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Abstract

The process of identifying the sites (e.g., road segments, intersections) within a road
network that are most in need of detailed safety audits and interventions with the most
potential for improvement is known as road safety network screening. This is often ac-
complished by developing crash predictive models or safety performance functions (i.e.
statistical models that relate site characteristics to the number of crashes) and applying
the empirical Bayes (EB) method to determine long-term crash risk and rank sites.

Developing SPFs can be costly and requires specialized skills. Jurisdictions must decide
whether to use an outdated SPF or incur the costs of redevelopment but there are currently
no methods to determine the impact of using an outdated SPF. In addition to being
technically demanding and time-consuming, selecting the optimal parametric model and
constructing a functional form that best matches the given data can have a considerable
impact on the outcome of network screening. Exposure (usually expressed as the Annual
Average Daily Traffic volume or AADT) is an important input for SPF develop, but AADT
values are typically estimated from sparse measurements and contain error that can impact
network screening outcomes and resource allocation for safety improvements. There is
currently no way for road authorities to quantify the impact of these errors and the potential
benefits from expending resources to make AADT estimates more accurate. Finally, when
samples sizes are small, it is frequently not possible to develop statistically reliable SPFs.

This paper-based PhD research is dedicated to improve the crash predictive models
and network screening process by addressing the mentioned gaps, in four main objectives.
The first objective, fulfilled in Chapter 2, is to develop a benefit-cost analytic solution to
determine the near-optimal time to redevelop SPFs considering the expected benefits of
SPF redevelopment and the cost of redevelopment. Practitioners can use the proposed
method using the data that is either already available in municipalities which have locally
developed SPFs or can be easily estimated.

The second objective, addressed in Chapter 3, is to design a method to quantify the
monetary benefit of improving AADT accuracy. A simulation based method is proposed
and tested over different crash data conditions to evaluate the sensitivity of network screen-
ing outcomes to AADT error. The results showed that the potential consequences of using
incorrect Average Annual Daily Traffic (AADT) values can vary greatly depending on fac-
tors such as error magnitude, sample size, SPF parameters, and sample mean. This means
that the impact of AADT inaccuracy on network screening outcomes is not fixed but must
be evaluated individually for each jurisdiction which shows the importance of the proposed
method to determine how much effort should be put into improving the accuracy of AADT
values.
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The third objective, realized in Chapters 4 and 5, is to develop a non-parametric Em-
pirical Bayes (EB) estimation method for modeling crash frequency data. To this end,
CGAN-EB is formulated based on Conditional Generative Adversarial Networks (CGAN)
which unlike parametric approaches, has no need for a pre-specified underlying relationship
between dependent and independent variables in the proposed CGAN-EB and is able to
model any type of distribution. CGAN-EB is applied to real-world and simulated crash
data sets and outperformed the conventional approach (NB-EB) as a benchmark in terms
of model fit, predictive performance and network screening outcomes.

Finally, the fourth objective, addressed in Chapter 6, is to investigate the application
of deep generative models as a crash data augmentation method to improve SPFs when
the size of the available observational dataset is insufficiently large to reliably develop an
SPF. A different CGAN model form is used this time to fit the available observed crash
data and to generate more (synthetic) crash data to address low sample size issue for
SPF development. The method is evaluated using a real-world and simulated crash data.
The results showed that data augmentation could improve the results in terms of reducing
coefficient standard error and improving the accuracy of SPF predictions but that these
improvements were only statistically significant for specific conditions.
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Chapter 1

Introduction
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In this chapter, a high-level overview of road safety network screening and its challenges
are presented. The motivations, objectives, and methodologies used in the research are then
discussed.
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1.1 An Introduction to Road Safety Network Screen-

ing

Traffic crashes pose a significant health and social policy issue in most countries. Apart
from grief and suffering, traffic crashes cause enormous social and economic losses, account-
ing for 1-3% of the gross domestic product of most countries [1]. In Canada in 2018, for
example, the annual count of fatal and injury crashes are about 1,700 and 150,000 respec-
tively and the levied societal costs is about $20 billion (1.2% of Canadian GDP) [2]. Taking
into account the aforementioned societal cost pertaining to traffic crashes, authorities an-
nually monitor and take actions to reduce severity and frequency of crashes in their road
network. Roadway Safety Management Process (RSMP) is a recommended procedure for
that reason proposed by Highway Safety Manual [3]. RSMP aims to monitor and reduce
crash frequency and severity on the existing road network by following 6 steps: network
screening, diagnosis, countermeasure selection, economic appraisal, prioritize projects, and
finally safety effectiveness evaluation. Among these steps, this thesis focuses on network
screening in which road network locations (sites) are ranked on the basis of the potential
for reducing their average crash frequency.

Detecting hotspots1 in a road network, referred to as NS in the HSM [3], is a statistical
analysis procedure that helps determine how to appropriately allocate limited safety im-
provement resources. The output of NS is a ranked (prioritized) list of hotspots representing
locations at which performing further safety reviews and implementing countermeasures
are expected to provide the greatest safety improvements. Consequently, the proper prior-
itization of sites is critical for improving safety and for ensuring that safety improvement
resources are effectively used.

Although there are several NS methods in the literature [4, 3], the ones that use crash
predictive models (e.g. SPF) with EB method have been shown to provide better results
[5, 6, 7] and have become more common in practice. Three major steps of the EB method
including their input, outputs, and the corresponding challenges that are investigated in
this research are shown in Figure 1.1.

1high crash concentration sites
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1. Prepare Crash Data

Traffic volume, Site char-

acteristics, Crash records

Processed

Crash Data Set

2. Develop SPFs

Predicted Crash

Frequencies

3. Estimate Expected Risk and Ranking
List of Top Hotspots and Their

Expected Risk (e.g. EB, PSI)

Error in input data such as AADT (Chapter 2)

Low sample size issue (Chapter 6)

Re-calibration vs. redevelopment (Chapter 3)

Functional form limitations (Chapters 4, 5)

Figure 1.1: Schematic of the components of NS and their challenges

NS begins with collecting and processing geometric and operational characteristics of
all sites in the network (traffic volume data, crash records and site characteristics such as
traffic control type, number of lanes, lane width, shoulder width, horizonal curvature, speed
limit, area (urban vs rural), etc.). The processed data sets are then used for developing
SPFs which are usually a set of generalized linear models to predict the frequency of
crashes of different severity levels or impact types on the basis of geometric and operational
characteristics of each site. Among the explanatory variables, traffic volume data, which is
typically reported as AADT, is typically not measured directly (due to the cost of deploying
traffic volume sensors) but is estimated through one of several available methods. As a
result, AADT values contain uncertainty as well as estimation errors. In addition the the
size of the available data set is often less than the recommended sample size for developing
reliable SPFs ([8]).

4



Regardless of the specific SPF-based method [3] used, in order for SPFs to be applied
within the NS process, the SPFs must be determined through a development (i.e. fit a
model using local data) or re-calibration (i.e. adjust the output of a pre-existing SPFs
that has been developed using data from another region or from the local region using
older data) process [9]. After developing (or re-calibrating) SPFs, the predicted crash
frequencies are used to estimate the expected risks. This is commonly done using EB
method to estimate the expected crash frequency (or EB estimates), which is the weighted
average of the observed and predicted crash frequency [10]. Finally, sites are ranked based
on the EB estimates or Potential for Safety Improvement (PSI) values (i.e. EB estimate
minus predicted crash frequency).

In the next section, motivations for this research are presented. Also, note that in this
thesis, a literature review is provided in each chapter to give a thorough understanding of
the related research and the research gap being addressed in that chapter. This structure
also helps to avoid confusion and redundancy.

1.2 Motivations

In light of the NS steps stated in the preceding section, the following issues serve as the
motivating factors behind this PhD research:

• One of the inputs for the NS process is a measure of exposure which is typically
expressed in term of the annual average daily traffic volume (e.g. AADT). Most
jurisdictions operate a traffic data collection program that consists of the deployment
of a relatively small number of permanent count stations and the annual collection
of short-term counts (typically 8 or 12 hour counts from a single day) at a subset of
network locations. These short-term counts may be obtained through manual counts
or dedicated sensors temporarily deployed at the location. Various methods [11, 12]
can then be used to expand the short term counts to estimate AADT. Given the
cost of collecting short term counts, counts are not obtained from all sites and even
for those sites at which counts are obtained, counts may not be collected each year.
As a result, the available AADT data often suffers from a considerable amount of
error and uncertainty [13, 11]. This raises the important question of how sensitive
are Network Screening outcomes to AADT accuracy? If outcomes are quite sensitive,
then it may be optimal for road authorities to invest resources to improve AADT
accuracy as a means to improving NS outcomes.

• Jurisdictions typically conduct NS on an annual basis for the purposes of planning
and implementing safety interventions. It is costly for jurisdictions to develop SPFs

5



every year. While SPF calibration could be an acceptable option, it is known that
the reliability of SPFs decreases as time passes due to changes over time in factors
such as network structure, enforcement, land use, driving behavior, vehicle types and
technologies, demographics of travellers, traffic volumes, and pedestrian and cyclist
volumes. Changes in both observed and unobserved factors can affect the relationship
between crash frequency and the explanatory variables used in the SPF, thus reducing
its predictive accuracy. For observed variables such as traffic volume, changes may
occur at a faster rate or in a different manner than initially anticipated when the
SPF was developed, leading to discrepancies between the modeled and actual crash
frequencies. Unobserved or unobservable factors can also impact the relationship
between crash frequency and explanatory variables, posing a threat to the SPF’s
reliability. Consequently, at some point in time, SPF calibration does not provide a
sufficient level of reliability, and SPF development (i.e., using the most recent data)
should be done. However, at present, there are no methods by which road authorities
can determine when SPF development should be undertaken. The rule-of-thumb in
practice is to develop SPFs every 5 to 7 years, but there is no evidence to demonstrate
that this frequency is optimal or that it is optimal for all jurisdictions.

• The generalised linear models, which are the most popular choice for SPF devel-
opment, come with a number of limitations. Most of the time, there is no prior
knowledge of which functional forms/distribution will best fit the data. In addition,
they have strict hypotheses regarding the error terms and underlying relationship
between dependent and independent variables [14] which constrains the ability of
the model to fit the data. This raises the question if non-parametric models can be
incorporated within the EB process for NS and if such models would perform better
than conventional NB-EB models.

• Lastly, it is well recognized that crashes are rare events. This gives rise to the prob-
lem of small sample size when developing the SPFs. The desirable large-sample
properties of various parameter-estimation approaches (for example, maximum like-
lihood estimation) are often not achieved with small sample sizes. Various methods
have been proposed for overcoming this issue, and one such approach is to augment
the observed data with synthesized observations. Recent advances in AI methods
may provide an opportunity to address the small sample issue for NS using NB-EB
models.
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1.3 Research Objectives and Methodologies

The motivations described in the previous section lead to four research objectives. These
objectives are identified and briefly described below. The thesis is structured around these
objectives and consequently, the chapter(s) in which each objective is addressed is also
identified.

Much of the content of this thesis has already been peer reviewed and published in
journals or is currently under-review. These publications are identified in the descriptions
below.

1: Develop an objective method to determine if SPFs should be redeveloped

SPFs are developed on a yearly basis for three data sets from three regions. A method
is defined to capture the actual monetary benefit associated with using the most recently
developed SPFs for network screening instead of using recalibrated existing SPFs. The
actual benefit is calculated on a yearly basis for each data set. Model(s) are developed to
estimate these benefits using available data (e.g. change in AADT, crash counts) to be
compared with the redevelopment cost. Results are compared with several benchmarks.
The objective is fulfilled in Chapter 2 of the thesis, and has been published as the following
journal and conference articles:

Zarei, M., Hellinga, B., & Izadpanah, P. (2022). A Benefit-Cost Based Method to
Determine When Safety Performance Functions (SPFs) Should be Redeveloped for Use in
Intersection Network Screening. Transportation Research Record, 2676(11), 239–249.

Zarei, M., & Hellinga, B. (2022). A quantitative method to determine when safety
performance functions used for network screening should be redeveloped. In Proceedings
of the Transportation Research Board (TRB) annual meeting.

2: Develop a method for estimating the monetary benefit of improving
AADT accuracy

A simulation-based method is proposed that can quantify the monetary benefit of im-
proving AADT accuracy. Using the proposed method, a sensitivity analysis is conducted
to investigate the sensitivity of network screening outcomes for a range of different condi-
tions. The objective is fulfilled in Chapter 3 of the thesis, and has been published as the
following journal article:

Zarei, M., & Hellinga, B. (2022). Method for Estimating the Monetary Benefit of
Improving Annual Average Daily Traffic Accuracy in the Context of Road Safety Network
Screening. Transportation Research Record.

7



3: Develop a non-parametric EB estimation method for network screening

CGAN are used as crash predictive models and combined with EB method to produce
EB estimates. The results are compared with conventional EB estimation method (using
negative binomial regression models) in terms of hotspot identification using both real and
simulated crash data sets. The objective is fulfilled in Chapters 4 and 5 of the thesis, and
has been published as the following journal articles:

Zarei, M., Hellinga, B., & Izadpanah, P. (2022). CGAN-EB: A Non-parametric Empiri-
cal Bayes Method for Crash Frequency Modeling Using Conditional Generative Adversarial
Networks as Safety Performance Functions. International Journal of Transportation Sci-
ence and Technology, ISSN 2046-0430.

Zarei, M., Hellinga, B., & Izadpanah, P. (2023). Application of Conditional Deep Gen-
erative Networks (CGAN) in Empirical Bayes Estimation of Road Crash Risk and Iden-
tifying Crash Hotspots. International Journal of Transportation Science and Technology,
ISSN 2046-0430.

4: Develop a crash data augmentation method for SPF development

A data augmentation method for crash frequency data based on conditional generative
adversarial networks (CGAN) is proposed. Method is evaluated in terms of hotspot identi-
fication, estimation accuracy, and model goodness-of-fit for real and simulated crash data
sets. This objective is fulfilled in Chapter 6, which is currently under review for publication
by:

Zarei, M., Hellinga, B. (2023). Crash Data Augmentation Using Conditional Generative
Adversarial Networks (CGAN) for Improving Safety Performance Functions. Transport-
metrica.
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Chapter 2

Method for Estimating the Monetary
Benefit of Improving Annual Average
Daily Traffic Accuracy in the Context
of Road Safety Network Screening
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This chapter is based on the following journal article:

Zarei, M., & Hellinga, B. (2022). Method for Estimating the Monetary Benefit of
Improving Annual Average Daily Traffic Accuracy in the Context of Road Safety Network
Screening. Transportation Research Record.

In this journal paper I was the first author and was responsible for the writing of the
article. The paper was edited by Dr. Hellinga and Dr. Izadpanah. I also developed the
crash predictive models and cost-benefit framework and the Python code.
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2.1 Introduction

In this chapter, it is attempted to address the first challenge presented in Figure 1.1,
namely the presence of error in input data. To this end, a method is proposed that can be
used to quantitatively estimate the monetary benefit of improving the accuracy of Annual
average daily traffic (AADT) in terms of network screening (NS) outcomes. The use of
the proposed method is illustrated through the application to a real-world crash data set.
In addition the sensitivity of the network screening results to AADT error in different
conditions (i.e. dispersion, sample mean, sample size) is investigated to determine which
conditions will benefit the most from AADT accuracy improvement.

Safety performance functions (SPFs) are crash predictive models that estimate the
frequency of crashes for different crash types as a function of roadway geometry and op-
erational characteristics. SPFs that can be developed using both statistical models and
deep learning models [15, 16] are an integral part of the Road Safety Management Pro-
cess (RSMP) proposed by the Highway Safety Manual (HSM) [3], a systematic approach
by which transportation authorities can identify and prioritize traffic sites (e.g., intersec-
tions, roadway segments, and/or ramps) for more detailed safety evaluations. This process
is commonly called Network Screening (NS) and the identification and prioritization of
roadway locations is also referred to as hotspot identification.

AADT is a commonly used input to safety performance functions (SPFs) which are
crash predictive models that estimate the frequency of crashes for different crash types
as a function of roadway geometry and operational characteristics, and is frequently es-
timated by applying temporal factors to expand short-term counts. As a result, there is
always some level of error in AADT estimates that can have direct impact on network
screening outcomes. Such errors may result in an inefficient use of limited resources for
safety improvements.

AADT error can be reduced by either improving estimating procedures [17, 18], col-
lecting counts at more sites (e.g. placing more permanent/short-term count stations), or
increasing the duration of short-term counts. The latter two approaches provide more
accurate AADT data, but at a higher cost. The challenge for all jurisdictions is to de-
cide how much should be spent to improve AADT accuracy. Assuming jurisdictions make
this decision on a benefit/cost basis, then the key question is to determine the benefit of
improved AADT accuracy in NS outcomes.

This chapter is structured as follows: The next section provides the relevant back-
ground on network screening using EB estimates, AADT estimation methods, and meth-
ods that have been suggested to incorporate AADT uncertainty in road safety performance
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measures. The Methodology section describes the proposed methodology. The results of
implementing the framework are discussed in a sensitivity analysis in the Methodology
section and in an example application in Example Application section. Finally, the last
section provides conclusions and recommendations.

2.2 Background

2.2.1 Network screening using empirical Bayes (EB) estimates

Network screening is a process of ranking crash hotspots (also known as prone sites or
sites with promise) and the first step in the highway safety management process. For
the past three decades, an empirical Bayesian (EB) approach has been the most popular
method for this purpose [4] in which the long-term expected crash frequency is estimated
by combining prior and current information in order to rank sites. The prior information in
the EB method comes from calculating a sample mean and variance from a reference group
of sites similar to those under evaluation, or from a calibrated safety performance function
(SPF) that relates the crash frequency of the reference sites to their characteristics. The
point estimates of the expected mean and the variance are then combined with the observed
site-specific crash count to obtain an improved estimate of a site’s long-term expected crash
frequency [19]. In mathematical form, if y is the observed number of crashes at the site,
which is Poisson-distributed, and λ is the site’s expected long-term average number of
crashes; the EB estimator of λ is as follows:

EB = w × E(λ) + (1− w)× y (2.1)

where EB denotes the empirical Bayes estimate of the site’s expected long-term crash
counts, E(λ) is estimated by the crash prediction model, and the weight w is a function of
the mean and variance of λ and is always a number between 0 and 1.

Many parametric and non-parametric crash prediction models have been used in the
literature. For parametric models, the NB [20], the Poisson-lognormal [21], the Con-
way–Maxwell–Poisson [22], the Poisson-Tweedie [23], the Sichel [24], and for non-parametric
models deep neural networks [16, 25], and support vector machines [26] are some examples.

Among all the above-mentioned models, the NB model (Eq. 2.2) has been the most
frequently used in practice for predicting crashes and the corresponding EB estimate can
be calculated as follows:
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f(y|µ, α) = Γ(y + 1/α)

Γ(1/α)Γ(y + 1)

(
αµ

1 + αµ

)(
1

1 + αµ

)
(2.2)

EBNB = w × µ+ (1− w)× y (2.3)

w =
1

1 + αµ
(2.4)

where y is the observed number of crashes per year, α is a dispersion parameter, and µ
is the number of crashes predicted by the NB model given site inputs such as AADT,
geometric characteristics, etc.

2.2.2 AADT estimation methods

One of the most challenging inputs for the network screening is AADT data which often
suffers from a considerable amount of error and uncertainty [13]. Installing permanent
count stations or traffic detection cameras on every link in the network is impractical and
cost-prohibitive and consequently several methods are described in the literature and used
in practice to estimate AADT based on site specific short-term counts and data from nearby
permanent count stations and/or site characteristics. The traditional factoring approach
[27], which is most commonly used in practice, divides the permanent count station sites
into a set of TPG such that all sites within a TPG have similar temporal traffic patterns.
Expansion factors (hourly/daily/monthly) are computed for each TPG on the basis of the
counts from the permanent count stations associated with each TPG. Then for each site in
the network for which AADT is required, the associated TPG is identified and the AADT
is estimated by expanding the short term count from the site with the TPG expansion
factors. The AADT estimates from this method are subjected to error due to incorrect
grouping of permanent counts stations into traffic pattern groups, incorrect association of
a TPG for the short term count site, and the random day-to-day variability in the traffic
counts [18].

