps obtained with the procedure outlined in Sec. 5.4.1, and cross
correlating with the appropriate tracers of LSS.

For axions with even lighter masses, resonant conversion cannot happen in any as-
trophysical medium in the late universe (nor in the early universe, where densities were
higher). However, non-resonant conversion can still occur in the presence of magnetic
fields and we describe this scenario in some detail in App. B.9. In this case, the conversion
probability still depends strongly on the photon plasma mass (scaling as m−4

γ ) and can
therefore also give rise to axion-induced patchy screening. The axion-induced screening
optical depth in the effectively massless axion case also has a characteristic dependence on
the CMB photon frequency

τ a ∼ ω2, (5.43)

it is possible to demonstrate that constraints from the bispectrum are formally equivalent to constraints
from a variety of estimators [85]. A similar set of equivalences may be identified in the context of axion-
induced screening as well.
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and the ILC method [237] can be used to isolate anisotropies with this spectral depen-
dence. In contrast to resonant conversion, for an effectively massless axion, the sign and
size of the axion-induced screening signal strongly depends on the detailed properties of
the inter-cluster gas density profile, and magnetic field power spectrum, neither of which
are well-known. We provide an estimate for the amplitude of this signal in App. B.9,
demonstrating that, in principle, anisotropies can improve upon existing constraints from
the CMB monopole [249]. Future measurements sensitive to the distribution of ionized
gas [282, 231] or numerical simulations could be used to build more reliable models of
photon-axion conversion in this regime and therefore extend the region of axion masses
probed by the CMB.

5.5 Discussion

In this Chapter, we projected the sensitivity of current and future CMB experiments com-
bined with LSS surveys to probe light axions that couple to the photon. The axion-photon
coupling leads to axion-induced screening of the CMB, which is imprinted in new spec-
tral anisotropies in temperature and polarization. We computed the resulting temperature
auto-correlation ⟨T aT a⟩, polarization auto-correlation ⟨BaBa⟩, CMB temperature-galaxy
cross-correlation ⟨T ag⟩ and the polarization-galaxy bispectrum ⟨BaBag⟩. The reach of the
existing Planck and unWISE datasets on the axion photon coupling is significantly better
than the current laboratory constraints from the axion helioscope CAST [242], and com-
plement astrophysical constraints in the same mass range. Data from upcoming CMB-S4
experiment and future LSS surveys can further improve the sensitivity by up to about a
factor of 2 in coupling compared to the best existing bounds, for ma ≈ 4× 10−13 eV.

The search we propose in this Chapter has different systematic uncertainties than other
astrophysical probes. Similar to astrophysical searches that look for axion-induced irreg-
ularities on the X-ray spectra of AGN and quasars, our search also relies on the effect of
photons oscillation into axions in the magnetic field of galaxies. Despite the effect being
suppressed by the small frequency of CMB photons (see (5.4)), the high quality of existing
and future measurements of CMB anisotropies provides a competitive probe of axions.

The cosmological search proposed in this Chapter is complementary to existing analysis
based on X-ray observations of the super star cluster [137] (see also the recent search for
X-ray emissions from M82 and M87 [243]), the cluster-hosted quasar H1821+643 [283],
AGN NGC 1275 [139], and M87 [284], due to several crucial differences. First, the most
sensitive observable considered here – ⟨T ag⟩ – is quite insensitive to the unknown magnetic
field coherence length, as long as it is larger than O(pc), because the relevant length scale
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for us is the vacuum oscillation length; at higher photon frequency, the latter becomes
larger and the conversion probability becomes sensitive to the smallest length scale in the
problem, i.e. the size of the magnetic field domain. Second, although our approach also
requires a modeling of the magnetized circumgalactic medium, similarly to the models of
the intracluster magnetic fields used in [284, 139, 283], the axion-induced screening of CMB
photons is a statistically average effect from many halos and therefore less affected by sys-
tematic uncertainties in the modeling of individual objects. Indeed, Ref. [285] suggested
that the bound from NGC 1275 relaxes considerably if the intracluster magnetic field is
completely ordered and the unknown contribution from the turbulent and ordered compo-
nent should be interpreted as a large uncertainty on the constraint. Similar uncertainties
also exist for searches for photon to axion conversion with CMB polarization with small
numbers of tracers [256, 286, 259]. However, our proposal requires modeling of the mag-
netic field profiles of distant objects, which are much harder to measure directly compared
to the MW magnetic field relevant for the limits obtained in Ref. [137]. Finally, the source
property for our search, that is, the spectrum and the polarization of the blackbody CMB,
is particularly well-known, compared to studies based on polarization of magnetized stars
in [287, 288], and potentially also SN1987A-γ [289, 138] (see also [290]).

For the reasons we listed above, a study based on CMB temperature and polariza-
tion anisotropies and their correlations with LSS will complement the existing searches in
placing robust constraints on the parameter space of axion like particles. In the event of
a discovery, the search proposed in this Chapter can be used to narrow down the exact
mass and coupling of the axion that gives rise to this observed signal, by taking advantage
of the ℓ-dependence of the signal, the relative size of the different estimators, as well as
tomographic information. This is certainly of particular importance for proposed labora-
tory searches of axion dark matter that are expanding their sensitivity to smaller axion
masses [123, 291, 292, 293]. The methodologies in this Chapter can be adapted to different
axion masses by correlating with different tracers with a wide range of plasma frequency,
such as filaments and voids [294, 295, 296], the details of which we leave to future studies.

The cases presented in Chapter 4, Chapter 5 and App. B.9 are three different examples
of a spectral energy distribution (SED) that can be produced by dark screening of the
CMB. Whereas Thomson screening produces optical depth τ ∼ ω0, resonant photon to
dark photon conversion produces τ ∼ ω−1, and resonant (non-resonant) photon to axion
conversion produces τ ∼ ω1 (τ ∼ ω2). Obtaining these different dark screening temperature
and polarization maps from current and future CMB observations, and studying their
correlations with the underlying large-scale structure tracers, has the potential to reveal
the existence of light bosons.
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Chapter 6

Conclusions and Outlook

In this Chapter, we summarize the main findings of the work presented in this Thesis and
highlight some compelling directions for future study.

In Part I, we introduced the first dynamical observables of bubble nucleation in first-
order phase transitions. Specifically, we showed the existence of a clustering scale of nu-
cleation sites. We further showed that bubbles form with a center-of-mass velocity at
nucleation and do not arise from free field fluctuations. Instead, they are preceded by
coherent structures we termed as oscillons. None of these observables are accessible in
standard Euclidean theory due to their fundamentally dynamical nature. We constructed
models for these observables starting from statistical and thermodynamic arguments, which
generalize our results beyond the assumptions in our work. Our predictions are a function
of two quantities: the potential function V (φ) that the fields evolve under, and the initial
conditions ⟨φ2⟩. As long as these quantities are known, our observables can be included
in modeling any theory supporting vacuum decay. Our observables should be considered
in future studies of cosmological first-order phase transitions and laboratory tests thereof.
We justify this statement with a few examples next.

The strongest paradigm shift introduced in Part I is the discovery of oscillons as pre-
cursors of bubble nucleation events. Oscillons are non-perturbative solutions that probe
the shape of the potential away from the false vacuum and around the turning point in
the potential. They represent coherent, long-lived structures that interact with the back-
ground field fluctuations and are subject to non-linear evolution. Empirically, oscillons
have a spread of center-of-mass velocities, which depends on the statistics of fluctuations
in the background field and parameters such as the effective field temperature in the false
vacuum state. We also find that their number density correlates with the decay rate of the
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false vacuum and prove that these structures source all nucleation events. Remarkably, the
Euclidean sphaleron solution matches the shape of the average oscillon, which brings about
an analytic prediction for these objects. In our study, oscillons provide a causal mecha-
nism for the nucleation events. This implies that if a theory supports their formation, it
becomes possible to predict where and when a bubble might form. Understanding under
what circumstances the oscillons form and how they affect other observables, such as the
decay rate, is a topic for future work. Also interesting would be to investigate whether
oscillons may be relevant in the problem of the stability of the Higgs vacuum today.

Turning to the other two main observables introduced in Part I, we estimated in Chap-
ter 3 that if electroweak baryogenesis were a first-order phase transition, given the predicted
temperature at which it would occur, the magnitude of the characteristic center-of-mass
bubble velocity would be strong enough to affect the outcome of the dynamics in the new
phase of the field. We also argued in Chapter 2 that the clustering scale would change
predictions of eternal inflation. Consequently, the existence of both a non-zero correlation
function of nucleation sites and a non-zero velocity distribution at nucleation would impact
the dynamics of the field undergoing the phase transition in the ensuing true vacuum state.
For example, the center-of-mass velocity changes how the energy density is distributed in-
side the bubble walls by introducing a preferred direction of the bubble’s expansion. The
wall expansion is no longer spherically symmetric. Together with a clustering scale, these
predictions challenge the assumptions of energy transfer in a first-order phase transition.

Because these observables depend on the global shape of the potential, if our dynamical
description produces measurable observables, they open up a way to glean the properties
of the initial false vacuum state of the decaying field. For example, if a next-generation
gravitational wave detector such as LISA [158] finds a primordial component to a gravi-
tational wave background, in the most optimistic scenario, it could place bounds on the
three quantities: the decay rate, the clustering scale and the characteristic center-of-mass
velocity. Combining all these quantities could constrain the space of theories that led to the
phase transition and break degeneracies between different theories. Furthermore, it might
tell us about the state of the decaying field before the phase transitions – for example, the
temperature and mass in the false vacuum.

Our study of correlation functions and clustering was followed up by the work of
Ref. [297], where it was argued that clustering in three dimensions can modify the spec-
tral signature of a stochastic GW background by introducing a new scale to the problem,
namely the inter-cluster separation. In the original formulation [179], the stochastic back-
ground has a spectral shape that peaks around the scale corresponding to the average
distance between bubbles. Since Euclidean instanton methods can not be used to measure
correlation functions during a phase transition, a uniform spatial distribution is usually as-
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sumed. By introducing a clustering scale, the spectrum of GW would be influenced by two
frequencies, and depending on their separation, the effect may be observationally relevant.
Simultaneously, a non-zero center of mass velocity distribution would further modify the
prediction. Of course, the full treatment of the propagation of waves through the cosmic
expansion and interaction with plasma and structure would further change or even mask
the signal. However, these are deterministic processes that can be incorporated into the
model.

In Part II of this Thesis, we modeled the interaction of hidden sector particles with
CMB photons inside LSS based on the property of photons acquiring an effective mass as
they cross a charged plasma. In different astrophysical and cosmological environments, the
dispersion relation of the photon (plasma frequency) is naturally scanned. The CMB
photon can resonantly convert into dark photons via kinetic mixing or an axion in a
magnetic field. Using our model, we showed that existing CMB data could increase the
reach in the parameter space of the dark photon by orders of magnitude. At the same
time, this method is competitive with the current strongest astrophysical bounds on the
axion. Upcoming data will increase the sensitivity of both couplings by a further order of
magnitude. The study in [298] has used the available Planck CMB and unWISE galaxy
survey data to exclude the dark photon-photon coupling to ε ≈ 4 × 10−8 over the mass
range 10−13 eV ≲ mA′ ≲ 10−11 eV, almost an order of magnitude stronger than previous
limits, validating the predictions in this work. Soon, new public data releases in galaxy
surveys and CMB data will allow us to explore even further.

In the future, other LSS tracers or secondary CMB observables, such as lensing and the
SZ effect, can be used to infer information about the distribution of dark matter of smaller
scales and up to higher redshifts, extending the range of hidden-sector particle masses that
can be accessed with our method. For example, one can model the epoch of reionization
to include the effect of screening up to a redshift z ≈ 15. Likewise, future measurements
of the 21-cm hydrogen line with line intensity mapping could provide a template for the
gas distribution up to z ≈ 100, extending our method to higher densities and larger dark
photon and axion masses. The distribution and properties of cosmic voids can also be
inferred from LSS data. Since their characteristic densities are below the average matter
density, void maps would open up the search for dark matter in the range < 10−13 eV.
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[172] S. Mrówczyński and B. Müller, Wigner functional approach to quantum field
dynamics, Phys. Rev. D 50 (1994), no. 12 7542–7552.

[173] P. Blakie, A. Bradley, M. Davis, R. Ballagh, and C. Gardiner, Dynamics and
statistical mechanics of ultra-cold bose gases using c-field techniques, Advances in
Physics 57 (2008), no. 5 363–455.

[174] A. V. Frolov, Non-linear Dynamics and Primordial Curvature Perturbations from
Preheating, Class. Quant. Grav. 27 (2010) 124006.

[175] J. C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18 (1964) 50–64.

[176] J. Braden, J. R. Bond, and L. Mersini-Houghton, Cosmic bubble and domain wall
instabilities I: parametric amplification of linear fluctuations, J. Cosmol. Astropart.
Phys. 1503 (2015), no. 03 007.