A number of alternate AADT estimation approaches have been proposed to improve
AADT estimation accuracy. Tsapakis and Schneider proposed a support vector machine
method to determine from which factor group expansion factors should be obtained for a
given short term count [28]. Other approaches based on geostatistical or machine learning
methods have been proposed that make use of site and land use characteristics (both
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with and without short term count data) to estimate AADT. For example, segment-based
modelling has been demonstrated to significantly improve the accuracy of heavy vehicle
volume predictions by integrating spatial characteristics and homogeneity of road segments
[29, 30]. Lam et al proposed a neural network model to expand short-term counts in Hong-
Kong and compared it to a regression model [31]. Similarly Sharma et al proposed a neural
network model to estimate AADT expansion factors for low volume roads [18]. The input
for the network was input factors which are the hourly volumes divided by the total volume
for one or more short-period traffic counts in the sample divided by equivalent number of
sample days (this was named sample average daily traffic - SADT). The target output is
the actual expansion factor which is the true AADT divided by total volume for one or
more short-period traffic counts in the sample. More recently, Tawfeek and El-Basyouny
applied a deep neural network (DNN) to estimate AADT of minor roads at rural, stop-
controlled intersections and compared with the estimation from a linear regression model
[32]. Model input included AADT of major road and site characteristics such as number
of lanes, presence of median/right-turn/and left-turn lanes, and distance to nearest urban
area. The results show about 35% improvement in estimation of minor road AADT in
comparing with the linear regression method. In addition they showed that the SPFs
developed from the neural network estimations of the minor road AADT showed better fit
to the data.

It has also been proposed to use various other complementary data to improve the
accuracy of AADT estimation. Jiang et al showed that AADT estimation accuracy could
be improved through the use of aerial imagery [17]. More recently, Zhang and Chen showed
that using vehicle probe data can significantly improve the accuracy of AADT estimates
[33] ). Other recent studies have examined the use of GPS data [34] and cell phone data
[35] for improving AADT estimates.

Despite the wide spread use of traditional AADT estimation methods and the ubiqui-
tous need for AADT data, there are few studies that quantify the magnitude of the error
(uncertainty) in these AADT estimates. A study by the FHWA (2015) is likely the most
comprehensive examination of AADT estimation accuracy and the factors that influence
accuracy (e.g. short term count duration, methods for forming TPGs, and types of ex-
pansion factors) [36]. This study used 13 years of data (24 hour counts from 365 days
of the year) from 320 permanent count stations capturing a wide range of AADT for 9
different road functional classes across 32 states in the USA. A Monte Carlo process was
used to repeatedly draw (1000 trials) a randomly selected short term count from the year
of count data available for each site and then to estimate the AADT (AADTEst). Relative
estimation error is reported as AADTEst−AADTObs

AADTObs
, where AADTObs is the AADT computed

from all 365 days of counts from that site. The study reports the 95% confidence limits
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of the relative error (uncertainty range) aggregated across all road classes and states to
be -28% to 36% when short term counts are 24h in duration and taken during weekdays.
However, the report also shows that this uncertainty range varies substantially depending
on the road functional class and state (the half width of the uncertainty range varied from
less than 10% to 70%). The study does not characterize the shape of the distribution.

Milligan et al characterized the accuracy of AADT estimated from short-term counts
using data from 69 permanent count stations in Manitoba, Canada [37]. They performed
their study in a similar manner to the FHWA study but instead of computing expansion
factors from a factor group containing multiple permanent count stations, they computed
the expansion factors from the single closest permanent count station belonging to the
same traffic pattern group as the short term count site (they term this the IPC method).
Using the IPC method and their set of data, they found the relative estimation error to
follow a Normal distribution with an uncertainty range of -50% to 50% when using a 24h
duration short-term count.

If it is assumed relative errors are normally distributed with a mean of zero, then
from the above two studies, we can conclude that the standard deviation of the relative
estimation error ranges from 5% to 35%.

Note that Milligan et al also provide a summary of the AADT estimation errors from
a number of older studies from the literature. These studies either do not report the
uncertainty range or do so for conditions that are not commonly encountered in practice
(i.e. short term count duration of a month or greater).

2.2.3 Incorporating AADT uncertainty in network screening

The importance of AADT uncertainty to road safety analysis, and specifically network
screening, has also been studied. Several studies have attempted to quantify AADT es-
timation errors and then formulate network safety regression modelling frameworks that
directly include this error. Maher and Summersgill investigated AADT uncertainty in
modeling crash data with Poisson distribution using two approaches [38]. In the first, a
simulation approach is used to change AADT according to a lognormal distribution with
a variance to mean ratio of 10 %. The safety performance function (SPF) calibrated on
the simulated data showed about 20% smaller values for coefficient estimations than SPFs
developed based on original AADT data. In other words, randomizing traffic volume vari-
ables lead to a bias (underestimate) in their corresponding SPF coefficient. In the second
approach, they proposed a formal functional model to explicitly account for AADT uncer-
tainty in the log-likelihood function. In the proposed functional form, crash and AADT
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values have different Poisson models which can be integrated into one log-likelihood func-
tion for parameter estimations. Then using an iterative algorithm, the maximum likelihood
of solution for parameters can be found. The simulation results indicate the mentioned
biases in parameter estimation are very much reduced when the modified functional form
is applied.

El-Basyouny et al proposed the Measurement Error Negative Binomial (MENB) model,
to consider uncertainty in the AADT estimates and to provide a better estimate of the
over-dispersion parameter [39]. The MENB approach, which is inspired from models in
epidemiological research, has three elements of response (i.e. dependent variable), exposure
(i.e. traffic flow) and measurement error (i.e. uncertainty in traffic flow). The MEBN
method outperforms (i.e. better goodness-of-fit results) the conventional negative binomial
approach in the case of large AADT measurement errors. In a more recent study, Musunuru
and Porter simulated AADT estimates considering a Normally distributed measurement
error and compared the corresponding SPF models to the SPF model developed on the
true AADT values [40]. They found that when measurement error is not included in road
safety regression modeling, regression coefficient estimates are biased toward zero.

All of the mentioned studies have proposed different methods to either improve the
AADT accuracy or include the uncertainty of the AADT data in order to obtain more
reliable SPFs. However, to the knowledge of the authors, there is no framework in the
literature that can quantify the magnitude of the potential benefit associated with either
improving AADT estimates or incorporating AADT errors into modeling process, in terms
of network screening results. The contributions of this chapter are as follows:

1. A simulation-based method for cost-benefit analysis of improving AADT estimates
is proposed.

2. Using the proposed method, a sensitivity analysis is conducted to investigate the
sensitivity of network screening outcomes for a range of different conditions.

3. The application of the proposed method is presented in a real-world example.

.

2.3 Methodology

In this section, a method that can quantify the impact of AADT error in terms of network
screening outcomes is proposed. Several different metrics have been used to quantify the
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accuracy of network screening in this regard. Our goal in this chapter is to quantify this
impact in terms of monetary loss so that jurisdictions can make decisions on a benefit-cost
basis. The proposed method consists of four modules as presented in Fig. 2.1. Each
module is described in the following subsections.

2.3.1 M1: Crash Data Simulation Module

The method begins with simulating true long-term expected crash frequencies (k) and the
crash counts (y) based on the given SPF, dispersion parameter (α), AADT data and other
features of the sites (X) using the process which has been proposed in [41] and been used
in previous simulation studies [42, 43]:

y ∼ Poisson(k);

k = µ× eϵ;

µ = SPF(AADT,X)

exp(ϵ) ∼ gamma(1, α);

PSI = max(k − µ, 0).

Note that this module also finds the hotspot true ranking (R in Figure 2.1) based on
true potential for safety improvement (PSI) values, which is the difference between k and
what is normal for similar sites [44]. As a result, this ranking is the optimal ranking of
hotspots based on the simulated crash count with the highest potential for crash reduction
given appropriate counter measures.

2.3.2 M2: Modified AADT Generation Module

Following the same approach adopted by [40], in this module, the AADT for each site is
modified to include the measurement error (ϵ) given the measurement error variance σ2 as
follows:

AADTmodified ∼ Normal (AADT, σ2) (2.5)

σ = AADT × ν (2.6)
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Figure 2.1: Input/output flow of four modules in the proposed framework
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where AADT is the true AADT value, σ2 is the error variance, and ν is COV. COV can be
estimated using the estimated AADT values for a sample of sites with known AADT. With
the modified AADT values we are trying to replicate the real world condition in which the
AADT estimates include some amount of measurement error.

2.3.3 M3: PSI Estimation Module

Module M3 computes the EB estimates given the modified AADT data and simulated
crash counts (K) by fitting a NB model. Then ˆPSI is computed [44]:

ˆPSI = max(EBNB − µ̂, 0) (2.7)

where EBNB is based on Eq. 2.3 and µ̂ is the predicted number of crashes by the fitted
NB model. Using the ˆPSI, the ranking based on modified data is then calculated (these
rankings are denoted R̂).

2.3.4 M4: Loss Calculation Module

When erroneous AADT data leads to incorrect ranking of sites, then sites with a lower PSI
are included in the list of top n hotspots in place of sites that actually have a higher PSI.
Given that the objective of identifying the top n hotspots on the basis of PSI is to be able
to concentrate resources and implement safety improvement measures at those sites where
the potential for safety improvements is the greatest, incorrectly identifying sites results in
the application of resources to lower priority sites and represents an opportunity cost [45]
which is called potential loss. This module estimates a monetary value of the potential loss
(Lossν) due to using modified AADT based on the value of COV (i.e. ν). To this end, the
PSI Difference (∆PSI) is computed for top n hotspots given the estimated rankings from
the modified data (R̂), true PSI values, and the true ranking (R):

∆PSIν,n =
∑
R,n

PSI −
∑
R̂,n

PSI (2.8)

where
∑

R,n PSI is the sum of PSI values for the true top n hotspots, and
∑

R̂,n PSI is
the sum of PSI values for the top n hotspots identified using the modified AADT data.
∆PSI reflects the difference in the PSI values across the true top n hotspots and the PSI
values across the n hotspots when using the AADT data containing error. The social cost
of crashes can be established by crash type (e.g. property damage only (PDO) crashes,
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injury crashes, and fatal crashes) [46, 3, 47]. Consequently, the loss can be expressed as a
monetary value as follows:

Lossν = ∆PSIν,n × $(PSI) (2.9)

$(PSI) =
NPDO × $PDO +NInjury × $Injury +NFatal × $Fatal

NPDO +NInjury +NFatal

(2.10)

where N and $ represent the number and societal cost of crashes of a given severity type.

2.4 Sensitivity Analysis

In this section, the proposed method is used to investigate the sensitivity of NS outcomes
for a range of different conditions. In order to simulate conditions that are convincingly
similar to the range of conditions typically observed in empirical crash data, the parameters
of these experiments (i.e. dispersion, sample mean and sample size) are based on the
reported parameters related to crash datasets in eight published chapters summarized in
[42], as follows:

• Four dispersion parameter (α) values: 0.25, 0.5, 1.5, 3.0

• Three sample sizes (i.e. number of sites): 250, 500, 1000

• Four sample means (crashes/year): 0.7, 1.9, 5.1, 11.3

For the purposes of the sensitivity analysis, it is assumed that sites are road segments and
that segments are all of the same length. Consequently, the following SPF is used:

µ̂ = exp(β × ln(AADT ) + β0) (2.11)

where β is set be to 1.18 and β0 is set to be -13.15, -12.15, -11.15 and -10.35 for sample
mean of 0.7, 1.9, 5.1 and 11.3 respectively. These values are chosen to be close to SPF
parameters fitted to the available data. A real AADT data set is used for sampling the
AADT values for each scenario as a means of ensuring a realistic distribution of values. The
data is from the Highway Safety Information System (HSIS) collected for divided 4-lane
segments from urban freeways in Washington State for the year 2017.
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Using the above-mentioned setup and the framework presented in Figure 2.1 the below
steps are followed for each scenario:

1. For each scenario and AADT sample, M1 simulates the long-term expected crash
frequency (k) and the observed crash counts (K), and computes the true ranking
(R) based on PSI.

2. M2 modifies the values of the AADT sample based on a given coefficient of variation
(ν in Equation 2.6).

3. M3 uses the simulated observed crash counts (K) and the noised AADT data to
compute the EB estimates, PSI, and hotspot ranking (R̂).

4. M4 compares the suggested ranking from M3 (R̂) with the true ranking (R) for the
top 10% hotspots and calculates the ∆PSI values.

The ∆PSI results for 48 scenarios are presented in Figure 2.2 as box-plots. Each
box-plot represents the ∆PSI results over 200 replications for each ν value (ranging from
0% to 100% in 20% intervals). The mean values of the replications are shown by a green
triangle. The percentage change of ∆PSI mean values as a function of COV are shown in
Figure 2.3.

From these results it can be observed that the sensitivity of network screening varies
across different ν values but there is a general increase in ∆PSI as ν increases. In some
conditions, errors in AADT values seem to have very little effect in terms of network
screening outcomes while in others the network screening outcomes appear to be quite
sensitive to the accuracy of AADT.

In Equation 2.8, larger sample sizes provides larger ∆PSI (Figure 2.2). This is expected
as ∆PSI is calculated over top 10% hotspots which include more sites for larger sample
sizes. To avoid this scale effect, the relative change in ∆PSI is computed as:

%∆PSI(ν, n) =
∆PSIν,n −∆PSIν=0,n

∆PSIν=0,n

× 100 (2.12)

Based on these relative changes as depicted in Figure 2.3, it can be seen that the impact
of sample size on the increasing trend of ∆PSI versus ν is negligible.

The results show that the impact of AADT errors on network screening outcomes is
mostly impacted by the average crash frequency (i.e. sample mean) and the magnitude of
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Figure 2.2: ∆PSI results
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the AADT error. The sample size and dispersion parameter value impacts are negligible.
This is evident from the plots in Figure 2.3. When mean = 0.7 crashes/year/site, for all
dispersion values, the relative change for the average of ∆PSI values are mostly less than
about 5%. In contrast, the relative change reaches a maximum of approximately 60% and
120% when sample mean is 5.1 and 11.3 respectively. These observations can be explained
by rewriting PSI equation based on model prediction (µ), observed crash number (y) and
dispersion parameter (α) as follows:

PSI = max(EB − µ, 0)

= max((1− w)× (y − µ), 0)

= max

(
αµ× (y − µ)

1 + αµ
, 0

) (2.13)

Based on Equation 2.13, PSI has a non-zero value when y > µ. When the sample
mean is very small, then most sites have zero crash counts (i.e. y) with PSI = 0 and the
top hotspots will always include those few sites with non-zero crash counts. Consequently,
when the sample mean is very small then PSI-based ranking mostly depends on crash
counts y which is not influenced by AADT accuracy. Another way to explain this is to
take the derivative of PSI with respect to µ that is the main term in Equation 2.13 directly
affected by AADT error:

d(PSI)

d(µ)
=

αy + 1

(1 + αµ)2
− 1 (2.14)

In Equation 2.14, for very small sample means, y and µ tend to be close to zero resulting
in d(PSI)

d(µ)
being close to zero. On the other extreme, when the sample mean is very large,

large y and µ values will be expected which makes d(PSI)
d(µ)

become close to -1. Similarly,

for very small dispersion parameter α, d(PSI)
d(µ)

becomes zero. In other words, PSI is more
sensitive to µ as the only term that can be affected by AADT error in Equation 2.13 when
sample mean and dispersion parameter are larger. And this is exactly what is observed in
the results in Figures 2.2 and 2.3.

The results in this section suggest that the potential loss related to using inaccurate
AADT values can have a wide range of impacts on the network screening outcomes depend-
ing on conditions such as the magnitude of the inaccuracy, sample size, SPF parameters,
and sample mean. This means that the impact of AADT inaccuracy on network screening
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outcomes is not constant but must be quantified for each jurisdiction (maybe even each lo-
cation type) separately. Thus there is an increased need for utilizing the proposed method
to estimate how much investment in improving AADT accuracy is warranted. In the next
section, a real-world data set is used to show the application of the proposed method for
a specific jurisdiction.

2.5 Example Application

For this section, the crash data set from 2014-2017 for 865 intersections located in London,
ON, Canada are used. There are four types of intersections as follows:

• G1: Signalized 4-legged intersections

• G2: Signalized 3-legged intersections

• G3: Unsignalized 4-legged intersections

• G4: Unsignalized 3-legged intersections

The SPFs are developed for each group separately and the results are presented in Table
2.1. Note that the crash mean and dispersion parameter for each intersection group type
are within the range of the sample mean and dispersion parameter values evaluated with the
simulation step, providing additional confirmation that the simulation sensitivity analysis
considered a realistic range of crash dataset characteristics.

Table 2.1: Developed SPFs for each intersection group

Group SPF Dispersion Crash Mean # Sites AADT (mean)

G1 e(1.68×AADT−15.3) 0.2 8.3 315 28900
G2 e(0.704×AADT−5.99) 0.7 3.1 87 24900
G3 e(0.732×AADT−6.48) 0.4 1.0 200 8650
G4 e(0.686×AADT−6.74) 0.8 0.6 263 1120

All - 0.5 4 865 15400

Note: All SPF coefficients are found to be statistically significant (p-value < 0.05).

CURE plots were developed to understand how well the SPFs from Table 1 fit the
data (Figure 2.4). The residuals show the differences between historical (observed) and
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Figure 2.5: Loss change ($) and % Change of ∆PSI plots for London, ON data set

predicted crash frequencies. An SPF is deemed to be unbiased when the CURE plot falls
within two standard deviations [48]. Based on the CURE plots in Figure 2.4, the residuals
for all SPFs are within the two standard deviations (σ) indicating that SPFs are well-fit:

σ =

[
σ2
i ×

(
1− σ2

i

σ2
T

)]0.5
(2.15)

where σ2
i is the cumulative sum of squared residuals until the element i, and σ2

T is the total
cumulative sum of squared residuals.

In order to estimate the monetary loss due to inaccurate AADT data the steps described
in Figure 2.1 are followed. It is assumed that the crash value (i.e. $(PSI)) is $15,000 and
network screening is performed to find the top 10% hotspots. For different values of ν
in Figure 2.1, ∆PSI for top 10% hotspots is calculated using 250 different simulated
data sets based on the SPFs and dispersion values (Table 2.1), and then converted into a
monetary value using $(PSI) (Equation 2.9). In addition, the mean absolute percentage
error (MAPE) for SPF coefficients (i.e. b0 and b1) and dispersion parameter given each ν
value are computed to evaluate the impact of AADT error on model parameters.

The simulation results are presented in Figure 2.5a, 2.5b and 2.6. In Figure 2.5b,
%∆PSI(ν, n) from Equation 2.12 versus different values of ν values are presented. These
results can be compated to those from the simulation sensitivity analysis by considering the
mean crash rate of 4 and dispersion parameter of 0.5 from Table 2.1. The %∆PSI(ν, n)
values are close to the case with mean = 5.1 and dispersion = 0.5 in Figure 2.3.

Figure 2.5a shows the average monetary loss change (Lossν − Loss0%) and its 95%
confidence interval associated with each COV value in comparing with the base line (i.e.
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ν = 0) which can be used for decision making regarding improving the accuracy of AADT
values. Note that the expected benefit is non-linear, and consequently the expected benefit
is a function of both the starting AADT accuracy (i.e. COV) and the improvement in
accuracy (i.e. change in COV). For example, improving AADT accuracy by decreasing the
COV from 30% to 10% is estimated to provide a benefit of approximately $200,000 where
as improving AADT accuracy by decreasing COV of 50% to 30% provides about $60,000.
In practice, the jurisdiction could compare the estimated expected benefit with the cost of
achieving a given improvement in AADT accuracy and make an informed decision.

Finally, Figure 2.6 shows the mean absolute percentage error of model parameter esti-
mations for each group and its 95% confidence interval associated with each COV value. As
expected, estimation error tends to increase when AADT error is increased. Also the rate
of increase is higher for larger sample means (e.g. G1 and G2) - a result that is consistent
with the the results in Figure 2.3.

2.6 Conclusions, Limitations, and Recommendations

AADT data is a key input for developing road safety performance functions used in road
safety network screening. AADT is typically estimated by applying temporal factors to
expand short-term counts. The error in estimated AADT data have direct impact on
safety performance measures. In this chapter, a simulation-based method is proposed that
can quantify the monetary benefit of improving AADT accuracy. The proposed method
is used over different simulated crash data conditions to study the sensitivity of network
screening outcomes to AADT error. According to the simulation results, the sensitivity
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of NS outcomes is highly dependent on crash data characteristics such as dispersion and
sample mean, with crash data sets with larger sample mean and dispersion having higher
sensitivity to AADT error. Additionally, the proposed method was used in a real example
to quantify the cost of inaccuracies in AADT on the NS outcomes that can assist jurisdic-
tions in understanding the benefits of investing in methods to improve AADT accuracy.
The proposed method can be used with any safety performance function structure.

One of the limitations of the proposed method is the lack of knowledge regarding the
nature of AADT errors. In this study, the COV of AADT errors is assumed to be constant
for all sites and that the errors are Normally distributed. However, there is a need for
future research to establish the characteristics of the AADT estimation errors to confirm
that these assumptions are valid. It’s important to note that if future research demonstrates
that the COV of AADT estimation errors varies as a function of the AADT and/or follows
something other than the Normal distribution, then the proposed simulation method can
still be used by modifying Equation 2.6.

Furthermore, in this chapter, the proposed method is used for road segments. For
application to intersections, in which the AADT of major and minor roads are both inputs
for model development, there may be error correlation that should be considered.

Lastly, the proposed method monetizes the cost of inaccurate AADT values on the
basis of the average cost of crashes (by type) and the change in PSI associated with more
accurate AADT values. PSI quantifies the potential for safety improvements at a site in
terms of reduction in crashes per year by comparing the EB crash frequency estimate for
the site to the expected crash frequency predicted for sites with the same characteristics.
However, achieving this reduction in crashes requires the implementation of safety improve-
ment measures which vary in cost and effectiveness depending on the site characteristics,
the nature of the crashes, countermeasure, etc. The proposed method for quantifying the
value of improved AADT does not account for these variations in countermeasure costs
and effectiveness.
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Chapter 3

A Benefit-Cost Based Method to
Determine When Safety Performance
Functions (SPFs) Should be
Redeveloped for Use in Intersection
Network Screening
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This chapter is based on the following journal article:

Zarei, M., Hellinga, B., & Izadpanah, P. (2022). A Benefit-Cost Based Method to
Determine When Safety Performance Functions (SPFs) Should be Redeveloped for Use in
Intersection Network Screening. Transportation Research Record, 2676(11), 239–249.

In this journal paper I was the first author and was responsible for the writing of the
article. The paper was edited by Dr. Hellinga and Dr. Izadpanah. I also developed the
crash predictive models and cost-benefit framework and the Python code.
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3.1 Introduction and Background

In the previous chapter, a method is proposed to determine the value of improving AADT
data accuracy which is a critical data for developing SPFs. In this chapter, we focus on one
of the challenges in developing SPFs: deciding between redevelopment and re-calibration.
A cost-benefit analysis method has been proposed that can be used to objectively determine
whether a set of regionally developed SPFs used for road safety network screening should be
redeveloped or recalibrated. SPFs that can be developed using both statistical models and
deep learning models [15, 16] are an integral part of the Road Safety Management Process
(RSMP) proposed by the Highway Safety Manual (HSM) [3], a systematic approach by
which transportation authorities can identify and prioritize traffic sites (e.g., intersections,
roadway segments, and/or ramps) for more detailed safety evaluations. As mentioned
in the previous chapter, this process is commonly called Network Screening (NS) and
the identification and prioritization of roadway locations is also referred to as hotspot
identification.

Though different NS methods have been proposed in the literature [4, 6, 3] a common
approach is to determine the excess expected average crash frequency using SPFs with
empirical Bayesian adjustments [7, 4]. Regardless of the specific NS method used, in order
for SPFs to be applied within the NS process, the functional form, the set of independent
variables, and the coefficients of the SPFs must all be determined through one of the
following two methods [9]:

1. Development of SPFs specific for the subject jurisdiction, or

2. Calibration of existing SPFs.

In the first method, SPF Development, the full statistical model development process
is undertaken. A database for the subject jurisdiction is compiled consisting of crash fre-
quency data, traffic volume and geometry data for each site in the network. Statistical
model development is undertaken to determine the most appropriate structure of the SPF
model, the statistically significant independent variables, and the model coefficients. The
literature suggests that developing jurisdiction-specific SPFs for the purpose of network
screening takes 40 to 100 staff-hours [9] but this will vary depending on the number of
SPFs to be developed. Furthermore, this model development process requires special-
ized expertise in statistical modeling. These cost and expertise requirements often deter
transportation authorities from undertaking SPF development on a regular basis.
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In the second method, SPF Calibration, a pre-existing SPF is updated through a simple
calibration process based on the database of the subject jurisdiction. There are several
methods for calibrating crash models (i.e. SPFs) proposed in the literature, some of which
are presented in Table 3.1. The HSM method is the most straight forward method and
is more common in practice. The pre-existing SPF can be either an SPF that had been
developed for the subject jurisdiction some time ago, or it can be a borrowed SPF that was
originally developed for some other jurisdiction. SPF Calibration requires less time and
resources [49] but conceptually could provide less reliable results than the SPF Development
method [50].

Table 3.1: Calibration methods

Reference Method Note

[3] N cal
pred = NPred ×

Ntot
obs

Ntot
pred

HSM method

[51] N cal
pred = NPred ×

Ntot
obs

Ntot
pred

HSMmethod but estimate dispersion parameter based
on local samples

[52] N cal
pred = A×NB

Pred Estimate regression parameters, A and B, based on
local sample

[53] N cal
pred =

∑K
i=1 N

i
Obs

K
Prediction for each site is the average of its K nearest
sites based on their predictions values

1 NPred = predicted crash frequency, N cal
pred = calibrated prediction, N tot

obs = total observed crash
count

Jurisdictions typically conduct NS on an annual basis for the purposes of planning
and implementing safety interventions; however, there exists very little prior work in the
literature examining methods by which jurisdictions can determine when SPF development
is justified. Shirazi et al. [54] proposed a procedure to determine when SPFs should be
re-calibrated. They introduced a C-proxy parameter that is the ratio of the total number
of observed crashes to a rough estimate of the total number of predicted crashes. If the
relative difference between the C-proxy of the current year and the reference-year (i.e. the
latest year that the SPFs were recalibrated) is greater than a certain threshold (e.g. 10%),
it is recommended to recalibrate the SPFs.

While the above noted approach is simple to use, it poses three challenges:

1. It is not clear what the threshold should be or how to establish the threshold,
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2. Even if a threshold is established, it is not clear that the threshold is transferable
to other jurisdictions or even if the same threshold should be used for different site
types (ie. intersections vs road segments) within the same jurisdiction, and

3. The method attempts to inform jurisdictions when they should recalibrate SPFs
versus continuing to use their existing SPFs. The method does not provide any
insight into when to redevelop SPFs.

Considering these limitations, this chapter proposes a method that enables practitioners
to decide whether or not there is a need to undertake full SPF development.

This chapter is structured as follows. The NS method used in the study is described
in the next section. The empirical data used in this study are described in Section 3.3,
followed by the research methodology in Section 3.4. The results are described in Section
3.5. Finally, conclusions and recommendations are presented in Section 3.7.

3.2 Network screening based on Potential for Safety

Improvement (PSI)

There are several methods in the literature for network screening such as crash frequency,
crash rate, empirical Bayes (EB) estimate, and potential for safety improvement (PSI) [6].
It has been shown that the methods which apply the EB adjustment (i.e. PSI and EB)
perform better than methods that do not use the EB adjustment [6, 7, 44]. Performance
has been evaluated on the basis of a variety of metrics including false identification test,
site consistency test, method consistency test, total rank differences test, and Poisson mean
differences test [5, 4]. The PSI method, which is a refinement of the EB approach, is used
in this study because it estimates how much we can improve the safety of a hotspot and
this can be interpreted as a monetary benefit of network screening. PSI is the difference
between the EB estimate and the predicted crash frequency µ, as follows:

PSI = EB − µ = w × µ+ (1− w)×Obs− µ (3.1)

where Obs is the observed crash frequency and predicted crash frequency, µ, is derived
from a SPF which usually has the following form:

µ = eβ0+β X (3.2)

34



where X is a vector of features (e.g. exposure, lane width, shoulder), β is a vector of model
coefficients for the corresponding input features, and β0 is intercept. Though many different
statistical models have been proposed, the model coefficients are commonly estimated by
fitting a negative binomial model to the data, which can account for over-dispersion of
crash data (i.e. the variance exceeds the mean of the crash data) [14, 55]. Consequently,
w in Eq. 3.1 can be calculated as a function of mu and dispersion parameter (k) of the
negative binomial model:

w =
1

1 + kµ
(3.3)

3.3 Study data

The data used in this study consists of crash records, traffic volumes in the form of aver-
age annual daily traffic (AADT) and geometric characteristics for intersections within the
Regional Municipalities of Niagara (2010-2018), Peel (2008-2017) and Halton (2007-2016),
and within the City of London (2008-2018), all of which are located in south western On-
tario, Canada. There are four types of intersections in each data set including 4-legged
signalized, 3-legged signalized, 4-legged unsignalized, and 3-legged unsignalized. The sum-
mary statistics of the data sets are presented in Table 3.2.

3.4 Methodology

The proposed methodology is based on a benefit-cost analysis and consists of the following
steps:

1. Develop SPFs and PSI values for all periods for each data set.

2. Define and quantify the benefit associated with using the most recent SPFs.

3. Develop a model(s) to estimate the benefit using available data to be compared with
the redevelopment cost.

Note that it is assumed that the most recent SPFs that are developed based on more
recent data provides more reliable network screening results since it represent the most
recent behavior of system. In the following each of the above three steps is explained in
details and the corresponding results are presented.
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Table 3.2: Descriptive statistics of the data

Measures Statistics Peel Niagara Halton London

Sites Number 746 593 427 865

Total Crashes
Max 90 35 57 79
Mean 6.2 2.3 3.7 3.8
STD 10.6 3.4 6.2 7.0

Major Street AADT

Max 110,707 63,102 76,830 61,487
Mean 25,805 11,712 20,242 14,400
Min 291 374 297 156
STD 16,851 6,964 11954 11,222

Minor Street AADT

Max 55,742 27,518 45,113 42,481
Mean 6,136 3,979 4,925 3,561
Min 2 60 7 7
STD 9,178 3,827 6,211 4,937

3.4.1 Develop SPFs and Estimate PSI values

Two time periods are defined. The Base period is the first P years and the Development
period is the most recent P years of data associated with each of the data sets. The
Base year is the first year of the base period and the Current year is the last year of the
development period. Note that the recommended range for P in literature is 3 to 5 years
[56, 3]. Based on these periods, we also define three sets of SPFs as follows:

• Base SPFs (B-SPFs): the SPFs that are developed on the basis of the first P years
of data from each data set (i.e. for P = 4, the Base SPFs are developed using data
from 2008-2011 for Peel, 2010-2013 for Niagara, 2007-2010 for Halton, and 2008-2011
for London)

• Calibrated SPFs (C-SPFs): the adjusted B-SPFs using a calibration factor (C)
[3]:

N cal
pred = NPred × C (3.4)

where C is the ratio of the total observed number of crashes (N tot
obs) by the total

number of crashes predicted by applying the Base SPFs (N tot
pred) to the most recent

P year period:
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C =
N tot

obs

N tot
pred

(3.5)

• Redeveloped SPFs (R-SPFs): the SPFs that are developed on the basis of the
most recent P years of data.

The NS process is performed twice on each data set for each year after the base period.
The first uses the C-SPFs and the second uses the R-SPFs. For example, consider the
application of the NS process to the Peel region data set for 2014 and P = 4 years. In
the first approach (C-SPFs) SPF coefficients have been computed on the basis of the base
period (2008-2011) data. NPred, the output from these SPFs, is then adjusted by the
calibration factor C which is computed on the basis of 2010-2014 data. In the second
approach (R-SPFs), SPF coefficients have been computed on the basis of the most recent
4-years of data (i.e. 2010-2014). The NS process uses EB to combine the predictions from
the SPFs with observed data. For both SPF approaches, the EB adjustment is made using
the most recent P years of data (2011-2014 in this example) and then the PSI measure is
computed for each intersection. Intersections are then ranked in descending order of PSI.

3.4.2 Define and quantify the benefit of R-SPF

Assuming that the re-developed SPFs (R-SPFs) provides more reliable results, the benefit
of using R-SPFs versus calibrated SPFs (C-SPFs) can be quantified in terms of the net
impact of changes to the sites identified as part of the top n% hotspots in terms of the
total PSI:

PPBn% =

∑
R PSIR −

∑
C PSIR∑

R PSIR
× 100 (3.6)

where

PPBn%: Percentage PSI benefit (%) considering top n% hotspots∑
R PSIR: Sum of the PSI in EPDO unit from all top n% hotspots resulting from

NS using R-SPFs∑
C PSIR: Sum of PSI in EPDO unit from all top n% hotspots resulting from NS

using C-SPFs
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It is important to note that the EPDO is used to convert fatal and injury crashes into
PDO crashes based on the equivalent societal costs of crash severity outcomes [3].

PPBn% shows that how much more PSI we could achieve by using R-SPFs instead of
C-SPFs. Since PSI is in units of crashes, PPBn% can be converted into a monetary value
using the societal cost of one PSI unit ($(PSI)) [46, 3, 47] as follows:

Benefit($) = PPBn% ×

(∑
R

PSIR

)
× $(PSI) (3.7)

where $(PSI) can be estimated based on the counts and societal costs [46, 3, 47] of property
damage only ($PDO), injury crashes ($Injury), and fatal crashes ($Fatal):

$(PSI) =
NPDO × $PDO +NInjury × $Injury +NFatal × $Fatal

NPDO +NInjury +NFatal

(3.8)

The monetary benefit of using redeveloped SPFs (i.e. Benefit($)) can be compared
to the cost of redeveloping the SPFs to determine whether or not redeveloping SPFs
is justified. Note that in this approach the benefits and costs are specific for the local
jurisdiction and reflect local values of social costs of crashes as well as costs to redevelop
SPFs.

3.4.3 Develop a model(s) to estimate the R-SPF benefit

The previous section presented PPB, which can be used to quantify the benefit of adopt-
ing R-SPFs but calculating PPB requires that the jurisdiction carry out redevelopment of
SPFs and thus, in its current form, this measure is not useful for decision making. Conse-
quently, in this section, we attempt to find a method for estimating PPB from data that
is readily available without having to redevelop SPFs.

When the underlying characteristics that influence the relationships captured by the
SPFs are the same between the base period and the development period, then we expect
the NS outcomes using both C-SPFs and R-SPFs will be the same and PPB will be close to
zero. Conversely, if the underlying characteristics between two periods are quite different,
then the C-SPFs will be unable to accurately depict the development period, resulting in
a higher PPB. As a result, if we can figure out the “difference” between the two periods,
we can estimate PPB without needing to use R-SPFs.
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There are three types of information (number of crashes; traffic volumes; and time
since SPFs were last redeveloped) that are readily available and can be used to describe
the difference between two periods, as well as have a potential correlation with PPB. For
each type of information, we define a trend measure that captures the absolute relative
change between the base period and the current period

%Crash =
|CrashB − CrashR|

CrashR

(3.9)

%AADT =
|AADTB − AADTR|

AADTR

(3.10)

%Time =
Nyear

P
(3.11)

where subscript B represents the base period, R represents the redevelopment (current)
period, Crash is the total number of crashes in the network, AADT is average of total
AADT (or other exposure measure), Nyear is the number of years between the current year
and the base year, and P is the period length in year.

These measures are used to develop simple linear models that can be used for estimating
PPB:

• PPBCrash ≈ βCrash × %Crash

• PPBAADT ≈ βAADT × %AADT

• PPBT ime ≈ βT ime× %Time

βCrash, βAADT , and βT ime are the slope values for each PPB estimation model which are
estimated in the following sections for the mentioned data sets.

3.5 Results

The methodology as described in the previous section was carried out using the four data
sets. The following steps were performed for each data set, for three different period lengths
(i.e. P = 3, 4, 5), and for each year after the base period:
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1. R-SPFs and C-SPFs were developed. B-SPFs were developed for base period.

2. Using R-SPF, the PSIR values were estimated and used for ranking hotspots

3. Using C-SPF, the PSIC values were estimated and used for ranking hotspots

4. PPBn% was computed for n = 5%, 10%, 15%, 20%.

5. %Crash, %AADT and %Time were calculated.

Figure 3.1 shows the PPB values plotted against %Crash, %AADT , and %Time
for each data data set. A linear least squares regression model (without intercept) for
estimating PPB was fit for each trend measure and each data set.

All slope values are statistically significant at the 95% confidence level. The results
indicate that the linear regressions based on %Crash are most accurate and those based
on %AADT are least accurate. These relationships can be used for estimating PPB and
decision making.

Each year following the base period, a decision should be made on whether or not to
redevelop SPFs for each region. The true correct decision is made based on the true PPB
value, which is calculated by comparing the NS results from R-SPFs and C-SPFs, and a
PPB threshold:

PPBthreshold =
$(R-SPF)

$(PSI)×
∑

n% PSI
× 100 (3.12)

For instance, if the R-SPF cost ($(R-SPF)) is $30,000, $(PSI) is $15000, and sum of PSI
values in top n% hotspots is 1000 EPDO units, then the PPB threshold will be 0.2%. The
model decision is based on comparing the PPB threshold and the PPB estimated using
one of the following models:

• Crash model: PPBCrash ≈ %Crash× βCrash

• AADT model: PPBAADT ≈ %AADT × βAADT

• Time model: PPBT ime ≈ %Time× βT ime

• CAT model: PPBCAT ≈ AV G(PPBCrash + PPBAADT + PPBT ime)

The CAT model is proposed to consider all three trend measures together and compare its
performance with other individual models. In order to evaluate the performance of these
models, three benchmark models are used as follows:
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Figure 3.1: PPB versus %Crash, %AADT, %Time
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• R model: Redevelop SPFs every year

• P model: Redevelop after P years (i.e. period length)

• C model: Never redevelop SPFs (always use C-SPFs)

Finally, the performance of each model is quantified using the following accuracy metric
over each data set over a range of PPB thresholds:

Accuracy =
Correct Decisions

Total Number of Decisions
× 100 (3.13)

where Total Number of Decisions = the number of years in the data set in which we would
like to make a decision about SPF redevelopment, and Correct Decisions = number of
years in which the model suggestion was correct according to the true PPB value and the
specified PPB threshold.

The PPB threshold is a function of the redevelopment cost, the societal cost of a
crash, and the total PSI, all of which vary by jurisdiction. Table 3.3 indicates the PPB
threshold value for various combinations of typical values of redevelopment cost (expressed
as a multiple of the societal cost of a crash) and the total PSI expected from the network
screening process (which is a function of the size of the network and the percent of sites
considered for the hotspots of interest). The range extends from 0.02% to 1.00%. The
threshold value is very small when the cost of redevelopment is small relative to the cost
of a crash and when the total PSI is large. Similarly, the threshold value is large when
the cost of redevelopment relative to the cost of a crash is large and when the total PSI is
small. When the threshold is small, we want to redevelop the SPFs and when the threshold
is large, it is sufficient to use the calibrated SPFs.

Table 3.4 shows the average, standard deviation, and coefficient of variation (COV) of
total PSI for each data set over the range of available years. As indicated for all four data
sets used in this study, the total PSI in top hotspots for each year exhibited substantial
temporal stability suggesting that jurisdictions are able to make a sufficiently accurate
estimate of total PSI from the last time they carried out NS using redeveloped SPFs.

The accuracy of the models were assessed over the range of threshold values from 0.02%
to 1.0%. The accuracy of each model for each data set is presented in Figure 3.2. These
results are based on using the PPB models shown in Figure 3.1. The relationships between
model accuracy and PPB threshold appear to follow a similar pattern in all four data sets
and the “R” and “C” benchmark models behave as expected. For example, the “R” model
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in all data sets starts at roughly 100 percent accuracy and decreases as the PPB threshold
increases. Conversely, the “C” model starts at approximately 0% accuracy and increases
in accuracy as the PPB threshold increases.

3.6 Discussion

Based on the results presented in the previous section, all four proposed models appear to
be more accurate than the bench mark methods over the majority of the PPB threshold
range and all exhibit a “U”shape as expected. Their accuracy is similar to the “R” model,
which is the best model for low PPB threshold values, and then is similar to the “C”
model, which is the best model for high PPB threshold values.

Although the graph for London follows the same trend, the intersection of the “C”
model and “R” model (where both models have the same accuracy of 50%) is closer to
zero than for the other three data sets, indicating that for this data set, there is a much
greater range for which using calibrated SPFs is the best choice. This result indicates
that for this data set there were no significant changes to the underlying relationships
between crashes and site characteristics between the base period and the following years and
consequently the SPFs are more temporally stable than for the other three jurisdictions.
This is additional evidence that the determination of when to redevelop SPFs must be
specific for the jurisdiction rather than employing the same fixed update interval for all
locations. It can be seen that all four proposed models are able to capture the unique
characteristics of each jurisdiction.