[177] S. L. Lumsden, A. F. Heavens, and J. A. Peacock, The clustering of peaks in a
random Gaussian field, Mon. Not. Roy. Astron. Soc. 238 (1989), no. 2 293–318.

[178] A. R. Rivolo, The two-point galaxy correlation function of the Local Supercluster,
Astrophys. J. 301 (1986) 70.

[179] A. Kosowsky and M. S. Turner, Gravitational radiation from colliding vacuum
bubbles: Envelope approximation to many-bubble collisions, Phys. Rev. D 47 (1993)
4372–4391.

[180] M. Kamionkowski, A. Kosowsky, and M. S. Turner, Gravitational radiation from
first-order phase transitions, Phys. Rev. D 49 (1994), no. 6 2837–2851.
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Appendix A

Dynamics of Bubble Nucleation

A.1 Real-Time Simulations

In our numerical simulations, we approximate the ensemble-averaged field dynamics by
the non-linear classical time evolution of many realizations of some initial conditions. One
generates an ensemble of these initial conditions for the field and its conjugate momentum
drawn from the ground state defined around the false vacuum minimum. These initial
states are evolved classically with a non-linear Hamiltonian. The field configuration in
each realization is sampled at late times, and their classical expectation value is recovered
from taking ensemble averages over observables.

We interpret a decay event as the emergence of a bubble with a fixed set of character-
istics in the field during classical evolution. For example, a common criterion for finding
a bubble is to set an amplitude threshold on the field, usually around the turning point in
the potential. If the field crosses this threshold at a point and does not return to the false
vacuum at any subsequent time, we say that we have identified a nucleation event. The
time slice corresponding to this event is defined as the decay time and the collection of all
decay times gives the numerical prediction for the decay rate per unit time. This definition
matches the usual interpretation of the Euclidean decay rate for a relativistic field.

Thus, real-time simulations give an explicitly time-dependent description of the forma-
tion of bubbles, providing a classical time-dependent connection between the initial false
vacuum state and the subsequent phase of an expanding bubble. In the simulation of each
realization, every nucleation event is different in detail. The formation history and evolu-
tion of bubbles can be recorded to obtain an ensemble whose statistical properties can be
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investigated in detail. Moreover, no symmetry assumptions about the bubble profile are
needed in this approach. Therefore, this treatment allows us to investigate issues related
to the dynamics of bubble formation that have previously been inaccessible. Adjusting the
total lattice size and resolution gives us access to arbitrarily fine-grained information.

Since our approach relies on running large ensembles of full non-linear simulations,
we specialize to 1+1 dimensional systems for computational feasibility. We expect the
results to be qualitatively similar in higher spatial dimensions. Time evolution is performed
using a 10th-order Gauss-Legendre integrator [175, 176]. Spatial derivatives are computed
using pseudo-spectral methods. The spatial dimension is periodic due to the Fourier space
sampling. We always ensure that the simulations are well resolved and that the total
energy is conserved at machine precision throughout the simulation.

The real-time approach requires an assumption about the statistics of the initial vacuum
field fluctuations. Starting with a classical distribution over phase space, this prescription
is exact, at least to the extent that a sufficient number of realizations are drawn to sample
the possible dynamics properly. In Chapter 3, we employ a classical stochastic description
of vacuum decay of a single real scalar field with an initial Bose-Einstein distribution of
fluctuations. This procedure referred to as the Classical-Statistical approximation [362,
361, 356], stochastic approach [360, 358, 357, 353, 354, 355], depending on the context
and field of study. Early work in this direction was performed for topological solitons and
vacuum transitions at finite temperature in [187, 188, 189, 350, 190].

In Chapter 2, we work under the interpretation introduced in [21], used to study vacuum
decay at zero temperature starting from a stochastic scalar field in 1 + 1 dimensions. In
this approach, the dynamical phase space evolution of a quantum state initially in the
false vacuum is modelled using the truncated Wigner approximation [166, 167]. Under this
prescription, the dynamics can be shown to incorporate quantum effects to leading order
in ℏ. Hence, this procedure yields a semi-classical approximation to the first-order phase
transition dynamics. Analogous techniques have been used in other contexts, for example
to study preheating at the end of inflation [304, 305, 306, 307], evolution of dilute gas
cold atom Bose-Einstein condensates [308, 309], relativistic heavy ion collisions [310, 311].
Other perspectives on this approach were explored in [31, 32, 33, 34, 35, 36, 37].

Heuristically, in the semi-classical interpretation, the uncertainty principle is enforced
by carefully choosing the initial conditions. Individual field and momentum Fourier modes
are sampled as Gaussian random deviates with an appropriate width that simulates the
Minkowski vacuum. However, this approach does not incorporate interference effects be-
tween different initial realizations, which in the path integral context is understood as
interference between histories.
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A.2 Velocity measurement and boosting to the rest

frame

In this appendix we describe in detail the procedure for measuring the center-of-mass
velocity of bubbles identified in simulations. The first step is to map the trajectories of the
expanding bubble walls, denoted rL/R(r, t). To do that, first we model the field amplitude
at every time step by the expression

φ̄(r, t = const) =

(
tanh

r − rL
wL

+ tanh
rR − r
wR

)
φ̄fv

2
+ φ̄fv, (A.1)

where r is a coordinate that spans the lattice and wL,R represent the thickness of each wall.
In this expression, rR,L are the best-fit coordinates of the wall centers. The hyperbolic
tangent profile provides an excellent fit for the shape of the domain walls. Starting at
t ≫ tcrit, we begin to trace the evolution going backwards in time towards the ‘fuzzy’
nucleation region, finding the best-fit values for rR,L at each step. Two examples of such
trajectories are illustrated by the dashed curves in Fig. A.1.

To mitigate the effect of fluctuations, we choose several guesses for the start-values of
the parameters in (A.1) corresponding to wall amplitudes in the range φ̄fv + 1.5σφ̄ and
φ̄fv + 3σφ̄. These start-values in general will generate different wall trajectories. At each
step t beyond the starting slice, the initial guess on the best-fit parameters will be the
values obtained at step t+ dtout.

With the independent trajectories rL,R obtained this way, we fit each wall to a hyperbola

rL,R(t) = ±
√
a1 + (t− a2)2+a3 with free parameters a1, a2, a3 ∈ R. We obtain a bundle of

hyperbolas expanding at roughly similar rates. From here, the instantaneous wall velocity
is simply the tangent curve vL,R(t) = ∂t rL,R. By fitting first to a hyperbolic trajectory we
ensure that the |vL,R| ≤ 1 at all times, as well as smooth out the effect of fluctuations.
This can be seen by comparing the dashed and the solid lines in Fig. A.1.

In the rest frame, the two left- and right-moving wall velocities vwall(t) are equal. In the
boosted frame, vL,R(t) are related by a gamma factor function of vCOM(t). Since at every
time-step we have two equations with two unknowns, the instantaneous center-of-mass
velocity is fully determined. Its value at nucleation is chosen as the instantaneous vCOM(t)
that minimizes the residual |vCOM(t)− vwall(t)|. Once again, this is because at nucleation
the expectation is that the walls start off at rest.

For every wall trajectory given by the different choices of initial values of the fit param-
eters in (A.1), we get a different measurement for the vCOM(t) that minimizes the residual.
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Some trajectories will fail, for various reasons, to give a numerical estimate for vCOM(t).
For example, in most failed cases no hyperbolic fit is found. In general, since the wall am-
plitude spans a small range in φ̄ of only 1.5σφ̄, the values of the center-of-mass velocities
at nucleation obtained from the different hyperbolas will differ by less than 10%. We use
the average of all these values as the final result of the measurement.

We call the center-of-mass velocity measured in this way the deterministic velocity. If
there were no fluctuations, the procedure could be applied once, and the true center-of-
mass velocity would be the deterministic velocity. However, the presence of fluctuations
complicates things, and induces uncertainties in the measurement. In the worst case, it
can lead the algorithm off a wrong path, and boost the bubble into a more relativistic
frame. Therefore, we need to iterate over this procedure several times, checking at each
step that we are on the right track.

We test the value obtained for the deterministic velocity by applying a Lorentz trans-
formation with the corresponding boost factor γ(vCOM) and measuring the center-of-mass
velocity once again. If the new detected velocity is less than the original, the value is
accepted. The procedure re-iterates until a residual ≤ 0.03c is reached, which becomes
a lower bound for the error in the measurement. However, in cases where the determin-
istic velocity gives a larger residual than measured initially, the deterministic velocity is
discarded and random velocities are applied until a frame where the bubble is closer to
rest is found. These random values are chosen in the interval 0.05 < |v| < 0.2. The final,
overall vCOM is the result of relativistic addition of all boost factors – both stochastic or
deterministic – that have been accepted.

To affix a de-boosted bubble onto a transformed grid, we first linearly interpolate the
field (in the frame where the velocity was most recently measured), then evaluate it onto the
new grid (with coordinates determined via the Lorentz boost). Recall that boosts preserve
the spacetime interval, but weight the time and space components differently. The bubble
is now distorted. Note, repeated linear interpolation at each intermediate step introduces
noise in each realization. To minimize this noise, once the final vCOM is measured, we apply
a single Lorentz boost with this value onto the original realization and check again that
the output bubble is measured at rest. If the residual satisfies ≤ 0.03c, the procedure has
completed successfully.

An illustration of this procedure is shown in Fig. A.1 for two examples of bubbles at
T/m = 0.9. The left panel shows the spacetime diagram of the bubbles as they appear
in a particular simulation. On the right is the final result after applying a Lorentz boost
with velocity vCOM = −0.78 (top) and vCOM = 0.26 (bottom) centered on the nucleation
event. The dashed lines are the measured wall trajectories, while the solid lines are the
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Figure A.1: The image caption is on the next page.

associated hyperbolic fits in each frame. Notice that the de-boosted left and right wall
velocities and trajectories are now (almost) symmetric about r = 0. Additional examples
of bubbles before and after the de-boosting procedure are depicted in Fig. 3.8 in the main
text for the case where T/m = 0.9.
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Figure A.1: The spacetime diagrams on the left hand side depict two bubbles as detected
in their original realizations, while on the right we show the same bubbles at rest in the
simulation frame, after going through the de-boosting procedure. The top bubble was
detected to have the center-of-mass velocity vCOM = −0.78, while the one in the bottom
panels was measured to have vCOM = 0.26. The greater the center-of-mass velocity is in
absolute value, the more Lorentz contracted the bubble appears in the original simulation.
The dashed line represents the wall trajectory found by fitting the field at each time-slice
to the wall profile in (A.1). The solid black line is the hyperbolic best-fit to the dashed line
curve, from which the instantaneous wall velocities are obtained. Stronger boosts lead to
stronger field distortion and the introduction of a cutoff for the late-time expansion (e.g.
from an original square grid to an area-conserved boosted diamond). This can be seen
in the top left corner of the diagram in the top right panel. In the same image a large
amplitude coherent fluctuation is seen as the bubble precursor. The bubble precursor as
well as the neck of the bubble in the initial stage of expansion are noticeably thinner in
the left panel than on the right.
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Appendix B

Anisotropic Screening with
Hidden-Sector Particles

B.1 Modelling dark screening in a dark matter halo

B.1.1 Dark matter halo models

The halo model of large scale structure assumes that all matter in the Universe is stored in
virialized halos whose physical properties are fully described by the mass contained within
their boundary (defined e.g. by the virial radius). Galaxies occupy dark matter halos and in
doing so they act as tracers for the underlying dark matter distribution. The halo model is
a semi-analytical framework used for understanding the non-linear structure of the matter
distribution. There are two principal quantities needed to make predictions: the halo mass-
function and the halo density profile. The former describes the halo number density as a
function of mass and redshift. The latter describes how mass is distributed within each
halo. Unlike the mass-function, it is not universal, meaning that it depends on cosmology
and astrophysics. To make matters more simple, these expressions are assumed to be a
function of a few variables such as mass, redshift and halo radius, and the parameters
that enter these expressions are generally obtained from a mix of analytic predictions,
simulations and even data. Other quantities that need to be specified in a halo model are
the halo bias function, which to first order is fully determined by the mass function, as
well as a concentration-mass relation that gives a characteristic scale radius for the halo
density profile. Useful reviews on halo models are e.g. [59, 60].
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To perform halo model computations throughout Chapter 4 we assume the mass-
function of [220] that fixes the bias function [265], and the concentration-mass relation
from [371], which fixes the free parameters in the halo density profile. We also work under
the assumption that the halo boundary is its virial radius, so that the halo mass is defined
in a sphere of radius rvir. In this Chapter and throughout Part II of this Thesis, we perform
numerical halo-model computations using a modified version of the code hmvec1 [6]. A de-
tailed description of the assumptions that enter this code can be found in the Appendix B
of [212].