Table 3.3: PPB threshold (%) based on Total PSI and cost ratio ($(R-SPF)
$(PSI) )

Total PSI in top hotspots
500 1000 1500 2000 5000

$(R-SPF)
$(PSI)

1 0.20% 0.10% 0.07% 0.05% 0.02%
2 0.40% 0.20% 0.13% 0.10% 0.04%
3 0.60% 0.30% 0.20% 0.15% 0.06%
4 0.80% 0.40% 0.27% 0.20% 0.08%
5 1.00% 0.50% 0.33% 0.25% 0.10%

To compare the performance of the proposed models with the benchmarks, the accuracy
of each model is averaged across the PPB threshold range of 0.02-1.0% and the results
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Table 3.4: Temporal variation of total PSI for top 10% hotspots

Total PSI in top 10% hotspots
Peel Niagara Halton London

Mean 630 195 268 423
SD 48 26 9 31

COV 7.6% 13.3% 3.4% 7.3%

are shown in Table 3.5. The results reveal that, on average, all four proposed models
outperform all three benchmarks. Based on average accuracy, the best model is the CAT
model with 77.1 % average accuracy, which improves on the best benchmark, the “C”
model with 63.9% average accuracy, by about 20.6%. Among the proposed models, the
Time model has the lowest average accuracy of 75.3% and the Crash model has the second
best average accuracy of 76.4%.
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Figure 3.2: Accuracy of models over four data sets
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The previous evaluation of model accuracy assumes that the jurisdiction specific optimal
slope value for each model is known (i.e. calculated once using the same process described in
previous section). Though jurisdictions can calibrate these values, this imposes additional
effort, so there is motivation to provide an alternative approach. Our investigation showed
that there is a relationship between the model slope values and the average of total AADT
(AADT of major road + AADT of minor road) per site in each data set. In order to
confirm this, all combinations of the four data sets were created for the overlapped years
to prepare a wider range of data sets:

• NP data set: based on Niagara and Peel data sets for 2010-2017

• NL data set: based on Niagara and London data sets for 2010-2018

• PL data set: based on Peel and London data sets for 2008-2017

• HL data set: based on Halton and London data sets for 2008-2016

• PH data set: based on Peel and Halton data sets for 2008-2016

• NH data set: based on Peel and Halton data sets for 2010-2016

• NPL data set: based on Niagara, Peel and London data sets for 2010-2017

• NPH data set: based on Niagara, Peel and Halton data sets for 2010-2016

• NHL data set: based on Niagara, Halton and London data sets for 2010-2016

• HPL data set: based on Halton, Peel and London data sets for 2008-2016

• NPLH data set: based on Niagara, Peel, London, and Halton data sets for 2010-2016

For each of the above data sets the process of fitting the linear models to PPB values
as a function of %Crash, %AADT, and %Time as described in the previous section was
followed. The resulting slope values for each model are plotted against average total AADT
per site for each data set and presented in Figure 3.3. Based on these results, the slope
values for the proposed Crash, AADT, and Time models can be approximated using average
total AADT per site (slopes are significant at the 95% confidence level). This means that
for a similar change in the measures (i.e. %Crash, %Time, %AADT) in jurisdictions with
higher average AADT values, more benefit is expected than in jurisdictions with lower
average AADT values. The results show that this estimation is more accurate for the
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Crash and Time models with uncentered-R2 score of 0.75 and 0.67 respectively than for
the AADT model with uncentered-R2 score of 0.43.

The slope estimation models from Figure 3.3 were used to estimate slopes for each of
the four proposed PPB estimation models and then the average accuracy was determined
over the PPB threshold range of 0.02-1.0% for Peel, Niagara, Halton, and London. The
results are presented in Table 3.6. As expected, the models are less accurate when using
estimated slopes rather than optimized slopes and this is more severe for London in which
using optimized slopes can improve the accuracy of the proposed decision making models by
approximately 50%. For the other three data sets, the improvement from using optimized
slopes versus estimated slopes is less than 10%.

48



P

L
N

H

NL

NP

PL

PH

HL
NH

NPL

NPH

NHL

HPL

NPLH

y = 3E-06x
R² = 0.7466

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 5000 10000 15000 20000 25000 30000 35000

S
lo

p
e

 V
a

lu
e

Average Total AADT

Crash model slope Linear (Crash model slope)

(a) Crash model

P

L

N H

NL

NP

PL PH
HL
NH

NPL

NPH

NHL HPL

NPLH

y = 1E-05x
R² = 0.4284

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 5000 10000 15000 20000 25000 30000 35000
S

lo
p

e
 V

a
lu

e

Average Total AADT

AADT model slope Linear (AADT model slope)

(b) AADT model

P

L

N

H

NL

NP

PL

PH

HL
NH

NPL
NPH

NHL
HPL

NPLH

y = 2E-07x
R² = 0.668

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0 5000 10000 15000 20000 25000 30000 35000

S
lo

p
e

 V
a

lu
e

Average Total AADT

Time model slope Linear (Time model slope)

(c) Time model
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One of the limitations of the analysis described in this chapter is that it is based on
data spanning at most 11 years and consequently the range of variation of both average
AADT and total number of crashes is limited. Thus, the linear relationships calibrated
between PPB and trend measures (i.e. %Time, %AADT and %Crash) may not be linear
over a larger range of values of trend measures. Future studies can examine this by using
data sets with a longer time period. Also, the proposed method is only tested and verified
on intersections as the traffic sites. There are other types of sites in a traffic network (e.g.
road segments) that need to be considered as well. Investigating the applicability of the
proposed method for other types of sites is another task for future studies.

3.7 Summary of Methodology

In this chapter, a cost-benefit analysis method has been proposed that can be used to
determine whether or not a set of regionally developed SPFs used for road safety network
screening should be redeveloped. The key assumption is that the most accurate network
screening results are obtained by using SPFs that have been developed using the more
recently available crash and network data. Based on this assumption, a PSI percentage
benefit (PPB) has been defined to capture the benefit of using redeveloped SPFs (R-SPFs)
instead of using calibrated SPFs (C-SPFs) and found a set of models to estimate PPB from
readily available data. The proposed methodology requires the following information:

1. $(R-SPFs)
$(PSI)

: cost ratio where $(R-SPF) is the cost of redeveloping SPFs and $(PSI) is
the monetary value of a PSI unit. The latter can be estimated using Equation 3.8
which requires the number of PDO, injury and fatal crashes as well as their societal
costs. A reasonable estimate is typically between $10,000 to $30,000.

2.
∑

n% PSI: total PSI for top n% hotspots which can be obtained from the previous
NS results. n% is the percentage of top hotspots of interest. Total PSI will vary with
the size of the network (i.e. number of sites) and n%.

3. AADT total: Average total entering AADT per intersection (if the optimized slopes
for the PPB estimation models are not available)

4. %Crash: the absolute percentage difference of total crash counts between the base
period and development period

5. %AADT: the absolute percentage difference of average total AADT per site between
the base period and development period
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6. %Time: the difference between current year and base year divided by period length
(i.e. P) multiplied by 100

Based on the above data and the following steps, a decision can be made:

1. Calculate the PPB threshold (%) using Eq. 3.12.

2. Estimate the slope values for each PPB estimation model if the optimized values are
not available:

• βCrash ≈ 2.92× 10−6 × AADT total

• βAADT ≈ 1.01× 10−5 × AADT total

• βT ime ≈ 2.21× 10−7 × AADT total

3. Estimate the expected PPB from one of the following models:

• PPBCrash ≈ βCrash × %Crash

• PPBAADT ≈ βAADT × %AADT

• PPBT ime ≈ βT ime× %Time

• PPBCAT ≈ AV G(PPBCrash, PPBAADT , PPBT ime)

4. If the estimated PPB is greater than the threshold then redevelopment is recom-
mended (i.e. the benefits of redevelopment is greater than its costs).

3.8 Conclusions and Recommendations

This study presents a methodology for jurisdictions to determine when to redevelop SPFs
economically, rather than relying on recalibrated older versions. The approach uses three
trend measures and a benefit metric based on societal costs of crashes to estimate benefits
before redevelopment. The method, tested on real datasets, outperforms existing bench-
marks by 13% in decision-making accuracy. Despite the fact that the suggested method
performs well over the data sets used in this study, it is recommended to further validate
the models for a larger set of jurisdictions and longer time periods. Furthermore, the ap-
proach was developed and tested exclusively on intersections. Future research can test and
refine the method for other types of sites such as road segments.

52



Chapter 4

CGAN-EB: A Non-parametric
Empirical Bayes Method for Crash
Frequency Modeling Using
Conditional Generative Adversarial
Networks as Safety Performance
Functions: Preliminary Performance
Analysis
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This chapter is based on the following journal article:

Zarei, M., Hellinga, B., & Izadpanah, P. (2022). CGAN-EB: A Non-parametric Em-
pirical Bayes Method for Crash Frequency Modeling Using Conditional Generative Adver-
sarial Networks as Safety Performance Functions. International Journal of Transportation
Science and Technology, ISSN 2046-0430.

In this journal paper I was the first author and was responsible for the writing of the
article. The paper was edited by Dr. Hellinga and Dr. Izadpanah. I also developed the
CGAN-EB and GLM-based models models using Python.
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4.1 Background

In earlier chapters, benefit-cost analysis methods have been developed to estimate the value
of improving AADT accuracy as well as the value of redeveloping SPFs in terms of NS
results (Figure 1.1. In this chapter, we focus on addressing functional form limitation of
traditional safety performance functions through using more flexible modeling techniques.

Developing a reliable crash predictive model (or SPF), is a complex process owing to
some inherent characteristics of crash data such as excess zero values (i.e. low sample
mean), temporal/spatial correlation, multicollinearity (i.e. the high degree of correlation
between two or more independent variables), and over-dispersion (i.e. variance is greater
than mean) to name a few [14]. Several statistical modeling approaches have been used to
deal with these issues that are mainly based on Poisson and Negative Binomial (NB) models
or their variants in the form of mixture models or zero-inflated models [57, 58, 59, 60].
Practically, it is recommended that the Poisson regression model is estimated as an initial
model, and if over-dispersion is found, then both negative binomial and zero-inflated count
models could be considered [61].

There are several challenges to developing SPFs using parametric modeling. Selecting
the best parametric model and establishing a functional form that best fits the given
crash data can be technically challenging and time/effort intensive and the choice can
have a significant influence on the outcome of network screening [62, 63]. One alternative
which avoids these challenges is to use non-parametric or semi-non-parametric modeling
approaches. For instance in [43], it was shown that a semi-non-parametric Poisson (SNP)
model performs better than NB model when calibrated to simulated data sets with various
distribution of error terms. The NB model was found to substantially overestimate the
effect of lane width on crash frequency reduction relative to the SNP model due to the
SNP model’s more robust estimation of unobserved heterogeneity.

Another option to deal with the aforementioned challenges of parametric models is using
fully non-parametric or data-driven models such as deep neural networks (DNN). Several
studies have shown that such models have better fitting and predictive performance than
parametric ones in the context of crash data modeling [64, 65, 66, 67, 68]. These com-
putational models are able to extract inherent features in the data minimizing the efforts
required for feature selecting and feature engineering that is essential for parametric mod-
els. They have also demonstrated superior performance in dealing with multi-colinearity,
which is the non-independence of predictor variables [69]. Moreover, significant progress
has been made to address the criticism that DNN-based models are black-boxes [70, 71].
In one of the recent works, a novel method has been proposed that can be used to describe
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the inner working of deep learning models [72]. The method includes visualization and
feature importance criteria over the input and hidden layers of the network that can be
used for data/feature importance analysis.

Non-parametric approaches, such as DNN models, have been applied to different traf-
fic safety problems to overcome these limitations. Some of the recent applications of deep
learning models in crash data analysis include a crash count model with an embedded mul-
tivariate negative binomial model [64], developing a global safety performance function [67],
real time crash predictions [73, 74], pedestrian near-accident detection [75], crash severity
prediction [76, 77], and crash data augmentation [78, 79]. However, using a DNN based
model for the purpose of hotspot identification and integrating it with the EB method is
quite rare. Hence, there is a need for an EB estimation approach that takes advantage of
DNN models and does not have the limitations of parametric approaches. In this chap-
ter, using a powerful deep learning technique called Conditional Generative Adversarial
Network (CGAN), a DNN-based model is combined with the EB method and compared
with the traditional NB-EB approach in terms of model fitting, predictive performance and
network screening results. In the next section the concept of CGAN is briefly described.

4.2 Conditional Generative Adversarial Network (CGAN)

GANs are a relatively recently developed type of deep generative models from the unsu-
pervised machine learning field that can implicitly model any kind of data distribution
and generate new samples and has achieved tremendous success in many fields (e.g., im-
age/video synthesis/manipulation, natural language processing, classification) in recent
years [80, 81, 82]. GANs consist of simultaneously training two deep neural networks, a
generator which produces synthetic samples that mimic the characteristics (i.e. distribu-
tion) of the real (observed) data, and a discriminator which tries to distinguish between
the synthetic samples coming from the generator and the real samples from the original
data set. This competition between the generator and discriminator has been formalized
as a min-max optimization problem and shown that at Nash equilibrium of the contest
between the generator and the discriminator, the generator can capture the distribution of
the observed data (for more information refer to [80]).

In a conditional-GAN [83], referred to as CGAN, both the generator and the discrimi-
nator are conditioned on some data which could be a class label or a feature vector if we
wish to use it for regression purposes. For the regression, the training steps are presented
in Figure 4.1.
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Figure 4.1: CGAN training structure (X is feature vector, y is the dependent variable, z
is a noise value from a normal distribution N(0, 1))

The CGAN training begins by assigning two sets of random weights to both the discrim-
inator and generator neural networks. Next, real loss value which shows the ability of the
discriminator to recognize the real instances (i.e. y) is calculated based on D(X, y), unit
vector (i.e. 1) and a loss function (e.g. binary cross entropy). Note that D(X, y) ∈ [0, 1]
is the output of the discriminator using (X, y) as input and G(X, z) = ŷ is the output of
generator using (X, z) as input. Fake loss value which shows the ability of the discriminator
to recognize fake instances (i.e. ŷ) is calculated based on D(X, ŷ), zero vector (i.e. 0) and
a loss function (e.g. binary cross entropy). Here D(X, ŷ) is the output of the discriminator
using (X, ŷ) as input. Then, the weights of the discriminator are updated based on the
objective to minimize total loss (i.e. real loss + fake loss) and the weights of the generator
will be updated based on its objective to maximize fake loss. This cycle continues until
the stop condition (e.g. maximum number of epochs) is met. In an ideal training condi-
tion, both fake loss and real loss converges to 0.5 which indicates that it is impossible to
distinguish between input real data and synthetic data because they are samples of the
same distribution [83]. In the context of crash prediction models, X, y and ŷ represent site
characteristics, crash count, and the generated crash count by generator respectively.

The generator mimics the underlying distribution of real data so it can generate m
samples (yij; j = 1,m) for site i and this set of samples is conditioned on the feature vector
Xi. The mean of the samples can then be interpreted as the prediction of the model [84].
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This process can be formalized as a min-max function:

min
G

max
D

V (D,G) = Ex∼p(x) [log(D(x))] + Ez∼p(z) [log (1−D(G(z)))] (4.1)

where p(x) is the training data distribution, p(z) is the prior distribution of the generative
network, and z is a noise vector sampled from the model distribution p(z) such as the
Gaussian or uniform distribution.

GAN and its variants have been rarely used in crash data analysis. The review of the
literature indicates very little application of GAN and its variants to crash data analysis
problems. It has been observed that GAN is used to generate traffic data related to
crashes in order to overcome data imbalance in real-time crash prediction [79]. In other
transportation areas, GAN have been recently used for network traffic prediction [85] and
traffic flow data imputations [86]. In this study, we propose an EB framework using CGAN,
named CGAN-EB, as an alternative to NB models for SPFs in the network screening
process.

4.3 CGAN-EB framework

As proposed by Hauer [19], given y as the observed number of crashes and k as the expected
crash count, the EB estimator of k can be calculated as follows:

E(k|y) = w × E(k) + (1− w)× y ≈ w × E(y) + (1− w)× y (4.2)

where the weight w is a function of the mean and variance of k and is always a number
between 0 and 1:

w =
E(k)

E(k) + V AR(k)
(4.3)

In the above equations, if k is gamma distributed, then the resulting y follows an NB
distribution (Eq. 4.4). As a result, the NB-EB estimate can be derived as follows:

f(y|µ, α) = Γ(y + 1/α)

Γ(1/α)Γ(y + 1)

(
αµ

1 + αµ

)(
1

1 + αµ

)
(4.4)

EBNB = w × µ+ (1− w)× y (4.5)
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w =
1

1 + αµ
(4.6)

where y is the observed number of crashes per year, α is the dispersion parameter, and µ
is the number of crashes predicted by the NB model.

Note that the mean and the variance of y are E[y] = µ and var(y) = µ+αµ2 respectively.
If α → 0, the crash variance equals the crash mean and the NB distribution converges to
the Poisson distribution.

In order to derive the EB estimates using a CGAN model (EBCGAN), we need E(k)
and V AR(k) (see Eq. 4.3) which can be approximated using the samples (e.g. m = 500
samples to obtain stable estimates while being fast in calculations) taken from a trained
CGAN model given the feature vector (X) of any given site:

ECGAN(k) ≈
∑m

j=1CGANj(X)

m
(4.7)

V arCGAN(k) ≈
∑m

j=1(E
CGAN(k)− CGANj(X))2

m− 1
(4.8)

where CGANj(X) is the j-th sample from totalm samples obtained from the CGAN model
when provided with X, the feature vector of a given site, as input. Also, the weight factor
w in Eq. 4.2 when using a CGAN model can be defined as follows:

wCGAN ≈ ECGAN(k)

ECGAN(k) + V arCGAN(k)
(4.9)

Based on the above equations, EBCGAN can be formulated as:

EBCGAN = wCGAN × ECGAN(k) + (1− wCGAN)× y (4.10)

4.4 Evaluation Methods

In order to compare the performance of CGAN and NB, two approaches have been em-
ployed in this study: 1) using a real-world crash data, and 2) using simulation experiments.
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4.4.1 Performance Evaluation using Real-world Crash data set

The first approach uses a real data set from the Highway Safety Information System (HSIS)
to evaluate the proposed CGAN-EB method. Evaluation considers (i) model fit to the
available crash frequency data; (ii) model performance for predicting crash frequency for
another time period; and (iii) network screening performance (i.e. identifying hotspots).
The fit performance of the models have been evaluated using three common criteria includ-
ing MAE, MAPE and coefficient of determination (R2 score). The predictive performance
of the models are assessed using a test set (e.g. crash data of another period). The net-
work screening performance is evaluated using four tests including the SCT, the MCT, and
RDT that are presented in [87, 88], and the PDT which has been proposed in this study.
All these tests are based on the assumption that, in the absence of significant changes,
detected hotspots in time period i should remain hazardous in the subsequent time period
i+ 1 [89].

The Site Consistency test (SCT) was designed to measure the ability of a network
screening method to consistently identify a hazardous site (i.e. hotspot) in subsequent
observational periods. The higher the SCT score, the better the network screening method
is. The SCT score for roadway segments is calculated using the following equation [90, 87]:

SCTv =

∑R
r=1Cr,v,i+1∑R

r=1 Lr,v

(4.11)

where Cr,v,i+1 is the number of crashes at a site in the time period i+1 that is ranked r as
identified by method v using the data from time period i, Lr,v is the corresponding length
of rth ranked site (in miles or km), and R is the rank threshold that is used as cut-off in
the hotspot identification.

The method consistency test (MCT) measures the number of hotspots detected in time
period i that are then also detected in the subsequent time period i + 1. The greater
the MCT score, the more reliable and consistent the method is. The MCT score can be
expressed as:

MCTv = |{xr=1, xr=2, ..., xr=R}i ∩ {xr=1, xr=2, ..., xr=R}i+1| (4.12)

where xr=1, xr=2, ..., xr=R are the hotpots that are ranked 1; 2; ...;R respectively by the
network screening method v.

In Rank Difference Test (RDT), the ranking of hotspots in two consecutive periods are
compared. The method with a smaller RDT score is considered a superior method. This
score can be calculated as follows:
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RDTv =
R∑

r=1

|r −R(xr,v,i+1)| (4.13)

where R(xr,v,i+1) is the rank of hotspot x in period i + 1 which has been ranked rth in
period i by method v.

Finally, the Prediction Difference Test (PDT) which is a revised version of total perfor-
mance test [91], quantifies the difference between the total number of crashes (EB estimate)
for the top ranked hotspots in period i and the total number of crashes estimated for the
top ranked hotposts in period i+ 1. The PDT score is computed as follows:

PDTv =
R∑

r=1

|EBxr,i,v − EBxr,i+1,v| (4.14)

where EBxr,i,k is the EB estimate of the long-term mean of crashes for site xr with rank
of r in period i by method v, and EBxr,i+1,v is the corresponding EB estimate for period
i+ 1. The method with a smaller PDT score is considered a superior method.

4.4.2 Performance Evaluation using Simulation Experiments

This section describes a simulation experiment aiming to compare the performance of
CGAN-EB versus NB-EB. In a simulation environment, it is possible to establish a priori
sites that are hazardous and assess whether the competitive methods can correctly identify
them [88]. For this experiment, five crash data sets are simulated which have the same
independent variables (i.e X data) as the real-world crash data set but have different crash
frequencies (i.e. y data) that are randomly sampled from a Poisson distribution with mean
and variance of k which is computed based on a given SPF as follows [41, 42, 43]:

yi ∼ Poisson(ki) (4.15)

ki = µi × exp(ϵi) (4.16)

µi = SPF(Xi) (4.17)

exp(ϵi) ∼ gamma(1, α) (4.18)
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where α is the dispersion parameter. Note that ϵ represents the unobserved heterogeneity
following the log-gamma distribution as assumed in the NB model. It is worth mentioning
that these simulation settings are completely consistent with the NB model assumptions
regarding the error term distribution and log-linear relationship between dependent and
independent variables.