For our modelling, we use 50 redshift bins of equal comoving radial width in the range
z = [0.01, zmax], where the reionization redshift zmax ∈ {2, 6, 10}. The first case was used
with the purpose of obtaining a template angular power spectrum for the distribution of
galaxies, as measured by a futuristic LSS survey. The latter two provide a conservative
range for when reionization was completed. Additionally, the cosmology (to be precise, the
linear matter power spectrum) is defined for 104 comoving wavenumber bins k logarithmi-
cally spaced in the 10−4 − 103Mpc−1 range.

For numerical calculations in this work we considered 100 halo mass bins logarithmically
spaced in the 1011−1017M⊙ interval. The lower bound is a conservative mass limit of halos
with feedback processes significant enough to disrupt the gas profile. For the upper bound,
the number density of halos in the halo model is exponentially suppressed with mass,
and using the halo mass function in [220], one can expect less than one halo with a mass
> 3 × 1016M⊙ in a volume the size of the Hubble sphere. In other words, we consider all
halos with mass ≥ 1011M⊙.

B.1.2 Charged particle density profiles

In our calculations we considered an idealized scenario where reionization takes place in-
stantaneously: the ionization fraction goes from zero to unity at exactly zreio. We compared
the case where zreio = 6 and zreio = 10 and found no significant difference e.g. see Fig. 4.3.
However, if we relax the assumption about the lower mass bound of halos where conversion
can happen, this no longer holds true. In fact, we found that there is an order 1−10% dif-
ference in the magnitude of the optical depth monopole τ̄ for masses above mA′ > 10−12 eV
when we consider halos with mass down to m = 109M⊙. This would not affect the contours
in Fig. 4.9 significantly, but represents an example of a source of error in the modelling.

A potentially more important assumption has to do with the precise choice of density
profile for the charged electrons on small scales. We explore this in more detail in the

1https://github.com/simonsobs/hmvec
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present section. As an example, the density of dark matter is consistently greater towards
the core of halos (in fact, it is unbounded at r → 0) than the gas density. Repeating
all calculations under the assumption that electrons follow the NFW profile [218] in 4.9
instead of expression (4.7) for gas from [217] that we have been using in the main text,
we obtain the results shown in Fig. B.1 for the sky-averaged dark screening optical depth
monopole, and in Fig. B.2 for the differential (dimensionful) monopole. Notice that the
greatest disagreement between the curves lies in the upper half of the dark photon masses
we considered. This is related to the differences in the two density profiles on small scales
which we elaborate on further.

Since the NFW profile is unbounded at r → 0, we imposed that no resonant conversion
happens below the scale radius rs of any halo, effectively adding a factor of Θ(rs−rres) in the
expression for the radial probability in (4.13). The NFW profile is monotonically decreasing
with radius, hence this approximation excludes halos where the resonance condition is
met near their core. As is evident in Fig. B.1, the constraint is most relevant for the
production of heavy dark photons, which require the largest overdensities. The same
quantitative difference between density profiles shows up in the shape of the angular two-
point functions, which is depicted in Fig. B.3. Here, the relevant quantity is the ratio
between the 1-halo and 2-halo terms. The distribution of power on small angular scales is
influenced by the shape of the density profiles. However, the overall magnitude is given by
the corresponding monopole at every mass.

For consistency reasons, we also assume that the NFW model breaks down at the scale
radius of the Milky Way, which leads to a hard upper boundary on the range of dark photon
masses that can be considered in this case, given bymA′ ∝

√
ρNFW(rMW

s ) ≈ 2.86×10−12 eV.
As mentioned in the main text, for the Milky Way we assuming a virial radius and virial
mass from [221], and the concentration-mass relation at z = 0 from [222] which can be
used to compute the scale radius via rMW

vir = cMW(mMW)rMW
s .

Overall, it appears that the effect of changing the density profile modelling on the
overall sensitivity on ε is minimal, as shown in Fig. B.4. This suggests that our projection
is relatively insensitive to the exact electron density model for masses below the mass
limit set by the Milky Way. This is a indication that the assumptions going into our
forecast analysis are reasonable and robust, at least on scales above the scale radii of halos.
However, the precise modelling of the gas profile around the core regions of halos will
ultimately dictate the sensitivity on ε at larger dark photon masses. On the other hand,
for lower dark photon masses, an improved sensitivity can be reached with improving
knowledge of the electron density profile in the region right outside the virial radius of a
halo [229]. Improving the reach by more than half an order of magnitude in mass towards
lower masses is likely with new data from ACT DR6 and DESI.
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To conclude, in recent years there has been significant progress in our understanding
of the electron density distributions and fluctuations in halos, from new experimental
measurements [229] and numerical simulation [370]. Prospective studies with cosmological
data and CHIME/FRB [231] will further shrink these uncertainties, and potentially allow
us to have more robust projections on the sensitivity at higher dark photon masses.
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Figure B.1: Comparison between the average dimensionful optical depth for the NFW and
gas profiles from [218] and [217], respectively. Here two cases are plotted: the top edge in
each line corresponds to taking zreio = 10, while the bottom edge is computed for zreio = 6.
In either case, assumptions about the end of reionization are of little importance. As
described in the main text, the shape and magnitude of the monopole η̄ plays an important
role in determining the shape and reach in sensitivity of ε, for any experiment and forecast
method. Therefore, the difference in magnitude between the two curves depicted here
illustrates the importance of modelling the charged electron density in halos.

B.2 Correlation functions of dark screening

In this appendix, we derive in detail the angular power spectrum of the two-point auto-
correlation of optical depth fluctuations. We use the notation conventions from the main
text. First, we recall that the optical depth can be written as a sum of a homogeneous and
an anisotropic part:

τ(χ, n̂) = τ̄(ε, ω) [1 + δτ(χ, n̂)] . (B.1)
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Figure B.2: Comparison between the differential average optical depth per redshift bin for
two choices of density profile. Notice that the range of relevant redshift bins is sensitive
to this choice, as well as the magnitude of the signal. For example, if we have an LSS
template up to z = 2 as assumed in the main text, then we expect the cross-correlation
with CMB dark screening to be less strong at mA′ ≳ 10−12 eV if gas traces dark matter in
the absence of AGN feedback processes.

To fix the notation, we define the volume elements d3k = k2 dk d2n̂k and d3χ = χ2dχ d2n̂,
where the solid angle d2n̂ = sin θdθdϕ. The two-point function of the overall optical depth
is defined in configuration space as follows:

⟨τ ∗(χ1)τ(χ2)⟩ = τ̄(ε, ω)2
(
1 + ξδτδτ (χ1,χ2)

)
, (B.2)

where we introduced the notation ξδτδτ = ⟨δτ ∗(χ1)δτ(χ2)⟩ to represent the two-point
auto-correlation of anisotropies. The physical interpretation is the following: given that
a photon following trajectory n̂1 on the observer’s sky undergoes resonant conversion in a
halo with mass m1 at redshift z1, what is the chance that another photon traveling along
n̂2 converts as well? In the halo model, this probability is a sum of two terms:

ξδτδτ = ξ1−halo(χ1, n̂1, χ1, n̂2) + ξ2−halo(χ1, n̂1, χ2, n̂2). (B.3)

The first describes the case where the two photon conversions happen within the same halo
centered at χ(z1), and the second term represents the contribution from two different halos
at χ(z1) and χ(z2). To derive the expressions for the sky-averaged power spectra, we will
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Figure B.3: The left panel shows the dark screening power spectra for three choices of dark
photon mass, given a conversion model that assumes electrons in halos follow ρgas, as in
the main text. On the right we show the equivalent spectra where ρNFW is assumed. The
ρgas profile is flat near the core and drops slower with radius than ρNFW, hence at low mA′

we expect more power on larger scales on the left side. Meanwhile, ρNFW favours larger
densities near the halo cores, so at large mass mA′ we expect more power on smaller scales.
All spectra are multiplied by their respective monopole η̄gas and η̄NFW depicted in Fig. B.1.

need to perform a sum over all halos in the halo model, project onto spherical harmonics,
then integrate over the Hubble volume. In the derivations below we sometimes leave the
mass and redshift dependence implicit to simplify notation. We also use redshift z and
comoving distance χ(z) interchangeably to denote the parametric dependence on time of
various quantities.

B.2.1 One-halo term

We start by computing the 1-halo term. Labeling all halos within each redshift/comoving
distance bin by i, we get:

τ̄ 2ξ1−halo =
〈∑

i

P i ∗
γ→A′(χ, n̂1,mi)P

i
γ→A′(χ, n̂2,mi)

〉

=
〈∑

i

∫
dmδ(m−mi)

∫
d2n̂ δ2(n̂− n̂i) |P (χ,m)|2 u∗(n̂1 − n̂)u(n̂2 − n̂)

〉

=

∫
dmn(χ,m) |P (χ,m)|2

∫
d2n̂ u∗(n̂1 − n̂)u(n̂2 − n̂).

(B.4)
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Figure B.4: Comparison between sensitivity given by two different profiles for the distri-
bution of electrons inside halos, assuming CMB-S4-like noise. The green contours are the
same as those shown in Fig. 4.9 for the ‘AGN feedback’ gas profile [217], while the black
contours show the equivalent constraints starting from the NFW density profile [218]. As
previously, the FIRAS constraint is computed taking into account the total average optical
depth, including the Milky Way contribution, which for NFW is monotonically increasing
with mass and dominates over the extra-galactic component at the upper mass end. The
solid black boundary at mA′ ≈ 3 × 10−12 eV is imposed by assuming the NFW model
breaks down where m2

A′ meets the resonance condition on scales less than the Milky Way
scale radius rMW

s . For the contours that take into account the CMB anisotropies, we point
out that the match between the contours shows that our model assumptions are robust on
scales between the virial radius and the scale radius. However, the precise modelling of
the gas profile around the core regions of halos will ultimately dictate the sensitivity on ε
at larger dark photon masses.

In the last line, we used the expression for the average halo number density from (4.16).
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Only the second integral is now angle-dependent, so we project it onto spherical harmonics:
∫

d2n̂ u∗(n̂1 − n̂|χ,m)u(n̂2 − n̂|χ,m) =

=

∫
d2n̂

∑

ℓ′m′

u∗ℓ′m′(χ,m)Y ∗
ℓ′m′(n̂1 − n̂)

∑

ℓ′′m′′

uℓ′′m′′(χ,m)Yℓ′′m′′(n̂2 − n̂)

=

∫
d2n̂

∑

ℓ′ℓ′′

u∗ℓ′0 Y
∗
ℓ′0(n̂− n̂1)uℓ′′0 Yℓ′′0(n̂− n̂2)

=

∫
d2n̂

∑

ℓ′ℓ′′

u∗ℓ′0uℓ′′0
∑

m′

Dℓ′ ∗0m′(−n̂1)Y
∗
ℓ′m′(n̂)

∑

m′′

Dℓ′′0m′′(−n̂2)Yℓ′′m′′(n̂)

=
∑

ℓ′ℓ′′

u∗ℓ′0uℓ′′0
∑

m′m′′

Dℓ′ ∗0m′(−n̂1)Dℓ
′′
0m′′(−n̂2) δℓ′ℓ′′ δm′m′′

=
∑

ℓ′m′

|uℓ′0|2Dℓ
′ ∗
0m′(−n̂1)Dℓ

′
0m′(−n̂2)

=
∑

ℓ

|uℓ0|2Pℓ(cos (n̂1 − n̂2)).

(B.5)

To get to the second equality we assumed that the halo profile u(n̂) ∈ R has azimuthal
symmetry implying that

∑
m uℓmYℓm = uℓ0Yℓ0. Next we used the definition of the Wigner

D-matrices to rotate the spherical harmonics. Then, we enforced the orthonormality condi-
tion

∫
d2n̂ Y ∗

ℓm(n̂)Yℓ′m′(n̂) = δℓℓ′δmm′ . In the last step we used the symmetries of the Wigner
D-matrices and their relationship to spherical harmonics and Legendre polynomials Pℓ to
simplify the equation.

We perform a multipole expansion on the left hand side of (B.4):

τ̄ 2ξ1−halo =
∞∑

ℓ=0

ℓ∑

m=−ℓ
C1−halo
ℓ (χ)Y ∗

ℓm(n̂1)Yℓm(n̂2). (B.6)

We introduced the angular power spectrum of the 1-halo term C1−halo
ℓ , here as a function

of redshift. To simplify the right-hand side we use the property that 4π
2l+1

∑
m Y

∗
ℓmYℓm = Pℓ.