After simulating all data sets for each experiment, we have trained both NB-EB and
CGAN-EB models using each training data set. In order to compare CGAN-EB versus
NB-EB in terms of their performance as crash hotspot identification methods, two error
measures, FI test and PMD test proposed in [87], and the mean absolute percentage error
(MAPE) of EB estimates have been employed. These tests have been specifically used
for comparing hotspot identification methods in a simulation environment where the truth
is known. The FI test calculates the number of sites that are erroneously categorised as
hotspots, and the PMD test is the mean absolute difference of the true Poisson means for
true hotspots and the suggested hotspots by a method. In this study, a normalised version
of these tests are proposed and used to compare across different number of top hotspots.
The normalized FI, PMD and MAPE are computed as follows:

FIm =
|{hr=1, hr=2, ..., hr=R} − {xr=1, xr=2, ..., xr=R}m|

|{hr=1, hr=2, ..., hr=R}|
(4.19)

PMDm =

∑
kh −

∑
kx∑

kh
(4.20)

MAPE =
N∑
i=1

|ki − EBi|
ki

(4.21)

In Equation 4.19, xr=1, xr=2, . . . , xr=R are the sites suggested as hotspots by the method
m that are ranked 1; 2; . . . ;R respectively, and hr=1, hr=2, . . . , hr=R are the true hotspots
that are ranked based on the true Poisson means (i.e. k values). R is the rank threshold
that is used as a cut-off in the hotspot identification. In Equation 4.20,

∑
kh is the sum of

true Poisson means for true hotspots and
∑

kx is the sum of true Poisson means for the
sites suggested as hotspots by method m. Both FI and PMD have a minimum value of
zero (when the method discovers all true hotspots) and a maximum value of 1 (when none
of the true hotspots are detected.
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Table 4.1: Summary of Characteristics for Individual Road Segments in the WA Data
(Numerical Variables)

Numerical Variable Minimum Maximum Mean (SD)

Number of Crashes per year 0 60 0.9 (2.5)

Left shoulder width 1 [LSW1 (ft)] 0 22 2.1 (2.5)

Left shoulder width 2 [LSW2 (ft)] 0 20 2.2 (2.6)

Median width [MW (ft)] 2 750 40.1(41.6)

Right shoulder width 1 [RSW1 (ft)] 0 24 8.6 (3.6)

Right shoulder width 2 [RSW2 (ft)] 0 22 8.5(3.5)

Segment length [L (mi)] 0.01 2.02 0.1 (0.1)

AADT (F) 4328 178,149 46618 (27725)

Note: 1 and 2 indices after LSW and RSW are related to two opposite directions of the
road. Mean AADT computed over all sites and over 6 years

4.5 Empirical crash data set description

The crash data set used in this study is from the Highway Safety Information System
(HSIS) collected for divided 4-lane segments from urban freeways from 2012 to 2017 in
Washington State, USA. The data set covers a total of 3085 individual road segments with
length ranging from 0.01 to 2.02 miles (0.016 to 3.25 km). 2047 segments are located in
rolling terrain type and the rest (1038) are located in level terrain. Table 4.1 provides a
summary of statistics for seven numerical variables of the road segments in the Washington
State (WA) data and the correlation of the 7 aggregated variables is displayed in Figure
4.2. The blue color represents positive correlations, whereas the red tint represents negative
correlations. The darker the color, the greater the correlation. The results show that, as
expected, LSW1, LSW2, RSW1 and RSW2 are highly correlated so only one of them
appeared in the final model.
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Figure 4.2: Variable correlation

4.6 Developing models

The data described in the previous sections were divided into two 3-year periods P1 (2012-
2014) and P2 (2015-2017) in order to develop models (NB and CGAN) and compare
their performances based on the described evaluation methods. The details of the model
development process for the NB-EB method and the CGAN-EB method are explained in
the following sections.

4.6.1 NB models

The NB modeling results for the WA data are provided in this section. A NB model requires
the relation of crash frequency and the set of explanatory variables to be specified. We
have used the following GLM for this purpose:

µ = exp(β0 + βLln(L) + βF ln(F ) + βX) (4.22)

where

µ : estimated crash frequency
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L : segment length (miles)

F : traffic volume (e.g. AADT)

X : vector of other features (LSW1, RSW1, etc.)

βL, βF , β : NB model coefficients

β0 : intercept

Note that, for two features F (AADT) and L (segment length), their natural log forms are
used so that their transformations lead to the case of zero crashes for zero values. This is
a common functional form in crash data modeling of road segments [67, 92].

The coefficients of the models have been estimated using StatsModels [93], a Python-
based module providing different classes and functions for statistical modeling and analysis.
The dispersion parameter, α is determined using auxiliary Ordinary Least Square (OLS)
regression without constant [94]. The NB model coefficients and goodness-of-fit statistics
have been estimated using maximum likelihood method and are presented in Table 4.2.
Note that other variables including LSW1, LSW2, RSW1, and terrain type were not sta-
tistically significant. The dispersion parameter, α, is significantly different from zero which
confirms the appropriateness of the NB model relative to the Poisson model. Consistent
with expectation, the features MW (median width), F (AADT), and L (segment length)
are all positively correlated with crash frequency, and increasing the width of right shoul-
ders decreases the crash frequency. Note that the SPF coefficients in Table 4.2 are used in
Equation 4.17 to generate simulated crash frequencies.

4.6.2 CGAN models

The CGAN models for this study have been developed using Keras [95], an open-source
deep neural network library developed in Python. The architectures of the generator and
discriminator are presented in Figure 4.3. These architectures are designed based on sug-
gested architectures in [84] for using CGAN as a regression model. DenseLayer(n) in Figure
4.3 is a regular deeply connected neural network layer with n nodes and ConcatLayer(n)
concatenates a list of inputs. The model configuration parameters are set as follows:

• Activation functions: Exponential Linear Unit (ELU), Rectified Linear Unit (ReLU),
and Sigmoid [96]

• Optimizer: Adam [97]
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Table 4.2: The NB Model Coefficients for the WA Data

Variables Coefficient (β) SE p-value

Intercept -11.8 0.36 0.00

ln(L) 0.902 0.018 0.00

ln(F) 1.33 0.033 0.00

RSW2 -0.0627 0.0051 0.00

MW 0.00200 0.00040 0.00

α 0.836 0.052 0.00

Deviance 6.73E+03 na na

χ2 1.03E+04 na na

AIC 1.71E+04 na na

BIC -7.77E+04 na na

SE = Standard Error, na = Not Available, α: Dispersion Parameter, χ2 = Pearson’s Chi-
Square Statistic
AIC = Akaike Information Criteria, BIC = Bayesian Information Criterion

• Number of epochs: 1000
• Batch size: 100
• Learning rate (both generator and discriminator): 0.001
• Learning rate decay (both generator and discriminator): 0.0001

These values are optimized through monitoring the loss function for discriminator and
generator during training process. Note that for the hidden layers for both generator and
discriminator we have used ELU function, and for the output layer ReLU and Sigmoid
functions are used for generator and discriminator respectively.

4.7 Results and discussion

4.7.1 Performance Results: Real-world Crash Data

In Table 4.3, the NB and CGAN models are compared in terms of regression fit of each
model developed on the crash data in period P1. The criteria selected for this purpose

66



ConcatLayer(200)

Dense(100, ELU)

X

Dense(100, ELU)

z

Dense(40, ELU)

Dense(40, ELU)

Dense(40, ELU)

Dense(1, ReLU)

ŷ

(a) Generator architecture
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(b) Discriminator architecture

Figure 4.3: CGAN architectures. The input layer of generator includes normalized feature
vector with size of 8 and a noise value (z ∼ N(0, 1)), and input layer of discriminator
includes same feature vector and crash count (i.e. y)
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include mean absolute error (MAE), mean absolute percentage error (MAPE) and coeffi-
cient of determination (R2 score). According to all three measures, the CGAN models fit
the empirical data (i.e. train data set) better than the NB models. The main reason for
this is that NB models are constrained to a specified functional form in Equation 4.22 but
there is no such constraints in CGAN models.

Table 4.3: Regression evaluation results for CGAN and NB models for WA data

Criteria NB CGAN CGAN Improvement

MAPE 0.56 0.51 8.9%

MAE 0.74 0.69 6.4%

R2 score 0.38 0.46 21%

MAE = mean absolute error, MAPE = mean absolute percentage error

The results in Table 4.3 evaluate the models in terms of fit to the training data (i.e.
period P1). To validate the models and avoid the problems of over-fitting [72] the NB and
CGAN models are evaluated on their predictive performance by comparing the accuracy
of their predictions for crash counts of period P2 data set as a test set. The results are
presented in Table 4.4.

Table 4.4: Predictive performance results for CGAN and NB models for WA data over test
data set (P2)

Criteria NB CGAN CGAN Improvement

MAPE 0.48 0.46 5.2%

MAE 0.91 0.88 3.6%

R2 score 0.34 0.39 15%

MAE = mean absolute error, MAPE = mean absolute percentage error

The results in Table 4.4 indicate that the CGAN shows better performance over the test
data set (i.e. P2) which confirms the model has not over-fitted the data. The CGAN model
outperformed the NB model in terms of predictive performance because it employs deep
neural networks rather than the NB model’s limited linear relationship. In the following

68



sections, multiple more tests and experiments are carried out to evaluate the performance
of the CGAN model in terms of network screening.

In order to compare the performance of NB-EB and CGAN-EB in terms of network
screening results, the EB estimate for two time periods (P1 and P2) was computed for
each road segment. The ranking of hotspots was based on the crash rate (i.e. the EB
estimate of the crash frequency divided by the segment length). Tables 4.5 and 4.6 present
the observed crash counts over period P1 and the corresponding EB estimates by different
methods for the top 10 hotspots identified by the CGAN-EB and NB-EB. Within the top
10 ranked sites, the two methods identified 9 of the same sites and these sites have a similar
rank order. As expected, the model predictions are very different from the observed crash
count in some cases but the corresponding EB estimates are much closer. The reason is
that both methods (CGAN-EB and NB-EB) are using observed crash counts in the EB
estimation.
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The performance of the two methods in identifying hotspots was investigated by con-
ducting the four tests described in Section 4.4. The results of these tests are presented in
Table 4.7. The values of each test for the top 2.5%, top 5%, top 7.5%, and top 10% hotspots
are provided. In the last column of the table, the relative improvement of CGAN-EB over
NB-EB is also presented (positive values means CGAN-EB showed better performance).
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The SCT scores in Table 4.7 indicates that CGAN-EB outperformed NB-EB in iden-
tifying the top 2.5%, 5%, 7.5%, and 10% of hotspots with the highest crash frequency in
P2 and improved the scores about 10% on average. The MCT scores show a similar trend
to the SCT scores and indicate an average improvement over all four cases of 3.4%. This
means that the proposed CGAN-EB approach provides greater consistency than NB-EB in
terms of the hotspots identified in the two periods (P1 and P2). In terms of the RDT test,
CGAN-EB had better performance for all hotspot levels with an average improvement of
4.1% . Finally, on the basis of PDT scores, the estimates by CGAN-EB are much more
consistent over the two periods than by NB-EB suggesting that the total EB estimates of
crashes across the hotspots is much more similar in periods P1 and P2 for the CGAN-EB
model than the NB-EB model. All of these four tests examine the consistency of the net-
work screening outcomes across two consecutive time periods (P1 and P2). The superior
performance of the proposed CGAN-EB method over the NB-EB suggests that it has bet-
ter temporal transferability than NB-EB, but conclusive statements about temporal and
spatial transferability needs further investigation in future studies.

4.7.2 Performance Results: Simulated Crash Data

Using the equations described in Section 4.4.2, five different data sets have been simulated
and used to compare the performance of CGAN-EB and NB-EB methods. To this end,
the dispersion parameter and sample mean are selected to be similar to the values from
the real crash data set (mean = 0.9, dispersion = 0.84) and the following SPF based on
the results in Table 4.2 is used:

µ = exp (0.002MW− 0.0627RSW2 + 1.33 ln(F )− 14) (4.23)

Here it is assumed that all segments have the same length and the hotspot ranking is
performed using EB estimates from each method. For each simulated crash data set, FI,
PMD for 2.5%, 5%, 7.5% and 10% top hotspots and the MAPE of EB estimates over all
samples have been computed. The average of five values for each metric is presented in
Table 4.8.
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Table 4.8: Test scores for the NB-EB and proposed CGAN-EB models using simulated
data sets

Test Top % Hotspots NB-EB CGAN-EB CGAN-EB improvement

FI score

2.5% 0.309 0.301 3%
5% 0.310 0.308 0%
7.5% 0.324 0.320 1%
10% 0.334 0.334 0%

AVG 1%

PMD score

2.5% 0.124 0.121 2%
5% 0.118 0.118 0%
7.5% 0.119 0.119 0%
10% 0.126 0.123 3%

AVG 1%

MAPE (EB) - 2.733 2.015 26%

According to the results in Table 4.8, CGAN-EB slightly improved network screening
performance in terms of FI and PMD tests (around 1%), while significantly reducing the
MAPE of EB estimations (about 26%). This suggests that, while CGAN-EB did not
improve network screening performance or hotspot ranking, it did improve overall accuracy
in EB estimations.

However, when interpreting these results, it is important to recall that for these simu-
lation experiments, all simulation settings were selected to be completely consistent with
the assumptions of the NB-EB method (i.e. conditions are set to optimize NB perfor-
mance, creating the most difficult conditions for the CGAN-EB to perform better than the
NB-EB). Despite this, the performance of CGAN-EB was at least as good as NB-EB in
terms of FI and PMD and much better in terms of the accuracy of the EB estimates. As
a result, it is expected that CGAN-EB performance relative to the NB-EB performance
improves when the simulation settings are changed to become less consistent with the NB
assumptions (and arguably a condition that would more accurately reflect conditions en-
countered with real world data applications). Furthermore, there are several other factors
that are known to impact the performance of the NB-EB method such as sample size, sam-
ple mean, and dispersion magnitude. Additional investigations are required to examine the
performance of the proposed CGAN-EB model across these factors .
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4.8 Conclusions

In this chapter, CGAN-EB, a novel EB estimation approach based on CGAN models
- a powerful deep generative model - is proposed and its performance is compared to
the frequently used NB-EB model. CGAN-EB and NB-EB are used to model both real-
world and simulated crash data sets, and are compared in terms of model fit, predictive
performance and network screening results. The results from real-world crash data show
that the CGAN model has better ability to fit the crash data, and provide more accurate
predictions over the same test data set. Several tests have been conducted using both
real-world and simulated crash data sets to evaluate the network screening performance of
CGAN-EB, and the average score across the four different thresholds of hotspots for all four
tests indicate that the proposed CGAN-EB model performs better than NB-EB particularly
in terms of consistency of suggested hotspots and the accuracy of EB estimations. All of
this evidence indicates that the proposed CGAN-EB method is a powerful crash modelling
approach crash frequency modeling and for network screening with performance that is
equal to or better than the conventional NB-EB approach.

Despite these very promising results, there remain a number of additional questions
regarding the CGAN-EB model proposed in this chapter that need to be investigated.
Although we carried out a simulation based evaluation in which we know the true safety
state of each site, more work is required to examine the sensitivity of the CGAN-EB
performance benefits (vs conventional methods) to key attributes such as the number of
observations, the nature of the crash data (e.g. mean and dispersion), etc. Also, spatial
and temporal transferability is an important aspect in SPF development which is not been
examined in this chapter. In the next chapter, these two questions are more thoroughly
investigated.
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Chapter 5

CGAN-EB: A Non-parametric
Empirical Bayes Method for Crash
Frequency Modeling Using
Conditional Generative Adversarial
Networks as Safety Performance
Functions - Sensitivity and
Transferability Analysis
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This chapter is based on the following journal article:

Zarei, M., Hellinga, B., & Izadpanah, P. (2023). Application of Conditional Deep
Generative Networks (CGAN) in Empirical Bayes Estimation of Road Crash Risk and
Identifying Crash Hotspots International Journal of Transportation Science and Technol-
ogy, ISSN 2046-0430.

In this journal paper I was the first author and was responsible for the writing of the
article. The paper was edited by Dr. Hellinga and Dr. Izadpanah. I also developed the
CGAN-EB and GLM-based models models using Python libraries.
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5.1 Introduction and Background

In previous chapter, we proposed the CGAN-EB approach and compared its performance
to the conventional NB-EB approach used real-world crash data to address the functional
form limitation of traditional SPFs (Figure 1.1). Those results showed that CGAN is
better able to fit the crash data, produce more accurate crash frequency predictions over
the same test data set, and more consistent crash hotspots over different time periods.
We compared the performance of CGAN and NB using a real-world data set in which the
true values for expected crash counts are unknown and consequently it was not possible
to assess the accuracy of the models with respect to truth. Also, individual real-world
data sets can represent only a small range of conditions (e.g. dispersion, mean crash rate,
sample size). In addition, spatial and temporal transferability is an important asset in
SPF development and the previous work did not examine these aspects of the CGAN-EB
approach. As a result, the purpose of this study is to address the following two research
questions:

• Under what conditions (i.e. sample size, sample mean crash rate, dispersion pa-
rameter) does CGAN-EB provide better performance than the conventional NB-EB
approach? To this end, we carry out a simulation study for which truth is known
and consequently the accuracy of the models can be quantified. Also, we use simu-
lated data to explicitly represent a wide range of conditions, encompassing the range
of conditions likely to be encountered in real-world applications. Assessing model
performance over the full range of conditions enables us to identify under which
conditions the CGAN-EB model provides improvements over the NB-EB approach.

• Does the CGAN-EB approach provide similar or better temporal and spatial transfer-
ability compared to the NB-EB approach? In this chapter, the temporal and spatial
transferability of CGAN are compared with NB using real-world crash data sets from
two different jurisdictions.

5.2 Simulation Experiments

5.2.1 Crash Data Simulation Process

A simulation environment has been frequently used for traffic safety studies [98, 99, 43]
specifically because it provides the following two benefits over using empirical data; (a) a
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range of specified conditions (e.g. modifying dispersion, mean, data size) can be evaluated,
and (b) the true crash risk values (i.e. expected crash counts) at each location are known
[42]. The simulation experiments used to evaluate the performance of CGAN-EB versus
NB-EB are described in this section. Twelve experiments are designed and presented in
Table 5.1 to investigate the impact of dispersion parameter, sample mean crash rate, and
sample size on the performance of CGAN-EB versus NB-EB. In order to simulate conditions
that are convincingly similar to conditions in empirical crash data sets, the parameters of
these experiments (i.e. dispersion, sample mean and sample size) are based on the reported
parameters related to crash data sets in eight published chapters summarized in [42]. It
should be noted that the sample sizes for each experiment are chosen to be close to or
larger than the recommended minimum sample size given each sample mean (according
to [8]) to provide the best conditions for NB model development and to minimize the
unreliably estimated dispersion parameter. The minimum recommended sample sizes for
sample means of 1.5 crashes/year and 12 crashes/year are 700 and 200 respectively.

Table 5.1: Experiments

Low Dispersion (α = 0.5) High Dispersion (α = 1.5)

Sample size Low Mean (1.5) High Mean (12) Low Mean (1.5) High Mean (12)

2000 E1 E2 E3 E4

1000 E5 E6 E7 E8

500 E9 E10 E11 E12

For each of these experiments, five training data sets are randomly generated based on
the experiment parameters and using the following steps which have been proposed in [41]
and been used in previous simulation studies [42, 43]:

1. Generate a random feature vector with the size of 4 (X1, X2, X3, X4) from a uniform
distribution on [0, 1].

2. Generate the corresponding count Yi given that the mean for observation i is gamma
distributed with the dispersion parameter α and mean equal to 1:

Yi ∼ Poisson(λi);

λi = exp(β0 + 0.05X1 − 0.05X2 +X3 −X4 + ϵi);

exp(ϵi) ∼ gamma(1, α).
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3. Steps (1) and (2) are repeated until the sample size associated with each experiment
is reached.

Note that ϵ represents the unobserved heterogeneity following the log-gamma distribu-
tion as assumed in the NB model. The sample mean is controlled by β0 which is equal
to 0.5 for “low mean” experiments and 2.5 for “high mean” experiments. It is worth
mentioning that these simulation settings are completely consistent with the NB model as-
sumptions regarding the error term distribution, log-linear relationship between dependent
and independent variables, constant dispersion parameter, and independence of features.