Next we match the terms in ℓ from both expressions above:

τ̄ 2C1−halo
ℓ (χ) =

4π

2l + 1

∫
dmn(χ,m) [P (χ,m)uℓ0(χ,m)]2 . (B.7)

To obtain the full sky-averaged power spectrum we need to integrate over the comoving
radial coordinate χ. Changing also the integration variable to redshift, i.e. dχ = dz/H(z)
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where H(z) is the Hubble constant, we obtain the final expression for the 1-halo term:

τ̄ 2C1−halo
ℓ =

4π

2l + 1

∫
dz

χ(z)2

H(z)

∫
dmn(z,m) [P (z,m)uℓ0(z,m)]2 . (B.8)

B.2.2 Two-halo term

For the second term we follow similar reasoning and steps as in the previous case, except
now we need to consider the conversion probability inside two different halos. Labeling
these by i and j, located at arbitrary comoving distances χ1 and χ2 we find the average
configuration space two-point function as:

τ̄ 2ξ2−halo =
〈∑

ij

P i ∗
γ→A′(χ1, n̂1,mi)P

j
γ→A′(χ2, n̂2,mj)

〉

=

(∏

x=a,b

∫
dmx

∫
d2n̂x

)
P (χ1,ma)u(n̂1 − n̂a)P (χ2,mb)u(n̂2 − n̂b)

×
〈∑

ij

δ(ma −mi)δ(mb −mj)δ
2(n̂a − n̂i)δ2(n̂b − n̂j)

〉
.

(B.9)

The term in the brackets is related to the number density of each halo’s characteristic m
and z, as well as to the correlation between positions of halos ξhh in the following way:

〈∑

ij

δ(ma −mi)δ(mb −mj)δ
2(n̂a − n̂i)δ2(n̂b − n̂j)

〉
=

= n(χ1,m1)n(χ2,m2) ξ
hh(χ1,m1, χ2,m2).

(B.10)

Known as the halo-halo auto-correlation function, ξhh is proportional to the linear matter
two-point function. To first order in linear theory, the following is true:

ξhh(χ1,ma, χ2,mb) ≃ b(χ1,ma)b(χ2,mb) ξ
lin(χ1, χ2), (B.11)

where the bias function b(z,m) is a deterministic function of the halo mass and redshift. We
can further relate this to the linear matter power spectrum by doing a Fourier expansion
over comoving wavenumbers:

ξlin(χ1, χ2) =

∫
d3k

(2π)3
eik·(χ1−χ2) P lin(k, χ1, χ2). (B.12)
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On large scales, the linear matter power spectrum is well approximated by

P lin(k, χ1, χ2) =
√
P lin(k, χ1)P lin(k, χ2). (B.13)

Consider next the multipole expansion of a plane wave:

eik·χ = 4π
∑

ℓm

iℓjℓ(kχ)Y
∗
ℓm(n̂k)Yℓm(n̂), (B.14)

where jℓ(kχ) ∈ R is the spherical Bessel function. Performing the multipole expansion on
ξhh from (B.11) and putting everything together, we obtain the halo-halo angular power
spectrum to first order in linear theory:

Chh
ℓ (χ1, χ2,ma,mb) =

2

π
b(χ1,ma)b(χ2,mb)

∫
dkk2jℓ(kχ1)jℓ(k2χ2)P

lin(k, χ1, χ2). (B.15)

We come back to the expression for the 2-halo two-point function in B.9 and project
the right hand side onto spherical harmonics. For this, we generalize a result we obtained
in the previous section for the angle-dependent integrand:

u(n̂1 − n̂a)u(n̂2 − n̂b) =
∑

ℓ′m′

u∗ℓ′(χ1)Dℓ
′
0m′(−n̂1)Y

∗
ℓ′m′(n̂a)

∑

ℓ′′m′′

uℓ′′(χ2)Dℓ
′′ ∗
0m′′(−n̂2)Yℓ′′m′′(n̂b).

(B.16)
Multiplying by the halo-halo auto-correlation and using the properties of Yℓm’s and Dℓmm′ ’s
to simplify the expression we get

u(n̂1 − n̂a)u(n̂2 − n̂b) ξhh(χ1,ma, χ2,mb) =

=
∑

ℓm

u∗ℓ(χ1)Dℓ0m(−n̂1)uℓ(χ2)Dℓ ∗0m(−n̂2)C
hh
ℓ

=
∑

ℓ

u∗ℓ(χ1)uℓ(χ2)Pℓ(n̂1 − n̂2)C
hh
ℓ (χ1, χ2,ma,mb).

(B.17)

The multipole expansion for the general 2-halo two-point function is

τ̄ 2ξ2−halo(χ1, χ2) =
∑

ℓ

C2−halo
ℓ (χ1, χ2)Pℓ(n̂1 − n̂2). (B.18)

Matching term by term we find

τ̄ 2C2−halo
ℓ (χ1, χ2) =

4π

2ℓ+ 1

∫
dma n(χ1,ma)P (χ1,ma)uℓ(χ1,ma)×

∫
dmb n(χ2,mb)P (χ2,mb)uℓ(χ2,mb)C

hh
ℓ (χ1,ma, χ2,mb).

(B.19)
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Finally, we integrate over redshift to get the final expression for the 2-halo term:

τ̄ 2C2−halo
ℓ =

4π

2ℓ+ 1

[∏

i=1,2

∫
dzi

χ(zi)
2

H(zi)

∫
dmi n(zi,mi)b(zi,mi)P (zi,mi)uℓ(zi,mi)

]
C lin
ℓ (z1, z2),

C lin
ℓ (z1, z2) =

2

π

∫
dk k2jℓ(k χ1) jℓ(k χ2)P

lin(k, χ1, χ2).

(B.20)

B.3 Two-point correlators and quadratic estimators

In this appendix we enumerate the various two-point correlation functions among the
temperature and polarization anisotropies. We then list all quadratic estimators for the
un-screened CMB temperature and polarization anisotropies as well as the Thomson optical
depth and photon to dark photon optical depth.

The temperature correlators are:

〈
T Sc
ℓ1m1

T Sc
ℓ2m2

〉
=(−1)m1CTScTSc

ℓ1
δℓ1ℓ2δm1m2

−
∑

ℓm

τTh
ℓm (−1)m

(
ℓ1 ℓ2 ℓ
m1 m2 −m

)√
2ℓ+ 1W 000

ℓ1ℓ2ℓ

[
CTT
ℓ1

+ CTT
ℓ2

]
, (B.21)

〈
T dSc
ℓ1m1

T dSc
ℓ2m2

〉
=(−1)m1CTdScTdSc

ℓ1
δℓ1ℓ2δm1m2

+
∑

ℓm

Tℓm(−1)m
(
ℓ1 ℓ2 ℓ
m1 m2 −m

)√
2ℓ+ 1W 000

ℓ1ℓ2ℓ
T̄
[
Cττ
ℓ1

+ Cττ
ℓ2

]
, (B.22)

〈
T dSc
ℓ1m1

T Sc
ℓ2m2

〉
=(−1)m1CTdScTSc

ℓ1
δℓ1ℓ2δm1m2

+
∑

ℓm

Tℓm(−1)m
(
ℓ1 ℓ2 ℓ
m1 m2 −m

)√
2ℓ+ 1W 000

ℓ1ℓ2ℓ
T̄CττTh

ℓ1

−
∑

ℓm

τ ∗ℓm(−1)m
(
ℓ1 ℓ2 ℓ
m1 m2 −m

)√
2ℓ+ 1W 000

ℓ1ℓ2ℓ
CTT
ℓ2
, (B.23)
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where

CTScTSc

L =CTT
L +

∑

ℓℓ′

CτThτTh

ℓ′ CTT
ℓ

(
W 000
Lℓℓ′
)2
, (B.24)

CTdScTdSc

L = T̄ 2Cττ
L +

∑

ℓℓ′

Cττ
ℓ′ C

TT
ℓ

(
W 000
Lℓℓ′
)2
, (B.25)

CTdScTSc

L =
∑

ℓℓ′

CττTh

ℓ′ CTT
ℓ

(
W 000
Lℓℓ′
)2
. (B.26)

The E-mode correlators are:
〈
ESc
ℓ1m1

ESc
ℓ2m2

〉
=(−1)m1CEScESc

ℓ1
δℓ1ℓ2δm1m2

−
∑

ℓm

τTh
ℓm (−1)m

(
ℓ1 ℓ2 ℓ
m1 m2 −m

)√
2ℓ+ 1eℓ1ℓ2ℓW

220
ℓ1ℓ2ℓ

[
CEE
ℓ1

+ CEE
ℓ2

]
,

(B.27)
〈
EdSc
ℓ1m1

EdSc
ℓ2m2

〉
=(−1)m1CEdScEdSc

ℓ1
δℓ1ℓ2δm1m2 , (B.28)

〈
EdSc
ℓ1m1

ESc
ℓ2m2

〉
=(−1)m1CEdScESc

ℓ1
δℓ1ℓ2δm1m2

−
∑

ℓm

τ ∗ℓm(−1)m
(
ℓ1 ℓ2 ℓ
m1 m2 −m

)√
2ℓ+ 1eℓ1ℓ2ℓW

220
ℓ1ℓ2ℓ

CEE
ℓ2
, (B.29)

where

CEScESc

L =CEE
L +

∑

ℓℓ′

CτThτTh

ℓ′ CEE
ℓ eLℓℓ′

(
W 220
Lℓℓ′
)2
, (B.30)

CEdScEdSc

L =
∑

ℓℓ′

Cττ
ℓ′ C

EE
ℓ eLℓℓ′

(
W 220
Lℓℓ′
)2
, (B.31)

CEdScESc

L =
∑

ℓℓ′

CττTh

ℓ′ CEE
ℓ eLℓℓ′

(
W 220
Lℓℓ′
)2

(B.32)

and

eℓℓ′ℓ′′ ≡
1

2

[
1 + (−1)ℓ+ℓ′+ℓ′′

]
. (B.33)

The B-mode correlators are:
〈
iBSc

ℓ1m1
iBSc

ℓ2m2

〉
=(−1)m1CBScBSc

ℓ1
δℓ1ℓ2δm1m2 , (B.34)

〈
iBdSc

ℓ1m1
iBdSc

ℓ2m2

〉
=(−1)m1CBdScBdSc

ℓ1
δℓ1ℓ2δm1m2 , (B.35)

〈
iBdSc

ℓ1m1
iBSc

ℓ2m2

〉
=(−1)m1CBdScBSc

ℓ1
δℓ1ℓ2δm1m2 , (B.36)
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where

CBScBSc

L =
∑

ℓℓ′

CτThτTh

ℓ′ CEE
ℓ oLℓℓ′

(
W 220
Lℓℓ′
)2
, (B.37)

CBdScBdSc

L =
∑

ℓℓ′

Cττ
ℓ′ C

EE
ℓ oLℓℓ′

(
W 220
Lℓℓ′
)2
, (B.38)

CBdScBSc

L =
∑

ℓℓ′

CττTh

ℓ′ CEE
ℓ oLℓℓ′

(
W 220
Lℓℓ′
)2
, (B.39)

and

oℓℓ′ℓ′′ ≡
1

2

[
1− (−1)ℓ+ℓ′+ℓ′′

]
. (B.40)

The E-B correlators are:

〈
ESc
ℓ1m1

iBSc
ℓ2m2

〉
=−

∑

ℓm

τTh
ℓm (−1)m

(
ℓ1 ℓ2 ℓ
m1 m2 −m

)√
2ℓ+ 1oℓ1ℓ2ℓW

220
ℓ2ℓ1ℓ

CEE
ℓ1
, (B.41)

〈
EdSc
ℓ1m1

iBdSc
ℓ2m2

〉
=
〈
EdSc
ℓ1m1

iBSc
ℓ2m2

〉
= 0, (B.42)

〈
ESc
ℓ1m1

iBdSc
ℓ2m2

〉
=−

∑

ℓm
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The T-E correlators are:

〈
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〈
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where

CTScESc

L =CTE
L +

∑

ℓℓ′

CτThτTh

ℓ′ CTE
ℓ W 000

Lℓℓ′W
220
Lℓℓ′ , (B.48)

CTdScEdSc

L =
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ℓℓ′

Cττ
ℓ′ C

TE
ℓ W 000

Lℓℓ′W
220
Lℓℓ′ , (B.49)

CTdScESc

L =
∑

ℓℓ′

CττTh

ℓ′ CTE
ℓ W 000

Lℓℓ′W
220
Lℓℓ′ . (B.50)

The T-B correlators are:

〈
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ℓ1m1
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ℓ2m2

〉
=
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T dSc
ℓ1m1
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ℓ2m2

〉
=
〈
T Sc
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ℓ2m2

〉
= 0, (B.51)

〈
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(
ℓ1 ℓ2 ℓ
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)√
2ℓ+ 1oℓ1ℓ2ℓW
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T̄CττTh

ℓ1
. (B.52)

Moving on to the quadratic estimators, there are two estimators for the un-screened
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temperature anisotropies

T̂LM =NT ;TdScTdSc

L

∑

ℓm
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(
ℓ ℓ′ L
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The weights and prefactors are given by
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(B.55)

GT ;TdScTSc
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There are three estimators for the un-screened E-mode polarization anisotropies

ÊLM =NE;TdScEdSc
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where
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There are four estimators for the Thomson optical depth:
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There are five estimators for the photon to dark photon optical depth:
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B.4 Photon-axion conversion

B.4.1 Homogeneous magnetic field

An axion field a, with mass ma, can interact with the SM photon as

Laγ = −
1

4
gaγγF

µνF̃µν a = gaγγE ·B a, (B.81)

where F µν is the electromagnetic field-strength tensor, and F̃ µν ≡ 1/2ϵµναβF
αβ its dual.