Figure 5.1 illustrates the distribution of simulated crash counts (i.e. Yis) for one data
set of each experiment.
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Figure 5.1: Distribution of simulated crash counts for one data set of each experiment

5.2.2 Model Training Process

After simulating all data sets for each experiment, we have trained both NB-EB and CGAN-
EB using each training data set. The NB models have been developed using StatsModels
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[93], a Python-based module providing different classes and functions for statistical model-
ing and analysis. The dispersion parameter (i.e. α) is determined using auxiliary Ordinary
Least Square (OLS) regression without constant [94]. The CGAN models for this study
have been developed using Keras [95], an open-source deep neural network library written
in Python. The architectures of the generator and discriminator are presented in Figure
5.2. These architectures are designed based on suggested architectures in [84] for using
CGAN as a regression model. DenseLayer(n) in Figure 5.2 is a regular deeply connected
neural network layer with n nodes and ConcatLayer(n) concatenates a list of inputs. The
model configuration parameters are set as follows:

• Activation functions: Exponential Linear Unit (ELU), Rectified Linear Unit (ReLU),
and Sigmoid [96]

• Optimizer: Adam [97]
• Number of epochs: 500
• Batch size: 100
• Learning rate (both generator and discriminator): 0.001
• Learning rate decay (generator): 0.001
• Learning rate decay (discriminator): 0.0

5.2.3 Evaluation Methods

Three error measures have been used to compare CGAN-EB versus NB-EB in terms of
their performance as crash hotspot identification methods:

1. False Identification (FI) test

2. Poison Mean Difference (PMD) test

3. Mean Absolute Percentage Error (MAPE) of EB estimates

FI and PMD tests are proposed in [87] and have been specifically used for comparing
hotspot identification methods in a simulation environment where the truth is known. The
FI test calculates the number of sites that are erroneously categorised as hotspots, and the
PMD test is the mean absolute difference of the true Poisson means for true hotspots and
the hotspots identified by a method. Because we are comparing a variety of conditions
and data sets in this simulation study, a normalised version of these tests is proposed and
used. MAPE is used to compare the performance of CGAN-EB and NB-EB in terms of
the estimation accuracy for Poison mean. In numerical form, the normalized FI and PMD
tests and MAPE are as follows:
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ConcatLayer(200)

Dense(100, ELU)

X

Dense(100, ELU)

z

Dense(40, ELU)

Dense(40, ELU)

Dense(40, ELU)

Dense(1, ReLU)

ŷ

(a) Generator architecture

ConcatLayer(200)

Dense(100, ELU)

X

Dense(100, ELU)

y or
ŷ

Dense(40, ELU)

Dense(40, ELU)

Dense(1, Sigmoid)

Probability of
being real (p)

(b) Discriminator architecture

Figure 5.2: CGAN architectures. The input layer of generator includes normalized feature
vector with size of 8 and a noise value (z ∼ N(0, 1)), and input layer of discriminator
includes same feature vector and crash count (i.e. y)
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FIm =
|{hr=1, hr=2, ..., hr=R} − {xr=1, xr=2, ..., xr=R}m|

|{hr=1, hr=2, ..., hr=R}|
(5.1)

Where xr=1, xr=2, . . . , xr=R are the sites suggested as hotspots by the method m that are
ranked 1, 2, . . . , R respectively, and hr=1, hr=2, . . . , hr=R are the true hotspots that are
ranked based on the true Poisson means. R is the rank threshold that is used as a cut-off
in the hotspot identification.

PMDm =

∑
λh −

∑
λx∑

λh

(5.2)

Where
∑

λh is the sum of the true Poisson mean crash frequencies for true top R
hotspots and

∑
λx is the sum of true Poisson mean crash frequencies for the sites suggested

as the top R hotspots by method m.

MAPEm =

(
R∑
i

|EBm
i − λi|
λi

)
× 1

R
(5.3)

Where λi and EBm
i represent the true Poisson mean crash frequency and the EB

estimate of crash frequency using method m for the site with rank i, respectively.

Both FI and PMD tests have a minimum value of zero (when the method discovers all
true hotspots) and a maximum value of 1 (when none of the true hotspots are detected.

Note that for each experiment, five pairs of NB and CGAN models are trained using
five different training data sets and each model was evaluated using five separate simulated
test data sets in order to avoid potential over-fitting of models. This produced 25 test
replications for each experiment.

5.2.4 Results and Discussion

The goal of the twelve experiments presented in Table 5.1 is to compare CGAN-EB with
NB-EB in terms of hotspot identification performance (using FI and PMD) and predictive
performance (using MAPE) under different sample sizes, sample mean and dispersion pa-
rameters. This comparison for each experiment is performed using FI, PMD and MAPE
tests for 2.5%, 5%, 7.5%, and 10% top hotspots which are common thresholds of identified
hotspots reported in literature [87, 100]. Since there are 25 replications for each experi-
ment, there are 25 test results for each set of hotspots. The average of these 100 simulation
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results (i.e. 25 replications times 4 hotspot thresholds) and the percentage change in FI,
PMD and MAPE tests for CGAN-EB in comparing to NB-EB are presented in Table 5.2.
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Based on the results in Table 5.2, FI values have a range of 12% to 45%, PMD values
have a range of 1% to 15%, and MAPE values have a range of 9% to 31%. As expected there
is a general correlation between all test values meaning that the models with lower MAPE
(better predictive performance) showed better performance in FI and PMD (better hotspot
ranking). Also, the test values are lower (i.e. better model performance) in the experiments
with higher sample mean (i.e. E2, E6, E10, E4, E8, E12) as compared to the experiments
with lower sample mean (i.e. E1, E5, E9, E3, E7, E11). For experiments with the same
sample mean, those with higher dispersion produced lower errors. This observation was
expected as it has been shown that crash data characterized by a low sample mean can
seriously affect the estimation of the dispersion parameter [8]. Also, in the EB method,
larger weights are assigned to observed crash counts when sample mean and/or dispersion
parameter are large (see Equation 4.10 and 4.5). As a result, EB estimates will mostly
depend on the observed counts (especially for the top hotspots which usually experience
large observed counts when sample mean and/or dispersion is large) rather than the SPF
model predictions.

Regarding the impact of sample size, the results suggest that there is not a significant
impact on the error magnitudes. This was expected as we set the sample size close to or
greater than the minimum sample size recommended by [8] for reliable estimation of SPF
model parameters. Consequently, if we had evaluated sample sizes much smaller than the
minimum recommended sample size, we would expect to observed increases in test scores
(i.e. decreased model performance).

Regarding CGAN-EB versus NB-EB comparison, we performed a paired sample t-test
(DOF = 100, p-value = 0.05) for each experiment for FI, PMD and MAPE results. The
outcomes indicate that the difference between FI and PMD results of the two methods are
not statistically significant in all 12 experiments. Consequently, we can conclude that for
these cases, the CGAN-EB method performance is no different than the NB-EB method.
However, the improvement in MAPE for E1(7%), E5(3%) and E9(10%) were found to be
statistically significant and for these three experiments, CGAN-EB performed better than
the NB-EB.

Recall that for these 12 simulation experiments, all simulation settings were selected to
be completely consistent with the assumptions of the NB-EB method, and despite this, the
performance of CGAN-EB was at least as good as NB-EB. As a result, it is expected that
CGAN-EB performance relative to the NB-EB performance improves when the simulation
settings are changed to become less consistent with the NB assumptions. To that purpose,
we ran four more experiments (F5, F6, F7, F8 referred to as F-experiments) using the
similar simulation settings as E5, E6, E7, E8 (referred to as E-experiments) for comparison
purposes, but with a log-nonlinear functional form instead of a log-linear functional form

86



at step 2 of the simulation in Section 5.2:

λi = exp(β0 + 0.05X0.5
1 − 0.05X0.5

2 +X2
3 −X1X4 + ϵi) (5.4)

Using the same FI, PMD, and MAPE tests, the performances of CGAN-EB and NB-
EB are compared within each experiment. The results, which are presented in Table 5.3,
indicate that more significant improvements are achieved by CGAN-EB over NB-EB in
these F-experiments and in the E-experiments.

The paired sample t-test results for the FI, PMD and MAPE tests show that the
CGAN-EB model performs better (statistically significant decrease in mean test score) for
the low sample mean experiments (F5 and F7). For the high sample mean cases (F6 and
F8), the differences of the two methods were not statistically significant for 5 of the six
cases.

Comparing the test results in Table 5.3 to those in Table 5.2 it can be observed that
the performance improvement of the CGAN-EB model relative to the NB-EB model is
larger for the the F-experiments than for the E-experiments and that these performance
improvements are statistically significant for the low crash mean experiments (i.e. F5 and
F7).

These results are consistent with expectation. When sample mean crash frequency is
large, the EB network screening results are more heavily influenced by the observed site
crash frequencies and consequently, improved representation of the underlying crash data
distribution through the use of CGAN provides small improvements in network screen out-
comes. However, when mean crash frequency is small, then the accuracy of the SPF plays
a more prominent role in the network screening outcomes, and the enhanced capabilities of
the CGAN to represent the distribution of the crash data, particularly when the data do
not conform exactly to the assumptions of the NB model, provide significant improvements
in the network screening outcomes.
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In summary, the results in this section suggest that when all conditions and assumptions
are set in favor of NB-EB, then CGAN-EB performs at least as good as NB-EB. However,
when we change some of the simulation conditions such that they are not consistent with
the assumptions of the NB model (such as the functional form) the difference between
the two methods becomes more obvious and the CGAN-EB shows better performance
especially when the sample mean is low. In the next section, both models are compared in
terms of temporal and spatial transferability.

5.3 Evaluation of Model Transferability

The temporal and spatial transferablity of the CGAN and NB models were evaluated
using empirical data sets from two different jurisdictions (Peel and Niagara). We used
real-world data sets because there are numerous factors (traffic volumes, rules of the road,
network structure, enforcement, land use, driving behaviour, vehicle types and technologies,
demographics of travellers, pedestrian and cyclist volumes, etc.) that cause temporal and
spatial differences in crash data that are nearly impossible to account for in simulation.
Consequently, we selected these two jurisdictions which are quite different in terms of
traffic volume and crash counts. The following experiments were conducted to evaluate
the spatial (experiment T1 and T2) and temporal (experiments T3 and T4) transferability
of the models:

• T1: CGAN and NB models are trained using Peel data (2010-2013) and tested on
Niagara data (2010-2013)

• T2: CGAN and NB models are trained using Niagara data (2010-2013) and tested
on Peel data (2010-2013)

• T3: CGAN and NB models are trained using Peel data (2010-2013) and tested on
Peel data (2014-2017)

• T4: CGAN and NB models are trained using Niagara data (2010-2013) and tested
on Niagara Data (2014-2017)

Note that using a four-year period of data for model development is based on Highway
Safety Manual (HSM) recommendation and previous study results [56, 3].
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5.3.1 Crash Data Sets

The data consists of fatal crash records and injury crash records, traffic volumes in the
form of average annual daily traffic (AADT) for minor and major approaches of urban four-
legged signalized intersections within the Regional Municipalities of Niagara and Peel from
2010 to 2017. Both of these jurisdictions are located in south western Ontario, Canada.
The summary statistics of the data sets are presented in Table 5.4.

Table 5.4: Descriptive statistics of the data

Measures AADT (major) AADT (minor) FI Crashes per year

Peel

sites 329 329 329
mean 33746 11694 2
std 14367 10877 2.5
min 2505 24 0
25% 23868 3867 0
50% 33956 7744 1
75% 44472 15923 3
max 79071 55742 25

Niagara

sites 223 223 223
mean 14059 6145 0.7
std 6620 4249 1
min 1762 113 0
25% 9489 2821 0
50% 12959 5227 0
75% 17770 8578 1
max 63102 27518 8

FI = Fatal and injury crashes per year

5.3.2 Results and Discussion

CGAN and NB models are developed using the same procedure as done for the simulation
experiments but in this case, the training data are the observed field data. The resulting
NB models have the following functional form and the coefficients are presented in Table
5.5:
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y = exp(β1 × AADTmajor + β2 × AADTminor + β0) (5.5)

where AADTmajor and AADTminor are AADT for major and minor approaches, β1 and β2

are model coefficients, and β0 is intercept.

Table 5.5: Coefficients, dispersion parameter, and fit metrics for NB Models

Train data set Variables Coefficient (β) SE p-value

Peel (2010-2013)

β0 -11.9 0.61 0.00

β1 0.69 0.06 0.00

β2 0.6 0.03 0.00

α 0.28 0.05 0.00

Deviance 1501 na na

χ2 1610 na na

AIC 4709 na na

BIC -7928 na na

Niagara (2010-2013)

β0 -9.8 0.61 0.00

β1 0.56 0.06 0.00

β2 0.48 0.03 0.00

α 0.21 0.14 0.00

Deviance 889 na na

χ2 950 na na

AIC 1912 na na

BIC -5150 na na

SE = Standard Error, na = Not Available, α: Dispersion Parameter, χ2 = Pearson’s Chi-
Square Statistic
AIC = Akaike Information Criteria, BIC = Bayesian Information Criterion

In order to improve the model performances, the outputs of each Base SPF are adjusted
using the Highway Safety Manual calibration method which calculates the ratio of the total
observed number of crashes (N tot

obs) to the total number of crashes predicted from each model
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(N tot
pred) for each test data sets [3]:

N cal
pred = NPred ×

N tot
obs

N tot
pred

(5.6)

Mean Absolute Percentage Error (MAPE) computed across all sites in the test data
set is used to evaluate the performance of the models in each experiment using each test
data set. The results, presented in Table 5.6, show that although the CGAN model seems
to outperform NB model on average across all four experiment, the differences in MAPE
values are not considerable. These results suggests that CGAN model provides comparable
temporal and spatial transferability as NB model.

Table 5.6: Temporal and spatial transferability results for CGAN and NB models

Experiment MAPE(NB) MAPE(CGAN) % Improvement

Spatial Transferability
T1 0.58 0.59 -1.7%
T2 0.67 0.66 1.5%

Temporal Transferability
T3 0.59 0.59 0%
T4 0.66 0.63 4.5%

5.4 Conclusions and Recommendations

In this study, the performance of non-parametric empirical Bayes method based on condi-
tional generative adversarial network (CGAN-EB) is compared with the traditional para-
metric approach using negative binomial model (NB-EB) in a simulation environment.
Several experiments have been conducted, each of which include simulating the data sets
with defined parameters, fitting CGAN and NB models, and estimating EB estimates.
Then the models are compared based on their ability to detect correct hotspots (using FI
and PMD tests) as well as their accuracy of EB estimates (using MAPE). The results show
that both models perform better in cases with larger sample mean and dispersion param-
eters and their performance was not impacted by sample size (but we only examined the
influence of sample size for the range of sample size equal to or greater than the minimum
sample size recommended by [8]). More importantly, the results showed that the CGAN-
EB model provided statistically significant improvements in performance in experiments
with low sample means (sample mean of 1.5 in our study) and when the underlying crash
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data characteristics do not exactly conform to the assumptions of the NB model. These
conditions are commonly experienced in real-world crash data sets [14].

We also examined the spatial and temporal transferability of the models through the
use of a time series of crash data from two different jurisdictions. The results showed that
the CGAN-EB and NB-EB models provided similar spatial and temporal transferability
performance.

These findings are important as they suggest the CGAN-EB model is more robust than
the traditional NB-EB model in that it is able to perform as well or better than the NB-
EB model over a wide range of conditions and the CGAN-EB model provides statistically
significant improvements in performance when the sample mean is low and the dispersion
is low or when the sample mean is low and the underlying crash data do not conform
exactly to the assumptions of the NB model.

Notwithstanding these highly promising results, a number of questions remain about
the proposed CGAN-EB approach that need to be examined in the future.

1. The performance of CGAN is impacted by its configuration (e.g. architecture, size).
For all data sets in this chapter, we used a simple network architecture; however, other
types of architectures might be better options. Consequently, it is recommended to
examine the sensitivity of the CGAN-EB performance as a function of the CGAN
configuration and to determine if different configurations are better suited for different
types of network screening applications.

2. There are other approaches than NB-EB for network screening such as finite mixture
or zero-inflated models, which have been shown to be better alternatives in some
conditions [99, 101]. It is recommended to compare the performance of CGAN-EB
with such alternatives for crash data sets for which these models are more appropriate
than the NB-EB.

3. Finally, studies have shown that using hierarchical full Bayesian method outperforms
the standard EB approach in correctly identifying hazardous sites [10, 102]. Future
studies can focus on investigating how to combine this method with a non-parametric
model such as CGAN model in order to improve the network screening performance.
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Chapter 6

Crash Data Augmentation Using
Conditional Generative Adversarial
Networks (CGAN) for Improving
Safety Performance Functions
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This chapter is based on the following journal article:

Zarei, M., Hellinga, B.(2023). Crash Data Augmentation Using Conditional Gener-
ative Adversarial Networks (CGAN) for Improving Safety Performance Functions Trans-
portmetrica a: transport science.

In this journal paper I was the first author and was responsible for the writing of the
article. The paper was edited by Dr. Hellinga and Dr. Izadpanah. I also developed the
CGAN-EB and GLM-based models models using Python.
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6.1 Introduction

In the previous two chapters, we investigated using CGAN models as an alternative to
traditional models to create SPFs. In this chapter, CGAN is applied as a crash frequency
data augmentation method to address low sample issue in developing SPFs. The proposed
method is evaluated by comparing the performance of Base-SPF (SPFs developed using
original data) and Augmented-SPF (SPFs developed using original data plus synthesized
data) in terms of hotspot identification performance (i.e. False Identification (FI) and
Poisson Mean Difference (PMD) tests), accuracy of estimated long-term crash means,
crash frequencies, and dispersion parameters. The experiments are conducted using both
real-world and simulated crash data sets.

One of the main challenges in developing reliable SPFs is to have a sufficiently large
sample size, particularly as crash data sets frequently have small sample means and large
dispersion due to preponderance of zeros ([14, 90]). Excess zeros in crash data can create
difficulties when modeling and estimating SPFs, as traditional modeling approaches such
as Poisson or negative binomial regression may not adequately capture the presence of
these excess zeros. This may lead to biased parameter estimates, reduced model fit, and
ultimately, less accurate predictions of crash frequencies. Also, the desirable large-sample
properties of various parameter-estimation approaches (for example, maximum likelihood
estimation) are not achieved with small sample sizes. There are several approaches to
address this issue and increase the size of a crash data set. A common method is to use
crash data from 3 to 5 consecutive years ([103, 104, 3]). However, this approach introduces
several challenges. Annual average daily traffic (AADT) data are rarely available for all
locations for all years and the use of imputation introduces errors ([56]). Furthermore,
though increasing the number of years of data increases the sample size, it also introduces
temporal variations associated with changes in the road network characteristics, driving
behaviours, levels of enforcement, vehicle technologies, etc., that confound the underlying
SPF relationships. In addition, sometimes the network contains so few sites of a certain
type (e.g. roundabouts, ramps) that reliable SPFs cannot be developed even when expand-
ing the number of years of crash data. In this case, the common practice is to combine
two or more site types and include categorical variables within the SPF to distinguish site
type or to use an SPF developed using data from another jurisdiction.

An alternate approach, and the one that is the subject of this chapter, is to expand the
existing crash data set by augmenting it with synthesized data (i.e. data that is artificially
produced using statistical models rather than generated by real-world events).

Advances in the field of deep learning models have resulted in the creation of a suite
of generative models such as variational auto encoders (VAE) and conditional generative
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adversarial networks (CGANs) that can be used to deal with imbalance or small size
data sets. VAE and CGAN have been successfully used in the literature for preparing
balanced data sets which is critical for developing proper classification models ([105, 79,
106]). However, such oversampling methods have rarely been used for improving SPF
development as a regression model [107]. In this chapter, we propose a data augmentation
method based on CGAN and evaluate its performance using both simulated and real-world
crash data sets.

The remainder of this chapter is organized as follows. The next section presents a
background on SPFs, crash data augmentation, and CGAN. Section 6.3 describes the
proposed crash data augmentation methodology. The evaluation process and results are
discussed in Section 6.4. Finally, conclusions and recommendations for future works are
presented in section 6.6.

6.2 Background and Related Works

SPFs are regression models for estimating the average crash frequency of road segments or
intersections. Traditionally, SPFs are developed using a statistical model such as negative
binomial (NB) model including both traffic and geometric factors. An example of such
a parametric SPF based on NB model might be as follows in terms of generic functional
form ([48]):

µ = exp(β0 + β × ln(AADT) + β1X1 + β2X2 + ...+ βnXn) (6.1)

where µ is the predicted crash frequency, AADT is annual average daily traffic, X1, X2, . . .
, Xn are n roadway geometric variables, and β0, β, β1, β2, βn are the regression coefficients.