This term induces photon-axion oscillations in the presence of an external magnetic field
transverse to the photon propagation direction. In particular, for a constant transverse
magnetic field B, the photon state polarized along the B field, A∥, mixes with an ultra-
relativistic axion (ω ≫ ma) according to the equation of motion [247, 248, 249]

[
ω − i∂z +

(
∆pl ∆aγ

∆aγ ∆a

)](
A∥
a

)
= 0, (B.82)

where ∆pl = −m2
γ/(2ω), ∆a = −m2

a/(2ω), ∆aγ = gaγγ|B|/2, and m2
γ = e2ne/me denotes

the photon plasma mass in an ionized medium with electron density ne. Notice that we
have neglected the Cotton-Mouton birefringence of fluids in the presence of an external
magnetic field and Faraday rotation that couples the two photon polarizations, as they do
not affect the rest of the discussion. The mixing matrix can be diagonalized by rotating
the fields by an angle

θ =
1

2
arctan

2∆aγ

∆pl −∆a

, (B.83)

and the probability of the A∥ state to convert into an axion after traveling a distance r
can be obtained, similarly to the case of neutrino oscillations [378], as

P (A∥ → a) = (∆aγr)
2 sin

2(∆oscr/2)

(∆oscr/2)2
, (B.84)

where ∆2
osc ≡ (∆pl−∆a)

2+4∆2
aγ is the oscillation wavenumber, so that one complete oscil-

lation is obtained after a distance losc = 2π/∆osc. The oscillation length varies significantly
between vacuum (m2

a ≫ m2
γ) and a resonance region (m2

a ≃ m2
γ):

losc =





4πω
m2

a
≃ 0.01 pc

(
ω

10−4eV

) (
10−12 eV
ma

)2
, |δm2| ≃ m2

a ≫ 2ωgaγγ|B|,
2π

gaγγ |B| ≃ 10Mpc
(

10−12GeV−1

gaγγ

)(
0.1µG
|B|

)
, |δm2| ≪ 2ωgaγγ|B|,

(B.85)
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where δm2 ≡ m2
a −m2

γ. If the photon path crosses a region where the resonance condition
is met, the total conversion probability is dominated by the resonance contribution, while
multiple oscillations before and after the resonance average out and can be neglected.
Similarly to the well-known case of MSW neutrino resonant conversion in a medium [216,
215], the conversion probability of a photon into an axion is then given by [250]

P (A∥ → a)res = 1− p, (B.86)

where p is the level crossing probability. This expression is valid as long as there are
regions before and after the resonance where the mixing angle in (B.83) is small, i.e. where
|∆pl −∆a| ≫ ∆aγ, or

|δm2| ≫ 2ωgaγγ|B| ≃ (10−17 eV)2
( ω

10−4 eV

)( gaγγ

10−12GeV−1

)( |B|
0.1µG

)
. (B.87)

Assuming that the plasma mass, i.e. the electron number density, varies linearly across
the resonance, the level crossing probability can be computed using the Landau-Zener
expression [250, 251, 252]

P (A∥ → a)res ≃
πωg2aγγ|B|2

m2
a

∣∣∣∣
d lnm2

γ

dt

∣∣∣∣
−1

tres

, (B.88)

where we used the small coupling approximation and the fact that P (A∥ → a)res ≪ 1 and
p ≃ 1. For the low energy CMB photons, axion masses, and small couplings that we are
interested in, the above assumptions are always satisfied. The resonance is very narrow
and extends over a time scale ∆tres, defined as the time over which δm2/(2ω) becomes of
order gaγγ|B|,

∆tres ≃
2ωgaγγ|B|

m2
a

∣∣∣∣
d lnm2

γ

dt

∣∣∣∣
−1

tres

∼ ωgaγγ|B|
m2

a

rres

≃ 10−10rres

( ω

10−4eV

)(10−12 eV

ma

)2 ( gaγγ

10−12GeV−1

)( |B|
0.1µG

)
, (B.89)

where the second expression assumes a power law scaling of m2
γ and that the photon

trajectory crosses the resonant region in the direction of the number density gradient
(dr/dt|tres = 1). In a realistic scenario, the plasma mass does not change monotonically
and the photon trajectory will cross multiple resonances. In particular, we are interested
in photons that convert within a halo, that will typically cross a resonance twice. The
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contributions from two resonances at r1 and r2 can be simply added incoherently, as long
as [379] ∣∣∣∣

∫ r1

r2

dr′
δm2(r)

2ω

∣∣∣∣≫ 2π. (B.90)

The above condition is usually easily satisfied, since the integral is typically larger than

m2
a

2ω
∆r ≃ 106

( ma

10−12 eV

)2(10−4 eV

ω

)(
∆r

kpc

)
. (B.91)

There are two exceptions where interference (or phase effects) between the two resonances
might be relevant. First, when the photon trajectory crosses the halo close to the edge of
the resonance radius, so that ∆r is small; however, since the resonance is very narrow, the
contribution from these regions to the integrated probability of conversion inside the halo
are negligible (see Chapter 4). Second, when the resonance radius is in the innermost part
of the halo, where the number density profile is almost flat, so that δm2(r) is small. Also
in this case, however, the contribution to the signal is negligible, as it corresponds to small
angular scales that are inaccessible to observations.

So far we have considered the unrealistic scenario of a constant magnetic field along
the photon trajectory. In the next section we consider a spatially varying magnetic field.

B.4.2 Inhomogeneous magnetic field

Photon-axion mixing for an inhomogeneous plasma and magnetic field can be computed
using time-dependent perturbation theory in the limit of small coupling, which is always
valid given current constraints on the axion-photon coupling. In this case the conversion
probability for a photon traveling over a distance r is given by [247, 380, 379]

P (A∥ → a) =

∣∣∣∣
∫ r

0

dr′∆aγ(r
′)eiΦ(r′)

∣∣∣∣
2

, Φ(r) =

∫ r

0

dr′
δm2(r′)

2ω
. (B.92)

A background magnetic field with coherence length rdom along the photon propagation
direction, can be modeled as a slowly varying component with an oscillatory term ei2πr/rdom ,
giving a mixing term in the expression above of the form ∆aγ(r) = gaγγ|B(r)|/2 ei2πr/rdom .
Therefore, the integrand in the conversion probability has two possible sources of highly
oscillatory behavior that can lead to destructive interference. However, as long as the
phase of the magnetic field is small compared to Φ(r), the result is the same as in the case
of a constant magnetic field, and (B.92) is dominated by the contributions at the mass
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resonances, where the phase varies slowly. (B.92) can be evaluated using the stationary
phase approximation and the resonance locations are nearly unchanged if

rdom ≫
4πω

m2
a

≃ 10−2 pc
( ω

10−4eV

)(10−12eV

ma

)2

. (B.93)

The result is the same as in (B.88), including the sum over multiple resonances. The short
coherence length of the magnetic field compared to the distance between two resonance
points, additionally contributes to reduce phase effects between resonances, which are
therefore irrelevant. From the equations above it is easy to see that the resonance condition
could be met even in the limit of mγ ≪ ma, if the magnetic field oscillates with a period
of m2

a/(2ω), as pointed out in Ref. [247].

Sub-parsec length scales are too small to be resolved by hydrodynamical cosmological
simulations, but given the physics driving the magnetic fields it is reasonable to expect
coherent magnetic fields over distances larger than sub-parsec. It is worth emphasizing
that although the discussions in this Thesis are mostly in position space, the resonant
conversion problem can actually be treated more elegantly in Fourier space [124, 380],
where magnetic field consists of Fourier modes with amplitudes described by the power
spectrum (see [263, 264] for more details) and uncorrelated phases. In Fourier space,
most of the conversion comes from Fourier modes corresponding to the peak of the power
spectrum, and small scale fluctuations in the magnetic field do not affect the correlation
functions of photon-axion conversion, as long as the superposition principle remains valid
and magnetic field power spectrum has a red Kolmogorov scaling [384]. An additional
requirement is that the magnetic field must be approximately constant over the length
scale of resonance crossing (B.89). However, in the limit of small coupling that we are
working in, this requirement is always weaker compared to (B.93).

B.5 Polarization auto-correlations

To derive the polarization auto-power-spectra given in (5.27), we start from the axion
signal contribution to the Stokes parameters along the line of sight n̂, introduced in (5.15):

(Q± iU)a(n̂) = −1− e−x
x

T̄

∫ zmax

zmin

dz
dτ a(n̂, χ)

dz
γ±(n̂, χ), (B.94)

where all the quantities appearing here are defined in Sec. 5.3. The left-hand side of the
above equation is a spin-2 function and can be expanded in spin-2 spherical harmonics. The
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right-hand side contains the product of a scalar dτ a/dz(n̂, χ) and a spin-2 function γ±(n̂, χ).
Expanding using the appropriate spherical harmonics for each directional-dependent func-
tion on both sides of the equation results in

∑

ℓm

a±2
ℓm ±2Yℓm(n̂) =−

1− e−x
x

T̄

∫ zmax

zmin

dz
χ2

H

∫
dm
∑

i

δ(χ− χi)
χ2

δ2(n̂′ − n̂i)δ(m−mi)×

∑

ℓ′0

∑

ℓ′′m′′

τ aℓ′0(χ,m) γ±2
ℓ′′m′′(χ)Yℓ′m′(n̂) ±2Yℓ′′m′′(n̂)

∫
d2n̂′Yℓ′m′(n̂′),

(B.95)

where τ aℓ0 was defined in (5.22). The coefficients a±2
ℓm on the left-hand side are conventionally

replaced by E and B-modes defined in harmonic space

a±2
ℓm = Ea

ℓm ± iBa
ℓm, Ea

ℓm =
a+2
ℓm + a−2

ℓm

2
, Ba

ℓm = i
a+2
ℓm − a−2

ℓm

2
. (B.96)

The product of the two spherical harmonics on the right hand side of (B.95) can be rewritten
using the relation

Yℓ′m′(n̂) ±2Yℓ′′m′′(n̂) =

=
∑

ℓm

(−1)m
√

(2ℓ+ 1)(2ℓ′ + 1)(2ℓ′′ + 1)

4π

(
ℓ ℓ′ ℓ′′

−m m′ m′′

)(
ℓ ℓ′ ℓ′′

∓2 0 ±2

)
∓2Yℓm(n̂).

(B.97)
Therefore, we can read off the expansion coefficients a±2

ℓm directly from (B.95) and (B.97),

a±2
ℓm =− 1− e−x

x
T̄

∫ zmax

zmin

dz
χ2

H

∫
dm
∑

i

δ(χ− χi)
χ2

δ2(n̂′ − n̂i)δ(m−mi)×

∑

ℓ′m′

∑

ℓ′′m′′

(−1)m
√
2ℓ+ 1W 202

ℓℓ′ℓ′′

(
ℓ ℓ′ ℓ′′

−m m′ m′′

)
τ aℓ′0(χ,m) γ±2

ℓ′′m′′(χ)

∫
d2n̂′Yℓ′m′(n̂′).

(B.98)

where we introduced

Wmm′m′′
ℓℓ′ℓ′′ =

√
(2ℓ′ + 1)(2ℓ′′ + 1)

4π

(
ℓ ℓ′ ℓ′′

−m m′ m′′

)
. (B.99)

To compute the correlators, note that, from the definition of the functions γ±(n̂, χ) in (5.16),
the only non-vanishing correlators (see (5.19)) are, in harmonic space,

〈
γ±2∗
ℓ′′m′′(χ)γ

±2
L′′M ′′(χ)

〉
=

9

Nres(χ)

2

15
2πθdom(χ)

2 e−ℓ
′′(ℓ′′+1)θ2dom/2δℓ′′L′′δm′′M ′′

≡ C±ℓ′′(χ)δℓ′′L′′δm′′M ′′ ,

(B.100)
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while
〈
γ±2∗
ℓ′′m′′(χ)γ

∓2
L′′M ′′(χ)

〉
= 0, and correlations between different halos also vanish. The

C±ℓ above have been obtained using the flat-sky approximation, since the magnetic field
domains extend over a small angular scale. Therefore, the only contribution to the polar-
ization power spectra comes from the 1-halo term and reads
〈
a±2∗
ℓm a±2

LM

〉
=

=

(
1− e−x

x
T̄

)2 ∫ zmax

zmin

dz
χ2

H

∫
dmn(χ,m)

{∑

ℓ′ℓ′′

(W 220
ℓℓ′ℓ′′)

2[τ aℓ′′(χ,m)]2C∓ℓ′ (χ)
}
δℓLδmM ,

(B.101)
where the orthonormality of the spherical harmonics

∫
d2n̂′Yℓ′m′(n̂′)YL′M ′(n̂′) = δℓ′L′δm′M ′

has been used, together with the following properties of the 3j-symbols

∑

m′m′′

(
ℓ ℓ′ ℓ′′

−m m′ m′′

)(
L ℓ′ ℓ′′

−M m′ m′′

)
=

1

2ℓ+ 1
δℓLδmM , (Wmm′m′′

ℓℓ′ℓ′′ )2 = (Wmm′′m′
ℓℓ′′ℓ′ )2.