One of the main applications of SPFs is for crash hotspot identification which is also
referred to as network screening. Conventional network screening uses an empirical Bayes
(EB) approach first proposed by [19] in which the EB estimate for long-term crash mean is
calculated using a weighted average between the predicted crash frequency from SPFs and
the observed number of crashes. Then sites are ranked based on their EB estimates to iden-
tify the top hotspots for further investigation and safety improvement ([3]). Consequently,
the accuracy of SPFs can have significant impacts on network screening results which can
be converted into monetary values using societal costs of crash types ([108]). The SPF
development process can be quite challenging due to methodological issues associated with
crash data such as inadequate sample size, over-dispersion, time-varying explanatory vari-
ables, and temporal/spatial correlation to name but a few ([14]). In this chapter, we aim
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to propose a data augmentation method for improving SPFs by addressing the inadequate
sample size issue.

Crash data augmentation has rarely been used for improving the quality of crash fre-
quency prediction models (i.e. for SPF development [107]). However, there are several
works that used different methods to augment (or balance) crash data sets for classification
purposes (e.g. real time crash prediction/detection, crash severity prediction). In general,
there are four main data balancing methodologies used in the literature to handle imbal-
anced crash datasets (i.e. crash and non-crash events) including random under-sampling
of majority class ([109, 110]), random over-sampling of minority class ([111]), synthetic
minority oversampling technique (SMOTE) ([112, 113, 114]), and using deep generative
models ([105, 79, 72]).

The under-sampling method involves deleting (ignoring) records from the majority
class (typically non-crash events) such that the crash/non-crash event ratio is adequate for
developing models. However, because this approach involves ignoring a lot of data, this
can result in some information loss ([109]). Over-sampling, on the other hand, involves
randomly selecting more samples from the minority class (typically crash events) in order to
achieve the desired class ratio. However, this approach is susceptible to model over-fitting,
and consequently, this method is rarely employed in practice ([111]).

Instead of duplicating samples from the minority class, in the SMOTE method, new
samples are synthesized from the minority class. This widely used method works by uti-
lizing a k-nearest neighbour algorithm to create synthetic data ([115]). Thus, it only takes
into account the closeness of the samples and the variable correlation is not taken into
consideration. As a result, it creates the same number of synthetic samples for all original
minority classes, including those near the decision border of the majority and minority
classes, increasing the likelihood of class overlapping ([116]). Several variations of the
SMOTE method have been proposed to address these issues such as Borderline-SMOTE
([117]), Safe-Level- SMOTE ([118]), Local-Neighborhood-SMOTE ([119]), and Adaptive-
SMOTE or ADASYN ([120]).

More recent data augmentation methods include using deep generative models which are
neural network based models that are trained to represent an estimation of the underlying
distribution of data ([121]) and have been demonstrated to outperform the other three
approaches for data augmentation, overcoming their limitations ([105, 79, 72]). In a recent
work ([107]), variational auto encoder (VAE) has been employed to fit the non-zero crash
counts and generate more synthesized non-zero crash data to balance the ratio of zero-
crash to non-zero crash cases. In terms of root mean square error (RMSE) and mean
absolute error (MAE) of model estimations, the results show that crash models developed
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on balanced data from the trained VAE model outperformed the crash models developed
on original imbalanced crash data, and the the crash models developed on balanced data
from SMOTE method.

Another type of deep generative models is generative adversarial networks (GANs) that
has been widely used in various fields ([122]). In crash data modeling for instance, recent
studies ([79, 72]) have shown that real time crash prediction models based on augmented
data sets generated by GAN provided the best prediction accuracy as GAN is able to
generate data that more closely mimics the characteristics of the real data.
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G(z)

Generator

(G)

Noise

(z)

Original
samples

(X)

Fake (gener-
ator) Loss:

L(D(G(z)),0)

Real Loss:

L(D(X),1)

Discriminator Loss:
1
2 (Real Loss

+ Fake Loss)

Figure 6.1: GAN training structure

GAN includes competitive training of two neural networks (generator G and discrimina-
tor D in Figure 6.1). The generator’s goal is to generate samples from the same distribution
as the training data, and the discriminator’s goal is to determine if the data are real or fake
([123]). Since both networks are trained simultaneously based on each other’s feedback,
both networks are forced to increase their performances after each cycle. This process can
be formalized as a min-max function:

min
G

max
D

V (D,G) = Ex∼p(x) [log(D(x))] + Ez∼p(z) [log (1−D(G(z)))] (6.2)
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where p(x) is the training data distribution, p(z) is the prior distribution of the generative
network, and z is a noise vector sampled from the model distribution p(z) such as the
Gaussian or uniform distribution.

In Figure 6.1, D(X) ∈ [0, 1] is the output of the discriminator (real/fake classifier)
using real data (X) as input, and G(z) is the output of generator using noise (z) as input.
Real loss value shows the ability of the discriminator to recognize the real instances (i.e.
X), and is calculated based on D(X), unit vector (i.e. 1) and a loss function (e.g. binary
cross entropy). Fake loss shows the ability of the discriminator to recognize fake instances
(i.e. G(z)), and is calculated based on D(X), zero vector (i.e. 0) and a loss function (e.g.
binary cross entropy). In each cycle, the weights of the discriminator network are updated
based on the objective to minimize total loss (i.e. real loss + fake loss) and the weights
of the generator will be updated based on its objective to maximize fake loss. This cycle
continues until the stop condition (e.g. maximum number of epochs) is met. In an ideal
training condition, both fake loss and real loss converges to 0.5 which indicates that it
is impossible to distinguish between input real data and synthetic data because they are
samples of the same distribution ([83]).

GAN and its variants have been widely used in different transportation applications
recently including real time crash prediction ([105, 79, 124, 125]), crash frequency modeling
[25], traffic flow data prediction ([86, 85]), and autonomous driving ([126, 127]) to name
but a few. There are several GAN variants based on different architectures or loss functions
proposed in the literature ([128]). One of the popular variants is conditional-GAN (CGAN)
([83]) in which both the generator and the discriminator are conditioned on some data
which could be a class label or a feature vector if we wish to use it for regression purposes.
The goal of this chapter is to propose a crash data augmentation method based on CGAN
that can improve the performance of SPFs. The details of the method are presented in the
next section.

6.3 Methodology

Conditional generative adversarial network, or CGAN for short, is a powerful deep gener-
ative model that has seen considerable applicability in many areas in recent years. To the
best of the authors knowledge this is the first time CGAN is being used for crash frequency
data augmentation for improving safety performance functions as a regression problem. All
previous works in this area have used CGAN as a data augmentation method for a clas-
sification problem such as crash/non-crash detection and crash severity prediction. The
proposed method has two main steps. The first is to design and train CGAN based on the
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original crash data set, and then use the trained generator to generate synthesized crash
data to develop the SPF.

6.3.1 Design and Train CGAN

For crash frequency data augmentation, we used the generator and discriminator models
shown in Figure 6.2. Dense(n) in Figure 6.2 is a regular deeply connected neural network
layer with n nodes and ConcatLayer(n) concatenates a list of inputs. The first layer of
each network is an input layer. For the generator, the input layer includes a noise vector
(z) with the same size as the feature vector (X) and crash count (y) and the output is a
generated feature vector (X̂) with size of FS (feature vector size). For the discriminator,
crash counts (y), feature vector X as real feature vector and X̂ as generated feature vector
are included in the input layer. The output of the discriminator is a number between 0
and 1 indicating the probability of being a real sample for the the given input. Also the
activation functions used in the networks include Exponential Linear Unit (ELU), Rectified
Linear Unit (ReLU), and Sigmoid ([96]).

ConcatLayer(200)

Dense(100, ELU)

Crash
count y

Dense(100, ELU)

Noise
vector z

Dense(50, ELU)

Dense(50, ELU)

Dense(50, ELU)

Dense(FS, ReLU)

X̂

(a) Generator architecture

ConcatLayer(200)

Dense(100, ELU)

X or X̂

Dense(100, ELU)

Crash
count y

Dense(50, ELU)

Dense(50, ELU)

Dense(1, Sigmoid)

Probability of
being real (p)

(b) Discriminator architecture

Figure 6.2: Network architectures. The input layer of generator includes crash count (i.e.
y) and a noise vector (z) with the same size of the feature vector (FS), and input layer of
discriminator includes normalized feature vector and crash count (i.e. y)
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After randomly initializing the weights of each network, in each cycle of CGAN training,
the weights of the generator and discriminator networks are updated to minimize the
corresponding loss functions ([83]):

Loss(D) = −1

2

(
log(D(X|y)) + log[1−D(X̂|y)]

)
(6.3)

Loss(G) = − log(D(X̂|y)) (6.4)

where D(X|y) and D(X̂|y) are the discriminator outputs given feature vector X and
generated feature vector X̂ conditioned on crash count y. In an ideal equilibrium, both
loss values will be equal to − log(0.5). In this case, the discriminator cannot distinguish
between real and fake samples generated by the generator.

6.3.2 Generate Synthesized Crash Data and Develop SPFs

The generator network can be used to generate synthesized crash data once the CGAN
has been trained. A random sample from the empirical distribution of crash counts (both
crash and non-crash cases) and a random noise vector are input into the generator network
for each synthesized data point. This procedure is continued until the desired number of
synthesized data is attained. Finally, the safety performance functions are developed using
the augmented crash data set (i.e. real plus synthesized data). SPF development can be
based on any approach accessible, including machine learning and traditional parametric
models. In this study, we have used the NB model as the most common crash frequency
modeling approach. The proposed method is implemented and evaluated using both sim-
ulated and real-world crash data sets. In the next section the results of these experiments
are discussed.

6.4 Experiments and Results

6.4.1 Real-World Crash Data

The performance of the proposed crash data augmentation method is investigated in this
section using a real-world crash data set. The data, which is referred to as WA data set
throughout this chapter, include fatal and injury (FI) crash counts and traffic volumes
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of 3085 individual road segments from the Highway Safety Information System (HSIS)
collected for divided 4-lane segments from urban freeways for 2016 and 2017 in Washington
State, USA. Table 6.1 provides a summary of statistics for this data set.

Table 6.1: Descriptive statistical features of WA data set

MW (m) SW (m) AADT Length (m) Fatal Injury Crash

Sites 3085 3085 3085 3085 3085
Mean 12.2 2.6 49000 135 0.29
STD 12.7 1.1 28412 191 0.91
MIN 0.61 0.0 5082 16.1 0

25% Quantile 4.9 3.0 27385 32.2 0
50% Quantile 12.2 3.0 45875 64.4 0
75% Quantile 14.6 3.0 64507 161 0

MAX 229 7.3 178149 3250 23

Notes: MW = Median Width, SW = Shoulder Width. AADT = Annual Average Daily Traffic volume

Experiment Setup

In the first set of experiments, we investigate the performance of the proposed data aug-
mentation method across different sample sizes. To accomplish this, we draw random sam-
ples of different sizes from the WA data set and compare the corresponding “Base-SPFs”
(SPFs developed using the drawn sample) and “Augmented-SPFs” (SPFs developed using
the augmented sample) with the “True-SPF” which is defined as the SPF developed using
the entire WA data set. The sample mean is 0.29 crashes per segment per year. According
to [8], the recommended minimum sample size is 4000. The total sample size for WA data
set is 6170 observations, which far exceeds the minimum recommended sample size and
justifying treating the SPF developed on the entire WA data set as “truth”.

The WA data set is divided into a training data set containing 5000 observations (2500
sites) and a testing data set containing 1670 observations (585 sites).

For each experiment we randomly select a sample of observations from the training
data set and we vary the sample size by considering five sample size ratios (5%, 15%, 25%,
50%, and 75% of the training data set size (i.e. 5000)). For each experiment we performed
the following steps for each sample size ratio:

1. A sub-sample is drawn at random from train data set based on the given sample size
ratio.
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2. The sub-sample is used to develop Base-SPFs as well as train a CGAN model.

3. The trained CGAN is used to increase the size of the sub-sample to the recommended
sample size (i.e. 4000 data points). The set of data containing both the sub-sample
of train data set and the data observations synthesized by the CGAN model is called
the augmented training sample.

4. The Augmented-SPF is developed using the augmented training sample..

5. For each sample size ratio, these steps are repeated five times.

Model Development

The coefficients of the SPFs have been estimated using a Poisson–gamma regression model
with a fixed dispersion parameter in StatsModels [93], a Python-based module providing
different classes and functions for statistical modeling and analysis. The dispersion pa-
rameter, α is determined using auxiliary Ordinary Least Square (OLS) regression without
constant [94]. Also, dummy variables are used for median width (1: median width >= 3m,
0: median width < 3m, where 3m is determined through optimizing goodness-of-fit of the
SPF) and shoulder width (1: shoulder width > 0, 0: shoulder width = 0).

The training configuration parameters for training CGAN are set as follows:

• Optimizer: Adam ([97])
• Batch size: 100
• Learning rate (both generator and discriminator): 0.001
• Learning rate decay (both generator and discriminator): 0.001

These values are optimized through monitoring the loss function for discriminator and
generator during training process, both of which should converge to -log(0.5).

Detailed Results from A Single Experiment

This section provides a detailed examination of a single experiment before presenting the
aggregated results from all experiments for all sample size ratios. A random sub-sample
with the size of 2000 (i.e. 50% sample size ratio) was drawn from the train data set and
used for developing Base-SPF and training the CGAN. The trained CGAN is then used to
augment the sub-sample up to 4000 sample size in order to develop Augmented-SPF.

The distribution of all features for 2000 synthesized data from CGAN and the sub-
sample from train data (i.e. with the size of 2000) are presented in Figure 6.3. For all
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features, the distribution of the synthesized data closely matches the distribution of the
real data visually. To confirm this observation statistically, three tests were carried out:

• The t-test showed that for all cases, there is not enough evidence to conclude that the
mean of the feature distributions between synthesized and real data are significantly
different (p-values > 0.05).

• The Leven test showed that there is no evidence to conclude that the differences in
the variance of the distributions are statistically significant (p-value > 0.05).

• Finally, the Kolmogrove-Smirnov test showed that there is not enough evidence to
conclude that the distributions of synthesized data set and real data set are statisti-
cally different.
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Figure 6.3: Feature distributions for synthesized and real data set
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The coefficients and Standard Error (SE) for a Base-SPF and Augmented-SPF for one
single experiment with 50% sample size ratio are presented in Table 6.2 and are compared
with the coefficients and SE of the True-SPF.

Table 6.2: Coefficients and standard errors for True-, Base- and Augmented-SPFs

Coefficient Value Coefficient Standard Error
True-SPF Base-SPF Aug-SPF True-SPF Base-SPF Aug-SPF

Const. -19.9 -22.5 -23.3 0.71 1.15 0.67
MW -0.56 ns -0.37 0.12 - 0.16
SW -0.64 -0.78 -0.23 0.095 0.14 0.10

ln(AADT) 1.41 1.55 1.58 0.061 0.10 0.07
ln(L) 0.92 1.03 1.09 0.031 0.05 0.032

Dispersion 1.02 0.60 0.80 0.16 0.22 0.18

ns = not statistically significant (p-value > 0.05), Const. = model constant, Aug-SPF = Augmented-
SPF

The goodness of fit for Base-SPFs and Augmented-SPFs have been examined with
CURE plots. The CURE plot approach involves graphically observing how well the SPF
fits the data set by showing the cumulative residuals for AADT variable. The residuals are
computed as the difference between the observed and predicted number of crashes and are
ranked from lowest to greatest. In general, a good CURE plot oscillates about zero, and
the residuals do not exceed the ∓2σ bounds:

σ =

[
σ2
i ×

(
1− σ2

i

σ2
T

)]0.5
(6.5)

where σ2
i is the cumulative sum of squared residuals until the element i, and σ2

T is the total
cumulative sum of squared residuals.
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Figure 6.5: 95% confidence intervals for µ (left) and 95% prediction intervals for y and m
(right)

In addition, the 95% confidence interval for µ (Equation 6.1), and 95% prediction
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interval for y (crash count) and m (Poisson parameter which is referred to as long-term
safety ([129, 130])) for a range of AADT are plotted in Figure 6.5. The results in each
plot are based on an SPF calculated with the coefficients shown in Table 6.2, in which
annual average daily traffic (AADT) is allowed to vary (in increments of 100) between 0
and 160,000 vehicles per day (as this was approximately the range in the WA data set),
and segment length is fixed at 1 km. The remaining variables were set to the most common
value of each variable in the data set (i.e., MW = 1, SW = 1). For more information about
how to calculate these confidence and prediction intervals refer to ([129, 130]).

The following observations can be made from the results in Table 6.2, Figure 6.5 and
Figure 6.4:

• In the development of the Base-SPF, median width (MW) was not found to be
a statistically significant variable but was found to be statistically significant in the
Augmented-SPF. Furthermore, Augmented-SPF has lower standard errors than Base-
SPF for coefficient estimation.

• Based on the CURE plots for this experiment shown in Figure 6.4, the True-SPF
offered the best result, with residuals residing between the ∓2σ boundaries in about
95% of the AADT range. The percentages of in-bound residuals for Augmented-SPF
and Base-SPF are about 85% and 60%, respectively, demonstrating that Augmented-
SPF produces better outcomes.

• In terms of 95% confidence intervals for mu, as expected, the Base-SPF has the
widest range. The range for the Augmented-SPF is narrower and closer to results
from True-SPF.

• The lower bound values for the 95% confidence intervals for y and m are not shown
because all values for all SPFs, regardless of AADT, were found to be zero. Also,
Augmented-SPF was found to produce the more similar upper bounds for y and m
to True-SPF than Base-SPF.

Aggregated Results from All Experiments

The 95% confidence intervals for estimated coefficients and dispersion from Base-SPFs
and Augmented-SPFs for each sample size ratio is presented in Figure 6.6. It can be seen
that, as expected, when sample size ratio increases the estimated model coefficients and
dispersion converge to the corresponding values for True-SPF. In addition, the 95% CI of
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the Augmented-SPFs are usually narrower than the CI of the Base-SPFs which indicates
that Augmented-SPF are better models in terms of better fit to the data.
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Figure 6.6: 95% CI for estimated model coefficients and dispersion for Base-SPFs vs Aug-
mented SPFs given different sample size ratio
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Standard measures of SPF quality, such as Bayesian information criterion (BIC), Akaike
information criterion (AIC), and deviance information criterion (DIC) cannot be used to
compare the Base and Augmented models because the SPFs are developed on different
data sets [131]. Consequently, the SPFs are applied to the test data set to estimate crash
counts for each site. The estimates from the developed Base-SPFs and Augmented-SPFs
are compared to estimates from the True-SPF in terms of the mean absolute error (MAE)
and root mean square error (RMSE) which are calculated as follows:

MAEk =
1

N

N∑
i=1

|µi,k − µi,true| (6.6)

RMSEk =

√√√√ 1

N

N∑
i=1

(µi,k − µi,true)2 (6.7)

where k represents either Base- or Augmented-SPF, µi,k is the estimated crash count for
test site i by SPF k, µi,true is the estimated crash count for test site i by True-SPF, and
N is the number of test samples.
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Figure 6.7: Mean absolute error (MAE) and root mean square error (RMSE) for Base-
SPFs and Augmented-SPFs as a function of sample size ratio
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Table 6.3: Percentage change in MAE and RMSE using data augmentation

Sample size ratio
Error Metric 5% 15% 25% 50% 75%

MAE -1.7% -6.9% -12.2% -25.1% -2.0%
RMSE -2.3% -4.5% -11.2% -23.3% -7.3%

Note: Bold values represent statistically significant difference (p-value > 0.05).

The MAE and RMSE results are presented in Figure 6.7 and Table 6.3. As expected, the
magnitude of the errors reduces as sample size ratio increases as both Base and Augmented-
SPFs converge to True-SPF. Of more interest is that the errors for Augmented-SPFs are
lower than those for Base-SPFs across all sample size ratios, though the magnitude of
improvement varies. The results show that when the sample size ratio is very small or
very large, less improvement is obtained. An intuitive explanation is as follows. When
the sample size is very small, we cannot train a proper CGAN model to improve by
data augmentation or the small sample is not a good representative of the population.
Conversely, when the sample size ratio is very large (close to the recommended sample size),
reliable SPFs can be developed and therefore there is less opportunity for improvement
through data augmentation. Consequently, data augmentation can be considered when
there is enough data to train a CGAN but not enough to develop a reliable SPF. This can
be decided based on the recommended sample size given the sample mean of the data set.