(B.102)
The E and B mode correlations can be written in terms of the correlations of the a±2

ℓm

coefficients from their definition,

⟨Ea∗
ℓmE

a
ℓ′m′⟩ = ⟨Ba∗

ℓmB
a
ℓ′m′⟩ = 1

4

[〈
a+2∗
ℓm a+2

ℓ′m′
〉
+
〈
a−2∗
ℓm a−2

ℓ′m′
〉]
, (B.103)

noting that
〈
a±2∗
ℓm a∓2

ℓ′m′
〉
= 0. The resulting CEaEa

ℓ and CBaBa

ℓ correspond to the expressions
given in (5.27). The cross-correlation ⟨Ea∗

ℓmB
a
ℓm⟩ vanishes because it is proportional to

C+
ℓ − C−

ℓ = 0.

B.6 Halo occupation distribution and galaxy power

spectra

In this appendix we summarize the HOD and the associated power spectra of Ref. [277]
which we use to model the unWISE blue sample in our forecasts. The galaxy-galaxy power
spectrum is

Cgg
ℓ = Cgg, 1−halo

ℓ + Cgg, 2−halo
ℓ + ASN,

Cgg, 1−halo
ℓ =

∫
dz
χ(z)2

H(z)

∫
dmn(z,m)

〈
|ugℓ(z,m)|2

〉
,

Cgg, 2−halo
ℓ =

∫
dz
χ(z)2

H(z)

[∫
dmn(z,m)b(z,m)ugℓ(z,m)

]2
P lin

(
ℓ+ 1

2

χ(z)
, z

)
,

(B.104)
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The galaxy multipole space kernel ugℓ(z,m) is defined as:

ugℓ(z,m) = W (z)n̄−1
g

[
Nc(m) +Ns(m)uNFW

ℓ (z,m)
]
,

n̄g(z) =

∫
dmn(z,m) [Nc(m) +Ns(m)] ,

W (z) =
H(z)

χ(z)2
dNg

dz
,

(B.105)

and its second moment is
〈
|ugℓ(z,m)|2

〉
= Wg(z)

2n̄−2
g

[
Ns(m)2uNFW

ℓ (z,m)2 + 2Ns(m)uNFW
ℓ (z,m)

]
. (B.106)

dNg/dz is the redshift distribution of the unWISE blue galaxies normalized to 1. This
distribution has a median redshift of z = 0.6, and is relatively flat in the redshift range
between 0.2 ≲ z ≲ 0.8. The functions Nc(m) and Ns(m) represent the expectation values
for the number of central and satellite galaxies respectively in a halo of mass m. These are
parametrized as:

Nc(m) =
1

2
+

1

2
erf

(
logm− logmmin

σlogm

)
, Ns(m) = Nc(m)

(
m

m∗

)αs

. (B.107)

Central galaxies lie exactly at the center of the halo profile and their number is modelled
as a smoothed step function. Meanwhile, satellites are distributed inside halos according
to an NFW profile. The function uNFW

ℓ (z,m) is the normalized harmonic transform of
the truncated NFW density profile [373]. Given a truncation radius r = λr∆, the Fourier
transform has an exact analytical form given by [273, 374]:

uNFW(k|z,m) =

[
ln (1 + λc∆)−

λc∆
(1 + λc∆)

]−1

×
[
cos(q) [Ci (q̃)− Ci(q)] + sin(q) [Si (q̃)− Si(q)]− sin (q̃ − 1)

q̃

]
,

(B.108)

where Si, Ci are the cosine and sine integrals with arguments q ≡ kr∆/c∆ and q̃ ≡ 1+λc∆q.
The scales are chosen with respect to a halo boundary defined at ∆ = 200 times the critical
density. Under this convention, r∆ is the halo radius that encloses mass m∆ and c∆ is the
corresponding concentration. Making the substitution k → (ℓ+1/2)/χ gives the multipole
projection function uNFW

ℓ (z,m). This HOD model is defined by 6 free parameters. The
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values we use are taken from Table VI of [276]:

HOD : { αs = 1.06,

σlogm = 0.02,

λ = 1.80,

logm∗ = 12.78M⊙,

logmmin = 11.86M⊙,

107ASN = 0.87 } ,

(B.109)

where ASN is the shot noise. It only appears in the definition for the galaxy auto-correlation
function and for our purposes, it acts as a noise term.

To simplify the computation of the polarization-polarization-galaxy bispectrum, we
assume that only central galaxies contribute to the signal. This is equivalent to setting
Ns(m) = 0 everywhere in the auto- and cross-power spectra defined above. The centrals-
only power spectrum is given by

Cgg,cen
ℓ = Cgg,cen, 2−halo

ℓ + Acen
SN ,

Cgg,cen, 2−halo
ℓ =

∫
dz
χ(z)2

H(z)

[∫
dmn(z,m)b(z,m)ug,cenℓ (z,m)

]2
P lin

(
ℓ+ 1

2

χ(z)
, z

)
,

(B.110)

where
ug,cen(z,m) = W (z)n̄−1

g,cenNc(m),

n̄g,cen(z) =

∫
dmn(z,m)Nc(m),

(B.111)

and we define the shot noise from the total number of expected centrals in the unWISE
blue sample:

Acen
SN = 4π

(∫
dz
χ(z)2

H(z)

dNg

dz
n̄g,cen(z)

)−1

≈ 2.87× 10−7. (B.112)

B.7 Bispectrum derivation

The axion-induced polarization signal is correlated with the location of LSS. The leading-
order non-vanishing cross-correlation between CMB and LSS is the three-point function:

⟨(Q± iU)a∗(n̂1)(Q± iU)(n̂2)g(n̂3)⟩ , (B.113)
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where (Q ± iU)a is defined in (5.15) and g(n̂) represents the galaxy density field. We
include only central galaxies, and model this map as

g(n̂, χ) =
∑

i

ug,cen(χ,mi)δ
2(n̂− n̂i) (B.114)

at each redshift, where ug,cen was defined in (B.111). Two terms contribute to the bis-
pectrum in (B.113): a 1-halo term for points {n̂1, n̂2, n̂3} crossing the same halo, and a
2-halo term for {n̂1, n̂2} crossing one halo and {n̂3} crossing a different halo. The first
term contributes at small scales, while the second term includes the large-scale clustering
of structure. Due to the hierarchy of scales between the magnetic field coherence length,
the characteristic radius of photon-axion resonance conversion, and the distance between
halos, both terms are dominated by squeezed triangle configurations. Note that there is
no three-halo term, because the polarization signal from different halos is uncorrelated.

B.7.1 One-halo term

We write explicitly the three-point function by summing the contributions from all halos
i, such that the 1-halo contribution to (B.113) becomes

(
1− e−x

x
T̄

)2 ∫
dχχ2 dm d2n̂

1

9
P 2(χ,m)N2

res(χ,m)u(n̂1 − n̂)u(n̂2 − n̂)ug,cen(χ,m)×

δ2(n̂3 − n̂)
〈∑

i

δ(m−mi)
δ(χ− χi)

χ2
δ2(n̂− n̂i)

〉
〈
γ±(n̂1, χ)γ

±(n̂2, χ)
〉
=

(
1− e−x

x
T̄

)2 ∫
dχχ2 dmn(χ,m)

1

9
P 2(χ,m)N2

res(χ,m)ug,cen(χ,m)×

u(n̂1 − n̂3)u(n̂2 − n̂3)
〈
γ±(n̂1, χ)γ

±(n̂2, χ)
〉
.

(B.115)
The last line of the equation above contains all the angular dependent functions. We can
simplify the calculation by noting that the magnetic field domains are much smaller than
the typical size of a halo, therefore, expect for the a small area around the center of the halo,
most triangles will be such that |n̂1−n̂2| ≪ |n̂1−n̂3| ≃ |n̂2−n̂3|. We therefore approximate
u(n̂1−n̂3)u(n̂2−n̂3) ≃ [u(n̂1 − n̂3)

2 + u(n̂2 − n̂3)
2] /2. We show the calculation for the first

term with n̂1 below, since the one with n̂2 can be obtained in the same way. Expanding in
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spherical harmonics,

u(n̂1 − n̂3)
2 =

∑

LM

∑

L′M ′

4π√
(2L+ 1)(2L′ + 1)

uL0(m, z)uL′0(m, z)×

YLM(n̂1)YLM(n̂3)YL′M ′(n̂1)YL′M ′(n̂3)

=
∑

LL′

4π√
(2L+ 1)(2L′ + 1)

uL0(m, z)uL′0(m, z)×
∑

ℓ′′m′′

(
W 000
ℓ′′LL′

)2
Yℓ′′m′′(n̂1)Yℓ′′m′′(n̂3), (B.116)

where uℓ0 was defined in (5.22) and we used the result from (B.97), adapted to the case of
spin-0 spherical harmonics, to contract their product. Now we expand also the correlator
⟨γ±(n̂1, χ)γ

±(n̂2, χ)⟩ = C±ℓ′ (χ) ±2Yℓ′m′(n̂1) ±2Yℓ′m′(n̂2), where C±ℓ′ was introduced in (B.100).
Using again (B.97), we further combine the two remaining spin-0 and spin-2 spherical
harmonics evaluated at n̂1, to get the bispectrum

(
1− e−x

x
T̄

)2 ∫
dχχ2 dmn(χ,m)ug,cen(χ,m)×

∑

ℓm

∑

ℓ′m′

∑

ℓ′′m′′

∑

LL′

(−1)m
√

(2ℓ+ 1)(2ℓ′ + 1)(2ℓ′′ + 1)

4π

(
ℓ ℓ′ ℓ′′

−m m′ m′′

)(
ℓ ℓ′ ℓ′′

∓2 ±2 0

)
×

1

2

(
W 000
ℓ′′LL′

)2
τ aL0(m, z)τ

a
L′0(m, z)C±ℓ′ (χ) ∓2Yℓm(n̂1) ±2Yℓ′m′(n̂2)Yℓ′′m′′(n̂3),

(B.117)
where τ aℓ0 was defined in (5.22). Now, adding the second piece coming from doing the same
calculation but replacing n̂1 → n̂2 in the u screening function, we can read off the bispectra

〈
a±2
ℓma

±2
ℓ′m′gℓ′′m′′

〉
=(−1)m

√
(2ℓ+ 1)(2ℓ′ + 1)(2ℓ′′ + 1)

4π

(
ℓ ℓ′ ℓ′′

−m m′ m′′

)(
ℓ ℓ′ ℓ′′

∓2 ±2 0

)
×

(
1− e−x

x
T̄

)2 ∫
dχ dmn(χ,m)ug,cen(χ,m)×

∑

LL′

(
W 000
ℓ′′LL′

)2
τ aL0(χ,m)τ aL′0(χ,m)

C±ℓ′ (χ) + (−1)ℓ+ℓ′+ℓ′′C±ℓ (χ)
2

.

(B.118)
To write the three-point function in terms of the E andB-modes, we note that

〈
a±2∗
ℓm a∓2

ℓ′m′gℓ′′m′′
〉
=

0, which from the definition of E and B means that ⟨E∗
ℓmE

∗
ℓ′m′gℓ′′m′′⟩ = ⟨B∗

ℓmB
∗
ℓ′m′gℓ′′m′′⟩.
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Similarly to what obtained in App. B.5 for the power spectrum, it can then be shown that

⟨Ea∗
ℓmE

a
ℓ′m′gℓ′′m′′⟩ = ⟨Ba∗

ℓmB
a
ℓ′m′gℓ′′m′′⟩ = 1

4

(〈
a+2∗
ℓm a+2

ℓ′m′gℓ′′m′′
〉
+
〈
a−2∗
ℓm a−2

ℓ′m′gℓ′′m′′
〉)

=

= (−1)m
√

(2ℓ+ 1)(2ℓ′ + 1)(2ℓ′′ + 1)

4π

(
ℓ ℓ′ ℓ′′

−m m′ m′′

)(
ℓ ℓ′ ℓ′′

+2 −2 0

)
eℓℓ′ℓ′′×

(
1− e−x

x
T̄

)2 ∫
dχ dmn(χ,m)ug,cen(χ,m)×

∑

LL′

(
W 000
ℓ′′LL′

)2
τ aL0(χ,m)τ aL′0(χ,m)

Cpolℓ (χ) + Cpolℓ′ (χ)

2
,

(B.119)
where where Cpol

ℓ is defined in (5.28) and

eℓℓ′ℓ′′ ≡
1

2

[
1 + (−1)ℓ+ℓ′+ℓ′′

]
. (B.120)

From the equation above we can read off the angle-averaged bispectrum B as

⟨Xa
ℓmX

a
ℓ′m′gℓ′′m′′⟩ = (−1)m

(
ℓ ℓ′ ℓ′′

−m m′ m′′

)
BXaXag
ℓℓ′ℓ′′ , (B.121)

which results in the expression given in Sec. 5.3.3, in (5.35). BXaXag
ℓℓ′ℓ′′ is symmetric under

the exchange of ℓ ↔ ℓ′, as expected from the approximations made in the calculation
above when taking the limit of squeezed triangles. In the signal-to-noise ratio only the
angle-averaged bispectrum enters, since the sum over m simplifies as

∑

mm′m′′

[
(−1)m

(
ℓ ℓ′ ℓ′′

−m m′ m′′

)]2
= 1. (B.122)

B.7.2 Two-halo term

We write explicitly the three-point function by summing the contributions from two dif-
ferent halos i and j, such that the 2-halo contribution to (B.113) becomes

(
1− e−x

x
T̄

)2 ∫
dχaχ

2
a dχbχ

2
b dma dmb d

2n̂a d
2n̂b δ

2(n̂3 − n̂b)ug,cen(χb,mb)×
1

9
P 2(χa,ma)N

2
res(χa,ma)u(n̂1 − n̂a)u(n̂2 − n̂a)

〈
γ±(n̂1, χa)γ

±(n̂2, χa)
〉
×

〈∑

i ̸=j
δ(ma −mi)δ(mb −mj)

δ(χa − χi)
χ2
a

δ(χb − χj)
χ2
b

δ2(n̂a − n̂i)δ2(n̂b − n̂j)
〉
.

(B.123)
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The average in the last line of the equation above is related to the halo-halo auto-correlation
function ξhh,

〈∑

i ̸=j
δ(ma −mi)δ(mb −mj)

δ(χa − χi)
χ2
a

δ(χb − χj)
χ2
b

δ2(n̂a − n̂i)δ2(n̂b − n̂j)
〉

=

= n(ma, χa)n(mb, χb)ξ
hh(n̂a − n̂b|ma, χa,mb, χb).

(B.124)

Eq. (B.123) then becomes

(
1− e−x

x
T̄

)2 ∫
dχaχ

2
a dχbχ

2
b dma dmb n(χa,ma)n(χb,mb)u

g,cen(χb,mb)×
1

9
P 2(χa,ma)N

2
res(χa,ma)

〈
γ±(n̂1, χa)γ

±(n̂2, χa)
〉
×

∫
d2n̂a u(n̂1 − n̂a)u(n̂2 − n̂a)ξhh(n̂a − n̂3).

(B.125)

The integral over n̂a can be simplified by noting that the magnetic field domains are much
smaller than the typical size of a halo, such that |n̂1 − n̂2| ≪ |n̂a − n̂1| ≃ |n̂a − n̂2|. On
the other hand, the halo-halo auto-correlation is dominated by larger scales, which means
|n̂a− n̂1| ≃ |n̂a− n̂2| ≪ |n̂a− n̂3|. Therefore, the bispectrum is dominated by the squeezed
triangles, with |n̂1− n̂2| ≪ |n̂3− n̂1| ≃ |n̂3− n̂2|. In the equation above we can then replace
n̂a → n̂1,2 inside the halo-halo auto-correlation ξhh and simply perform the integral over
n̂a. We therefore approximate ξhh(n̂a − n̂3) ≃

[
ξhh(n̂1 − n̂3) + ξhh(n̂2 − n̂3)

]
/2. We show

the calculation with n̂1 below, since the one with n̂2 can be obtained in the same way.
Using the result from Appendix B.2.1,

∫
d2n̂a u(n̂1 − n̂a)u(n̂2 − n̂a) =

∑

ℓm

4π

2ℓ+ 1
u2ℓ0(χa,ma)Yℓm(n̂1)Yℓm(n̂2), (B.126)

where uℓ0 was defined in (5.22). Expanding all the angular-dependent functions into spher-
ical harmonics, the three-point function simplifies to

(
1− e−x

x
T̄

)2 ∫
dχaχ

2
a dχbχ

2
b dma dmb n(χa,ma)n(χb,mb)u

g,cen(χb,mb)×
∑

ℓm

∑

ℓ′m′

∑

ℓ′′m′′

1

2
[τ aℓ0(χa,ma)]

2C±ℓ′ (χa)Chh
ℓ′′ (ma, χa,mb, χb)×

Yℓm(n̂1)Yℓm(n̂2) ±2Yℓ′m′(n̂1) ±2Yℓ′m′(n̂2)Yℓ′′m′′(n̂1)Yℓ′′m′′(n̂3),

(B.127)
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where τ aℓ0 was defined in (5.22), C±ℓ′ was introduced in (B.100), and Chh
ℓ is the power

spectrum of the real-space halo-halo auto-correlation ξhh. This takes the following form:

Chh
ℓ (ma, χa,mb, χb) =

=
2

π
b(ma, χa)b(mb, χb)

∫
dkk2jℓ (kχa) jℓ (kχb)

√
P lin(k, χa)P lin(k, χb),

(B.128)

where P lin(k, χ) is the linear matter power spectrum, and b(m,χ) is the linear halo bias.
In the limit of small angle, ℓ → ∞, we can approximate the spherical Bessel function by
jℓ(x) →

√
π/ (2ℓ+ 1)δ(ℓ + 1/2 − x), where x = χk. Thanks to the delta function, the

integral over comoving wavenumber k simplifies to

Chh
ℓ (ma, χa,mb, χb) ≈ b(ma, χa)b(mb, χb)

δ(χa − χb)
χ2
a

P lin

(
ℓ+ 1

2

χa
, χa

)
. (B.129)

This simplification is equivalent to the Limber approximation [269, 270]. The delta function
in the expression above further simplifies the integral over χb in the bispectrum.

Now we want to reduce the product of spherical harmonics in (B.127) down to three, to
read off the coefficients of the bispectrum. From the derivation of the polarization power
spectra in App. B.5, we already know that

∑

mm′

Yℓm(n̂1)Yℓm(n̂2) ±2Yℓ′m′(n̂1) ±2Yℓ′m′(n̂2) =
∑

LM

(
W 220
Lℓ′ℓ

)2
∓2YLM(n̂1) ∓2YLM(n̂2). (B.130)

Therefore, after relabeling, the bispectrum from (B.127) becomes

(
1− e−x

x
T̄

)2 ∫
dχaχ

2
a dma dmb n(χa,ma)n(χa,mb)u

g,cen(χa,mb)b(ma, χa)b(mb, χa)×
∑

ℓ′m′

∑

ℓ′′m′′

∑

LL′

1

2

(
W 220
ℓ′L′L

)2
[τ aL0(χa,ma)]

2C±L′(χa)P
lin

(
ℓ′′ + 1

2

χa
, χa

)
×

∓2Yℓ′m′(n̂1) Yℓ′′m′′(n̂1) ∓2Yℓ′m′(n̂2)Yℓ′′m′′(n̂3).
(B.131)
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Finally, replacing the product ∓2Yℓ′m′(n̂1)Yℓ′′m′′(n̂1) with one spherical harmonics, we get
(
1− e−x

x
T̄

)2 ∫
dχaχ

2
a dma dmb n(χa,ma)n(χa,mb)u

g,cen(χa,mb)b(ma, χa)b(mb, χa)×

∑

ℓm

∑

ℓ′m′

∑

ℓ′′m′′

∑

LL′

(−1)m
√

(2ℓ+ 1)(2ℓ′ + 1)(2ℓ′′ + 1)

4π

(
ℓ ℓ′ ℓ′′

−m m′ m′′

)(
ℓ ℓ′ ℓ′′

±2 ∓2 0

)
×

1

2

(
W 220
ℓ′L′L

)2
[τ aL0(χa,ma)]

2C±L′(χa)P
lin

(
ℓ′′ + 1

2

χa
, χa

)
±2Yℓm(n̂1) ∓2Yℓ′m′(n̂2)Yℓ′′m′′(n̂3).

(B.132)
Now, adding the second piece coming from doing the same calculation but replacing n̂a →
n̂2 in the halo-halo auto-correlation function, we can read off the bispectra
〈
a±2
ℓma

±2
ℓ′m′gℓ′′m′′

〉
=

= (−1)m
√

(2ℓ+ 1)(2ℓ′ + 1)(2ℓ′′ + 1)

4π

(
ℓ ℓ′ ℓ′′

−m m′ m′′

)(
ℓ ℓ′ ℓ′′

±2 ∓2 0

)

(
1− e−x

x
T̄

)2 ∫
dχaχ

2
a dma dmb n(χa,ma)n(χa,mb)u

g,cen(χa,mb)b(ma, χa)b(mb, χa)×

∑

LL′

(W 220
ℓL′L)

2
+ (W 220

ℓ′L′L)
2

2
[τ aL0(χa,ma)]

2C±L′(χa)P
lin

(
ℓ′′ + 1

2

χa
, χa

)
.

(B.133)
To write the three-point function in terms of the E and B-modes, we note that the correla-
tor
〈
a±2∗
ℓm a∓2

ℓ′m′gℓ′′m′′
〉
= 0, which from the definition ofE andB means that ⟨E∗

ℓmE
∗
ℓ′m′gℓ′′m′′⟩ =

⟨B∗
ℓmB

∗
ℓ′m′gℓ′′m′′⟩. Similarly to what was obtained in App. B.5 for the power spectrum, it

can be shown that

⟨Ea∗
ℓmE

a
ℓ′m′gℓ′′m′′⟩ = ⟨Ba∗

ℓmB
a
ℓ′m′gℓ′′m′′⟩ = 1

4

(〈
a+2∗
ℓm a+2

ℓ′m′gℓ′′m′′
〉
+
〈
a−2∗
ℓm a−2

ℓ′m′gℓ′′m′′
〉)

=

= (−1)m
√

(2ℓ+ 1)(2ℓ′ + 1)(2ℓ′′ + 1)

4π

(
ℓ ℓ′ ℓ′′

−m m′ m′′

)(
ℓ ℓ′ ℓ′′

+2 −2 0

)
eℓℓ′ℓ′′×

(
1− e−x

x
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)2 ∫
dχaχ

2
a dma dmb n(χa,ma)n(χa,mb)u

g,cen(χa,mb)b(ma, χa)b(mb, χa)×

∑

LL′

(W 220
ℓL′L)

2
+ (W 220
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2

2
[τ aL0(χa,ma)]

2CpolL′ (χa)P
lin

(
ℓ′′ + 1

2

χa
, χa

)
, (B.134)

where Cpol
ℓ is defined in (5.28) and eℓℓ′ℓ′′ in (B.120). From the equation above we can

read off the angle-averaged bispectrum which results in the expression given in Sec. 5.3.3,
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in (5.36). As for the 1-halo term, also in this case BXaXag
ℓℓ′ℓ′′ is symmetric under the exchange

of ℓ↔ ℓ′.

B.8 Foregrounds and noise

In this appendix, we outline our prescription for estimating the noise covariance matrix
Nℓ used in the ILC described in Sec. 5.4.1 for temperature and polarization. We consider
temperature and polarization data from two CMB experiments: the combination of the
Low Frequency Instrument (LFI) [233] and High Frequency Instrument (HFI) [234] on the
Planck satellite and CMB Stage-4 [206]. For each experiment, we specify the observed
frequency channels and angular resolution as defined by a Gaussian beam

Gℓ(ω) = exp

[
−ℓ(ℓ+ 1)

θ2FWHM

8 ln 2

]
, (B.135)

where the full width at half maximum θFWHM [rad] varies with frequency. The assumed
values are recorded in the top two panels of Table 4.2, where θFWHM represents the full
width at half maximum of the Gaussian beams, which characterizes the resolution of the
instrument in each frequency channel, and ∆T represents the amplitude of the white un-
correlated noise in CMB temperature units.

For Planck, since data is readily available, we take an empirical approach. Our anal-
ysis is based on publicly available individual frequency and component-separated CMB
maps from the Planck Public Data Release 3 (PR3) [14]. We first subtract the SMICA
CMB from individual frequency maps at 30-353 GHz in intensity as well as Q and U
Stokes parameters. We mask the resulting maps with a galactic cut retaining 40% of the
sky, apodized to 2 degrees. We compute the auto- and cross-spectra between all masked
maps. We do not correct for mode-coupling from the mask, approximating full-sky power
spectra by the cut-sky pseudo-Cℓ spectra divided by the effective unmasked sky-fraction
∼ 0.4. Additionally, for polarization we use the full-sky expressions to produce E and
B-mode spectra from the Stokes parameter. We populate the matrices Nℓ used in the
ILC using these auto- and cross-spectra. Our treatment provides an estimate of the level
of foregrounds and instrumental noise on the cleanest region of the sky. A more careful
treatment accounting for mode-coupling would improve the accuracy of our estimate pri-
marily on large angular scales, and particularly for polarization spectra where the E-B
decomposition is particularly sensitive to masking.