6.4.2 Simulated Crash Data

In the previous section, we have shown that the proposed data augmentation method can
provide statistically significant improvements in the SPF fit and in model predictions.
However, that analysis was done for a data set with specific characteristics, notably a fixed
dispersion. In this section, we use a simulated environment to evaluate the performance
of the proposed crash data augmentation method across a range of sample mean crash
rates and dispersion parameter values. Furthermore, simulation enables us to perform
the evaluation between Base-SPF and Augmented-SPF under various scenarios while also
knowing the truth (i.e. true long-term crash mean). The simulated data sets are created
using the following three steps, which is consistent with the approach taken by previous
studies ([41, 42, 43, 25]):

1. Generate a random feature vector (X) with the size of 4 (X1, X2, X3, X4) from a
uniform distribution on [0, 1].
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2. Generate the corresponding crash count Y from a Poison distribution with the long-
term crash mean of λ that is gamma distributed with the dispersion of α:

Y ∼ Poisson(λ);

λ = exp(β0 + 0.5X1 − 0.5X2 +X3 −X4 + ϵ);

exp(ϵ) ∼ Gamma(1, α).

3. Steps (1) and (2) are repeated until the desired sample size is reached.

It is worth noting that ϵ indicates the unobserved heterogeneity that follows the log-
gamma distribution, as specified in the NB model. The sample mean is determined by β0.
As done by other studies ([41, 42, 43, 25]), we set β0 = 0.5 to represent a crash data set with
a sample mean of 1.6 crashes/year. Following the approach from these same studies, we
evaluate four values of the dispersion parameter (α = [0.5, 1.0, 1.5, 2.0]) to represent crash
data sets with low to high dispersion parameters. The sample size for these experiments is
set to 100 which is about 6 times smaller than the minimum sample size recommended by
[8] for a sample mean of 1.6. For each dispersion parameter the following steps are used
to perform the experiments:

1. A train data set with the size of 100 is simulated following the data simulation steps
given the dispersion parameter.

2. A CGAN is trained using the simulated train data set. The training configuration
parameters are set same as previous section.

3. A Base data set, Augmented data set, and Evaluation data set are separately prepared
as follows:

• A Base data set with the size of 100 is simulated following the data simulation
steps given the dispersion parameter, which is used to develop Base-SPF.

• An Augmented data set with the size of 1000 is prepared by combining base data
set and 900 data points generated using the CGAN trained in step 2, and the
Augmented data set is used to develop Augmented-SPF.

• An Evaluation data set with the size of 100 is simulated following the data
simulation steps given the dispersion parameter, and is then used to compare
the prediction performance of Base-SPF and Augmented-SPF.
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4. The two sets of SPFs (i.e. Base-SPFs vs Augmented-SPFs) are compared in terms of
the accuracy of dispersion parameter estimation, crash frequencies (over an unseen
prediction test data), EB estimates, and hotspot identification performance.

5. Repeat steps 3 and 4 for 1000 times.

The results are summarized and discussed in the following sections.

Accuracy of Dispersion Estimation

The dispersion parameter for each SPF for each Base data set is determined using auxiliary
Ordinary Least Square (OLS) regression without constant ([94]). The 95 % CI of MAE for
dispersion estimation for the Base data and the Augmented data given different dispersion
parameters are calculated and presented in Figure 6.8.
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Figure 6.8: MAE (left) and percentage change MAE (right) for dispersion parameter esti-
mates

As expected, the MAE of dispersion increases as the dispersion increases. When the
magnitude of MAE is divided by the True dispersion values, then all errors were about 30 %.
We can observe from the figure that the dispersion parameter estimation accuracy is better
(lower MAE) for the Augmented SPFs than the Base SPFs across all dispersion parameter
values. The improved accuracy was statistically significant for all dispersion values and
the percentage improvement in dispersion parameter estimation accuracy provided by the
Augmented SPF was approximately 20% across all dispersion values.
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Accuracy of Crash Frequency Estimations

The prediction performance of Base- and Augmented-SPFs are compared in terms of mean
absolute error (MAE) and root mean square error (RMSE) of the SPF predictions for
crash frequencies of 1000 prediction test data points. The results for different dispersion
parameters are presented in Figure 6.9.
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Figure 6.9: RMSE (top left), % change in RMSE (top right), MAE (bottom left) and %
change MAE (bottom right) for crash frequency estimates

As expected, crash frequency prediction errors increase as the dispersion parameter
value increases. Given that all data sets have the same crash mean, increased dispersion
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causes the data sets to contain a small number of sites with a large number of crashes and
a large number of sites with zero crash. As a result, the estimation error of the model
over data sets with higher dispersion values is increased due to the inclusion of sites with
substantially different crash counts than the mean.

But for all dispersion values, the Augmented-SPFs provide more accurate crash fre-
quency predictions than Base-SPFs. The improvement in accuracy as a percent of the
Base-SPF error ranges from 1% to 3% for RMSE and 3% to 6% for MAE. The results also
indicate that the improvement in crash frequency prediction accuracy provided by data
augmentation increases as the data becomes more highly dispersed.

Accuracy of EB Estimates

The prediction performance of Base- and Augmented-SPFs is also compared in terms of
mean absolute error (MAE) and root mean square error (RMSE) of the EB estimates.
According to the results presented in Figure 6.10, while there is an increasing trend in
both MAE and RMSE, the rate of increase for both error metrics decreases as dispersion
increases. In addition, the percentage difference between MAE and RMSE of Base- and
Augmented-SPFs decreases for larger dispersion values. This can be due to the fact that
in the EB method (Equation 6.8), as the dispersion increases, less weight is assigned to
SPF predictions and more weight is assigned to observed counts. As a result, regardless of
how much improvement in SPF is provided, the weight of SPF prediction in EB method
is relatively low for large dispersion values.
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Figure 6.10: RMSE (top left), % change in RMSE (top right), MAE (bottom left) and %
change MAE (bottom right) for EB estimates

Hotspot Identification Performance

For each test data set, the hotspot identification process is performed using both base-SPFs
and augmented-SPFs. The process includes ranking sites based on the EB estimates (i.e.
estimation of long-term crash mean λ) ([19]):

EB =
1

1 + αµ
× µ+

αµ

1 + αµ
× y (6.8)
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where µ is the crash frequency prediction from either base-SPFs or augmented-SPFs. The
hotspots suggested based on each SPF can be compared to the true hotspots (ranked based
on λ) using False Identification (FI) and Poisson Mean Difference (PMD) tests ([87]). The
FI test shows the percentage of sites that are erroneously categorised as hotspots, and the
PMD test is the relative difference of the sum of the Poisson means (λ) for true hotspots
and the suggested hotspots based on EB estimates. FI and PMD are computed based on
a given number of top hotspots. In this study, we calculate FI and PMD for the top 5, 10,
15 and 20 hotspots and then calculate the average of the four values. The FI and PMD
results as a function of dispersion parameter value are presented in Figure 6.11.
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Figure 6.11: FI (left) and PMD (right) results
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Unlike other metrics, which increase as dispersion increases, FI and PMD decrease as
dispersion increases. Furthermore, while FI and PMD values for Augmented-SPFs are
lower on average than Base-SPFs for all dispersion values, the difference becomes smaller
as dispersion increases, with only the difference at dispersion = 0.5 being statistically
significant (p-value 0.05). This is due, once again, to the fact that when dispersion is
high, most hotspots have higher crash counts with larger weight than prediction (E1. 6.8),
making the impact of SPF prediction less important.

All the results confirmed that the Augmented-SPFs outperform the Base-SPFs in al-
most all performance measures. In addition, it was found that the magnitude of dispersion
parameter appears to have an important impact on the benefit of data augmentation.
When the dispersion is high, data augmentation provides more improvements in terms of
crash frequency predictions, and when the dispersion is low, the improvements are mostly
in terms of the accuracy of EB estimates and accuracy of hotspot identification.

6.5 Limitations and Future Studies

The analysis presented in this chapter showed that crash data augmentation using a CGAN
model can provide statistically significant improvements for different scenarios in terms of
model fitting and network screening outcomes. Although the results are encouraging, there
are some limitations in the current work that should be addressed in future studies:

• Our analysis using the WA data showed that data augmentation can be effective
when the sample size is between 25% and 75% of the recommended sample size
for the sample mean. However, this optimal range could be a function of the sample
mean. In particular, there is likely some minimum number of sites required to train a
function CGAN. For example, the recommended sample size for a sample mean of 5 is
200 ([8]). Our current analysis suggests that the proposed CGAN data augmentation
method can provide benefits for a sample ratio of larger than 25% but even assuming
30% would provide only 60 sites of observed data which may not be sufficient for
developing a functional CGAN. Further studies are required to examine the minimum
sample size necessary to train a CGAN for a range of crash data characteristics.

• When the dispersion parameter is large, data augmentation is less beneficial in terms
of network screening outcomes. This result is based on the fact that less weight is
placed on the SPF prediction in the EB method for higher dispersion values, leaving
less potential for improvement through data augmentation. Other network screening
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methods, such as full Bayes, may not provide the the same result, necessitating more
investigation.

• The portion of this chapter using empirical data examined performance of CGAN
data augmentation for a single network site type, namely divided 4-lane segments
from urban freeways. It is recommended to confirm that the proposed CGAN data
augmentation method provides beneficial performance when applied to other types
of sites (intersections, roundabouts, etc.). In addition, it should be investigated if
one single CGAN can model the distribution of crash data sets for multiple different
network facility types.

• To identify the optimum structures suited for crash data sets with different size and
characteristics, it is important to explore various architecture and loss functions for
CGAN.

• Finally, the performance of CGAN should be compared to that of other genera-
tive models, such as variational auto-encoders (VAE) and Gaussian mixture models
(GMM), to determine which is best suited for crash data augmentation tasks.

6.6 Conclusions and Recommendations

SPFs are commonly used in road network safety screening to identify and prioritize crash
hotspots and to assess the efficiency of safety countermeasures. One of the challenges
for developing reliable SPFs is dealing with crash data sets with inadequate sample sizes.
Traditionally, options for addressing this problem include expanding the data set by using
more years of crash counts for each site and/or by combining site types and/or combining
crash severity types. However, each of these approaches has their own limitations.

In this chapter, a data augmentation method for crash frequency data based on con-
ditional generative adversarial networks (CGAN) is proposed, which can mimic the un-
derlying distribution of the given crash data and generate synthesized samples. Using the
generated samples, the size of the original data set can be increased to the minimum rec-
ommended sample size for SPF development purposes ([8]). The method is evaluated using
a real-world crash data set for 3085 urban freeway four-lane road segments in Washington
State USA. The results showed that data augmentation could improve the results in terms
of reducing coefficient standard error and improving the accuracy of SPF predictions. Also,
based on results from simulated crash data sets, data augmentation provides greater im-
provement in terms of the accuracy of network screening outcomes for lower dispersion
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values (i.e. less than 1). In this regard, False Identification (FI) and Poison Mean Differ-
ence (PMD) tests for Augmented-SPFs on average were improved by approximately 1-3%
and 2-6% respectively in comparing to the results for Base SPFs. Also, Augmented SPFs
showed lower mean absolute error (MAE) and root mean square error (RMSE) for EB
estimates (1-3%), and crash frequency predictions (1-3% for RMSE and 3-6% for MAE).
Finally, MAE for dispersion parameter estimation was about 20% lower on average for
Augmented-SPFs.
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Chapter 7

Conclusions
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In road safety studies, such as in network screening, the most popular approach is of
using crash predictive models (i.e. SPFs) based on generalized linear model and empirical
Bayes method to estimate the long-term safety (i.e. expected crash frequency) of locations.
As stated in the first chapter of this thesis, there are several challenges in this process,
including a lack of objective tools to determine how frequently SPFs need to be redeveloped,
how sensitive the process is to input data accuracy (e.g. AADT), limitations of generalised
linear models, and the low sample size issue. The primary objectives of this thesis are
therefore to address these challenges through developing cost-benefit analysis tools, non-
parametric EB estimation method, and a crash frequency data augmentation method. This
chapter highlights the main contributions of this thesis followed by direction for future
research.

7.1 Contributions

The four contributions of this thesis are as follows:

1. Developed a benefit-cost analysis method to investigate the sensitivity of
NS results to AADT accuracy
Conventional road safety network screening relies on measures of historical crash
data and annual average daily traffic (AADT) as a measure of exposure to develop
safety performance functions. AADT is typically estimated from short-term counts
and contains error which can negatively impact network screening outcomes and
result in the inefficient allocation of safety improvement resources. In this thesis,
we developed and proposed a simulation-based method for quantifying the monetary
benefit of improving AADT accuracy. The results of applying the method under
various conditions show that crash data sets with higher sample mean and dispersion
parameter values are more sensitive to AADT error and consequently benefit more
from improving AADT accuracy. The use of the proposed method is illustrated
through the application to a real-world example, which can help jurisdictions quantify
the benefits of investing in methods to increase AADT accuracy.

2. Developed a benefit-cost analysis method for objectively deciding whether
to redevelop or recalibrate SPFs
This research proposed a method by which jurisdictions can determine when it is
economically beneficial to redevelop SPFs instead of using recalibrated old SPFs. To
this end, extensive annual SPF development and network screening are implemented
on three data sets from three regions. It is assumed that re-development of SPFs
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using the most recently available data for the local jurisdiction provides the most
accurate NS results. In order to quantify the consequence of using outdated SPFs
instead of redeveloped SPFs, a benefit metric based societal costs of crash types are
proposed. Then, three trend measures (based on change in AADT, crash count,
time passed from last redevelopment) are introduced that are readily available for
jurisdictions and can be used to estimate benefit before actually redeveloping SPFs.
The data required for this method is either already available in municipalities which
have locally developed SPFs or can be easily estimated. The estimation models
for the method are created based on real data sets and were successfully tested on
validation data sets. The method is compared with three benchmarks (i.e. always
redevelop, always recalibrate, redevelop after 4 years), and outperformed the best
benchmark by 13% in terms of accuracy of correct decisions.

3. Developed a non-parametric EB estimation method
In this research a novel non-parametric EB method for modeling crash frequency
data data based on Conditional Generative Adversarial Networks (CGAN) is pro-
posed and evaluated over a real-world crash data set. Unlike parametric approaches,
there is no need for a pre-specified underlying relationship between dependent and
independent variables in the proposed CGAN-EB and it is able to model any type
of distribution. The proposed methodology is applied to real-world and simulated
crash data sets. The performance of the proposed CGAN-EB method in terms of
model fit, predictive performance and network screening outcomes is compared with
the conventional approach (NB-EB) as a benchmark. The results indicate that the
proposed CGAN-EB approach outperforms NB-EB in terms of prediction power and
hotspot identification tests. Also, a series of simulation experiments are devised and
carried out to assess the CGAN-EB performance across a wide range of conditions
and compares it to the NB-EB. The simulation results show that CGAN-EB per-
forms as well as NB-EB when conditions favor the NB-EB model (i.e. data conform
to the assumptions of the NB model) and outperforms NB-EB in experiments reflect-
ing conditions frequently encountered in practice (i.e. low sample mean crash rates,
and when crash frequency does not follow a log-linear relationship with covariates).
Also, temporal and spatial transferability of both approaches were evaluated using
field data and both CGAN-EB and NB-EB approaches were found to have similar
performance.

4. Developed and evaluated a novel crash frequency data augmentation method
In road safety analysis, crash frequency models (also called safety performance func-
tions or SPFs) are developed for specific crash and site types based on historical
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crash data and site characteristics. When samples sizes are small, it is frequently
not possible to develop statistically reliable SPFs. In this research, we developed and
evaluated a crash frequency data augmentation method using Conditional Generative
Adversarial Networks (CGANs) to address this problem. The proposed method is
evaluated by comparing the performance of Base-SPF (SPFs developed using origi-
nal data) and Augmented-SPF (SPFs developed using original data plus synthesized
data) in terms of hotspot identification performance (i.e. False Identification (FI)
and Poisson Mean Difference (PMD) tests), accuracy of estimated long-term crash
means, crash frequencies, and dispersion parameters. The experiments are conducted
using both real-world and simulated crash data sets. The results from real data ex-
periments indicate that the crash frequency estimation accuracy for the test data set
has improved by up to 25% when using Augmented-SPFs. Also, the standard error
associated with SPF coefficients were lower for Augmented-SPFs. In addition, the
simulation results show that, the Augmented-SPF can improve Base-SPF in terms
of FI (up to 3%), PMD (up to 6%), MAE/RMSE of empirical Bayes estimates (up
to 3%), and MAE/RMSE of dispersion parameter estimation (up to 20%).

7.2 Publications

In this section the list of peer-reviewed journal papers and conference articles emanated
from this PhD research is given.

7.2.1 Journal papers

• Zarei, M., Hellinga, B., & Izadpanah, P. (2022). A Benefit-Cost Based Method to
Determine When Safety Performance Functions (SPFs) Should be Redeveloped for
Use in Intersection Network Screening. Transportation Research Record, 2676(11),
239–249.

• Zarei, M., & Hellinga, B. (2022). Method for Estimating the Monetary Benefit of
Improving Annual Average Daily Traffic Accuracy in the Context of Road Safety
Network Screening. Transportation Research Record.

• Zarei, M., Hellinga, B., & Izadpanah, P. (2022). CGAN-EB: A Non-parametric
Empirical Bayes Method for Crash Frequency Modeling Using Conditional Genera-
tive Adversarial Networks as Safety Performance Functions. International Journal
of Transportation Science and Technology, ISSN 2046-0430.
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• Zarei, M., Hellinga, B., & Izadpanah, P. (2023). Application of Conditional Deep
Generative Networks (CGAN) in Empirical Bayes Estimation of Road Crash Risk
and Identifying Crash Hotspots International Journal of Transportation Science and
Technology, ISSN 2046-0430.

7.2.2 Conference presentations

• Zarei, M., & Hellinga, B. (2022). A quantitative method to determine when safety
performance functions used for network screening should be redeveloped. In Proceed-
ings of the Transportation Research Board (TRB) annual meeting.

7.3 Recommendations for Future Work

The following potential topics are suggested for the extension and continuation of the
research presented in this PhD dissertation:

• Investigating error characteristics in AADT data for the benefit cost
AADT sensitivity simulation method and extend it to intersections. In
the study, it was assumed that the coefficient of variation (COV) of AADT errors
is constant for all sites and that the errors are normally distributed, but further re-
search should be done to confirm the validity of these assumptions. Additionally, if
it is found that the COV of AADT errors varies as a function of the AADT or fol-
lows a different distribution, the proposed simulation method should still be used by
modifying the relevant equation. Another area for future research is the application
of the proposed method to intersections, where the AADT of both major and minor
roads are input for model development. In this context, there may be error corre-
lations that should be considered. Finally, the proposed method monetizes the cost
of inaccurate AADT values based on the average cost of crashes and the change in
Potential Safety Improvement (PSI), but does not account for variations in counter-
measure costs and effectiveness. Future research should explore ways to incorporate
these factors into the quantification of the value of improved AADT data accuracy.

• Extending the benefit-cost model for SPF redevelopment to larger data
set and different location types. One potential avenue for future research is to
further develop and refine the method presented in this thesis for determining when
SPF redevelopment is warranted. This could involve collecting more data and testing
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the method on a wider range of data sets to ensure its robustness and investigate
its generalizability to other location types (e.g. road segments). Investigating the
model’s generalizability to other location types, such as road segments, could help to
extend its applicability beyond the specific contexts in which it has been developed
and tested. This could involve adapting the model to account for different road
geometries and traffic characteristics and testing its performance on data sets from
a variety of location types.

• Developing one single large global CGAN as a crash predictive model
that can be used for different regions and all locations types. Developing a
single large global Conditional Generative Adversarial Network (CGAN) as a crash
predictive model that can be used for different regions and all locations types has the
potential to greatly improve the accuracy and efficiency of crash prediction efforts.
By leveraging a large, diverse dataset, such a model could capture a wide range of
factors that may influence crash rates and accurately predict crashes across a variety
of regions and locations types. Additionally, a global CGAN model would be more
convenient to use than having to develop separate models for each region or location
type, potentially saving time and resources. However, creating a global CGAN model
would likely require a significant amount of data and computational resources, and
there may be challenges in ensuring the model is sufficiently generalizable to different
regions and locations. Further research should explore the feasibility and potential
benefits of developing such a model. As a future study, it would also be interesting to
investigate the application of the proposed CGAN method in observational before-
after studies. This would involve using the CGAN model to predict crash rates before
and after the implementation of specific road safety interventions, and comparing the
results with actual observed crash rates.

• Examining the relationship between sample size and improvement via
crash data augmentation, as well as their local transferability. In this work,
we applied crash data augmentation to a few crash data sets with limited ranges
of sample means, namely 0.29 for real-world crash data and 1.6 for simulated crash
data. It is found that the effectiveness of data augmentation varied depending on
the sample mean. This is because data sets with lower sample means have a higher
recommended sample size, which means there are more samples available for train-
ing a better crash data augmentation model than in data sets with higher sample
means with a similar sample ratio. In other words, when the sample size is very
small, it is not possible to train an adequate augmentation model. One solution to
this issue might be using transfer learning and fine-tuning an already existing crash
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data augmentation model which is trained over a large, diverse dataset instead of
retraining it from scratch with a small data. More research might be conducted to
investigate the relationship between sample size versus performance improvement,
and the feasibility of locally transferring crash data augmentation models .
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