For CMB-S4, we take a hybrid approach to estimating the noise covariance, considering
three contributions: galactic foregrounds empirically measured from Planck, instrumental
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noise, and simulated extragalactic foregrounds. To estimate the contribution from galactic
foregrounds, we first fit the low-ℓ (defined as ℓ < 100) entries in Nℓ for Planck temperature
and Stokes parameters to a power law [Nℓ]ij = Aijℓ

−nij . We then use linear interpola-
tion/extrapolation to obtain entries at the S4 frequencies, listed in the top row of the
bottom panel in Table 4.2. The instrumental noise contribution is modeled as

ITTℓ = IE
aEa

ℓ /
√
2 = IBBℓ /

√
2 = ∆2

T [1 + (ℓ/ℓknee)
αknee ] , (B.136)

where ∆T [µKrad] is the level of white noise representing the sensitivity in each frequency
channel (values recorded in Table 4.2), and the parameters αknee = −3 and ℓknee = 100
parameterize atmospheric systematics on large angular scales. The dominant extragalactic
foreground at high frequencies (where the axion-induced screening signal is most important)
is the cosmic infrared background (CIB). We model this by computing the auto- and cross-
power spectra of CIB maps from the Websky suite of simulations at 93, 145, 225, 278 GHz
respectively [279]. For polarization, we assume that the CIB is 1% polarized, and use
the temperature maps to estimate the polarization signal from extragalactic sources. The
full noise covariance is obtained by summing the three components described above for
all auto- and cross-power spectra of the CMB-S4 frequency channels in temperature and
polarization.

B.9 Effectively massless axions

When the axion is effectively massless (ma ≪ 10−14 eV), we no longer expect to find plasma
densities that yield resonant conversion. In this scenario, we can apply the treatment in
App. B.4 for a small magnetic field with domain size rdom to obtain a conversion probability
given by

P (A∥ → a) = (∆aγrdom)
2 sin

2(∆oscrdom/2)

(∆oscrdom/2)2
≈ 4

(
∆aγ

∆pl

)2

sin2(∆plrdom/2). (B.137)

We expect photon-axion conversion to happen in different astrophysical and cosmological
environments, including

ISM: |B| ≃ µG, mγ ≃ 10−11 eV, rdom ≃ 1 kpc

CGM: |B| ≃ 0.1µG, mγ ≃ 10−12.5 eV, rdom ≃ 10 kpc (B.138)

IGM: |B| ≃ nG, mγ ≃ 10−14 eV, rdom ≃ 1Mpc,

where ISM refers to the interstellar medium around the location of the Solar system, CGM
refers to the circumgalactic medium in the vicinity of the Milky Way and other galaxies,
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and IGM refers to the intergalactic medium between galaxies. In all three cases, ∆pl ≫ ∆aγ

and ∆plrdom ≫ 1. In this limit, the conversion probability per domain is

P (A∥ → a) = 2

(
∆aγ

∆pl

)2

≈ 2g2aγγ|B|2ω2

m4
γ

. (B.139)

and the conversion rate per unit length in the three different environments is approximately

dP

dr
=

2g2aγγ|B|2ω2

m4
γ rdom

≈





4× 10−15/Mpc (ISM),

4× 10−12/Mpc (CGM),

4× 10−12/Mpc (IGM),

(B.140)

for ω = 10−4 eV and gaγγ = 10−10GeV−1. This suggests that if the axion is effectively
massless, the conversion rate is small towards the center of the galaxy and peaks some-
where in between the circumgalactic medium and the intergalactic medium. The exact
dependence of this conversion probability on the distance from the halo center depends on
how the plasma density, the magnetic field strength and the magnetic field domain sizes
change, in particular in the region several virial radii away from the galaxy center. This
region is notoriously hard to model as a result of baryonic feedback. Recent and upcoming
observations and simulations [264, 231, 382, 383] that target the missing baryon problem
might also shed more light on this question, and we leave a more detailed study to future
work when more information is available.

However, to motivate further studies, we estimate the sensitivity of axion-induced
screening of the CMB to this signal with a simple heuristic model, first studied in [249].
We add to the toy model in [249] galaxies with sharp boundaries at fixed rb from the halo
center. Inside the sharp boundary, we assume the properties of the medium is similar to
the ISM around the location of the Sun, while outside the sharp boundary, the medium is
similar to the environment of the IGM. In this toy model, axion-photon conversion only
happens outside the sharp boundary, and as a result, is anti-correlated with the location of
halos. Similar to [249], we treat mγ,eff =

√
m2
γ −m2

a as well as gaγγ|B| in the intergalactic
medium as free parameters.

In this toy model, we can compute the 1-halo and 2-halo contribution to the correlations
of the conversion probability. In the limit where the 2-halo term completely dominates,
the toy model qualitatively captures the anisotropies of this non-resonant conversion. The
conversion probability along a line of sight direction n̂ with a halo centered along the
direction n̂i can be computed to be

P (χi,mi) = P̄ − 4

3

g2aγγ|B|2ω2

m4
γ,eff rdom

rb

√
1−

(
χiθ

(1 + zi)rb

)2

, (B.141)
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where θ is again the angular separation between n̂ and n̂i, and P̄ is the conversion prob-
ability along a line of sight with no halos. We neglect the latter contribution since it
contributes only to the monopole. Note the additional minus sign, which suggests that
this signal appears as an emission (lack of absorption) that is correlated with the loca-
tion of halos. We generally expect a cross correlation between the halo location and the
conversion probability, though the sign can depend on the exact shape of the density and
magnetic field profile. The result of our estimate is presented in Fig. B.5, where we fore-
cast the sensitivity of Planck and CMB-S4 to the axion photon coupling in the massless
axion limit. The result is presented in the units used in [249] to highlight the prospect of
improvement with the methodologies presented in Chapter 5. With CMB-S4, we expect
an improvement of up to two orders of magnitude over the constraints presented in [249].
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Figure B.5: Projected sensitivity of axion-induced screening to the combination of axion-
photon coupling gaγγ/10

−10GeV−1 and the extra-galactic magnetic field |B|/nG in the
simple sharp boundary model (see equation (B.141)), assuming Planck (left) and CMB-S4
(right) sensitivity and the unWISE blue galaxy sample. The blue solid (orange-dashed)
line is the projected sensitivity with temperature auto-correlation (cross-correlation with
unWISE galaxies) assuming rb = 5Rvir, while the shaded band is obtained for rb in the
range (Rvir, 10Rvir). The magnetic domain size is fixed at rdom = 1Mpc in the IGM and the
effective electron density in the IGM ne = mem

2
γ,eff/e

2 is a free parameter, as in Ref. [249].
The region above the black solid line is excluded from the analysis of COBE/FIRAS data
in [249].
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B.10 Rough sensitivity estimate

In this appendix, we provide quick but clearly imprecise methods to estimate the sensitivity
of dark screening to various beyond standard model scenarios of interest. These estimates
apply to cases where we inject or remove photons (in the CMB frequency band) in a
frequency and position dependent manner. The estimates will be in a language that is
familiar to researchers thinking about precision experiments to search for dark matter/dark
sector, and will be increasing in rigor.

The information carried by CMB photons is enormous, partly due to the fact the total
number of observable CMB photons is very large. The total number of CMB photons we can
collect with CMB-S4 will be Nγ ∼ 1028. With zero noise and perfect distinguishability, we
can in principle measure an optical depth, the probability of injecting or removing of CMB
photons, as small as 1/

√
Nγ ∼ 10−14. This estimate is certainly very crude, since photon

removal generally happens only in a small fraction of the universe, and more importantly,
there are other contributions to the noise level that should be taken into account.

Generally, the temperature perturbation generated from axion-induced screening (simi-
lar for dark photon) is δT a ≃ T̄ δτ a, which should be compared to the noise δT noise, consist-
ing of the primary CMB perturbations, foregrounds, and instrumental noise. For signals
that cannot be distinguished from background (including the primary CMB anisotropies),
one can constrain an optical depth of δτ a ∼ 10−5.

The dark screening signal can be distinguished from background in two major aspects.
Firstly, the optical depth, from both photon to dark photon, or photon to axion conversion,
is frequency dependent. This allows for significant reduction of contamination by using
the ILC technique, which can reduce δT noise by more than three orders of magnitude, for
example, in the case of searches for dark photon screening with CMB-S4 (see Fig. 5.6 and
Fig. 4.8 in Chapter 4; note that this factor depends on the reference frequency used and can
vary by about an order of magnitude across the whole frequency range). This reduction
of noise depends on the instrument, as well as the frequency scaling of τ a, and has to
be worked out explicitly. Secondly, the signal and noise generally have different spatial
profile, or ℓ-dependence. Qualitatively, this can be thought of as doing ℓ2-measurements
at the same time, and the sensitivity increases when more ℓ-modes get included in the
experiment. For example, the sensitivity in δτ a scales approximately as 1/

√
ℓ for the auto-

correlation observable (which contains two factors of δτ a), and as 1/ℓ for cross-correlation
with large-scale structure observable (which has only one factor of δτ a). Combining the two
improvements from the characteristic frequency and spatial dependence of the signal, we
can estimate the sensitivity to δτ a ∼ 3×10−10 with auto-correlation, and δτ a ∼ 10−11 with
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cross-correlation. Keep in mind that optimizing the correlation functions only changes the
scaling of the sensitivity with ℓ, but the other parameters (such as T̄ , conversion radius,
or magnetic field strength) appear in the same combination.

Depending on the BSM model, the optical depth can have different parametric depen-
dence on the physical quantities of distant galaxies and halos, as well as BSM parameters.
For example, the photon to axion conversion optical depth τ a scales as

τ a ∼ g2aγγ |B|2 ω rres
m2

a

, (B.142)

and a rough sensitivity of gaγγ can be estimated to be gaγγ ∼ 10−13GeV−1 with cross
correlation function ⟨T ag⟩ and CMB-S4 sensitivity. Note that the parameters rres and
|B| both depend on the halo mass and the axion mass, which in turn gives a scaling of
the sensitivity to gaγγ with ma that is more complicated than the one appearing in the
equation above. Similar estimates can be obtained for searches of polarization signals once
the residual noise-level post-ILC is estimated.

B.11 Likelihood and sensitivity forecast

For a fixed axion mass, all observables in this Chapter have a simple scaling with the axion-
photon coupling as ∝ gnaγγ, with n = 2 or 4. Given some angular correlation function dℓ
from the ILC subtracted maps and an expected axion-induced signal gnaγγs

a
ℓ , the likelihood

can be written as

−2 lnL(gaγγ) =
∑

ℓ

(
dℓ − gnaγγsaℓ

)2

σ2
ℓ

+ const., (B.143)

where σℓ represents the noise covariance at each ℓ whose form depends on the specific
observable considered; note that in this notation σℓ also includes the appropriate factor to
account for the number of samples available at each scale, including the effect of fractional
sky coverage. Assuming that the data has no signal, we have ⟨dℓsaℓ⟩ = 0 and ⟨d2ℓ⟩ = σ2

ℓ ,
and the likelihood is maximized at gaγγ = 0. The expectation value of the likelihood is
therefore

⟨−2 lnL(gaγγ)⟩ = g2naγγ
∑

ℓ

(saℓ)
2

σ2
ℓ

+ const. (B.144)
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Following a Bayesian approach, the posterior distribution of the parameter gaγγ is then

f(gaγγ) =
e
− g2naγγ

2σ2
n

(2σ2
n)

1
2nΓ

(
1 + 1

2n

) , (B.145)

where we have defined σ2
n ≡

∑
ℓ

[
(saℓ)

2 /σ2
ℓ

]
and obtained the denominator from normalizing

the distribution to 1 for gaγγ ≥ 0, i.e. assuming a flat prior over positive couplings. To
estimate the 1− σ sensitivity on the parameter, σgaγγ , we compute the largest value of the
parameter that is compatible with the observation at 68% CL. In general this is given by
σgaγγ = x(σn)

1/n, where the numerical coefficient x can be obtained by solving the equation

∫ x(σn)1/n

0

f(gaγγ) = 0.68. (B.146)

For the case of n = 1, one simply recovers a Gaussian posterior distribution and x = 1;
in that case the parameter σ2

1 is just the inverse of the Fisher matrix, where now the
likelihood is simply quadratic in the parameter and therefore the usual second order Taylor
expansion defining the Fisher matrix is exact. For our purposes, we are interested in the
cases of n = 2, 4 that give

x ≃ 0.76 for n = 2, x ≃ 0.7 for n = 4. (B.147)

As expected if the leading order term in likelihood is g4aγγ or g
8
aγγ, it will change more rapidly

away from the maximum when gaγγ deviates from 0, leading to a smaller uncertainty on
the parameter. The numerical factors obtained here are used to estimate the sensitivity
on the photon-axion coupling from the two- and three-point functions in Sec. 5.4.2 – see
Eqs. (5.40), (5.41) and (5.42). A similar procedure can be followed if one wants to combine
all the observables that have different scaling with gaγγ, by adding up their contributions
in (B.143) (neglecting cross-correlations).
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