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Abstract

Reinforcement Learning for Robotics is a trending area of research with tremendous
potential for widescale industry adoption. To its detriment, large amounts of environ-
mental interactions are typically required by robotic agents to discover good behaviours.
In response, Hierarchical Reinforcement Learning methods are gaining traction and have
demonstrated improved learning efficiencies through employing abstractions in the learn-
ing process. Additionally, implications on safety arising from black-box agents operating in
physical environments, has generated interest in exploring explainable forms of learning.

In this thesis, we leverage a popular form of Hierarchical Reinforcement Learning,
known as the Options Framework, to address learning for tasks that may be expressed
as a sequential composition of subtasks. This form of task decomposition is prevalent
in classical approaches to many robotic planning and control applications, and offers an
avenue to segment tasks into sets of distinct and interpretable behaviors.

As our primary contribution, we propose a novel, potential-based reward formulation
and decomposition, that is conducive to subtask behavior specialization and incentivizes a
learning agent to solve the composite task, under the Options Framework. As a result, we
offer increased visibility into the actions of the agent at the subtask level. An off-policy
Maximum Entropy Deep Reinforcement Learning algorithm is developed to simultane-
ously discover relevant policies across subtasks and determine when to transition between
subtasks in an end-to-end learning scheme. Furthermore, we propose a chained option
execution model to leverage expert knowledge of the task and promote stability in the
learning of subtask transitions. Finally, segmenting agent behaviors at the subtask level
allows for the injection of expert knowledge into the action spaces of individual subtasks,
which we exploit through the use of default actions.

We demonstrate the results of our work on high-dimensional, simulated 2D and 3D
manipulator environments, for the tasks of pick-and-place and opening a door.
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Chapter 1

Introduction

The potential for the application of robots to a wide range of domestic and industrial
tasks, has attracted much research interest. Thus far, a great amount of success has
been observed for the use of robots in structured environments, such as assembly lines for
automotive manufacturing. However, progression to unstructured environments has seen
relatively slow growth. Classical approaches to control and planning in robotics often face
limitations in generalizing to diverse and complex task conditions, and have created a need
for data-driven approaches to address these challenges.

Reinforcement Learning (RL), representing a branch of machine learning, provides a
framework for solving sequential decision making tasks. Under this framework, agents in-
teract with their environment(s) to learn and exploit good behaviours in order to maximize
cumulative rewards. Learning from data curtails the need to pre-program complex behav-
iors and offers opportunities for life-long learning. In recent years, Deep Reinforcement
Learning (DRL) has proved to be a promising avenue for learning complex behaviours
from rich sensory inputs, through leveraging the expressive power of neural networks.

However, the promise of Reinforcement Learning is burdened by its own set of chal-
lenges. Sample Complexity (or Sample Efficiency), in particular, referring to the amount of
interactions needed by an agent to discover behaviors in order to reliably carry out a task
or set of tasks, is of chief concern. Robotic tasks are especially typified by high-dimensional
state representations in continuous space, which encumbers efforts to distill relevant infor-
mation from data. In contrast to other popular RL applications such as games, the results
of simulated learning may not easily transfer to the real world, necessitating learning with
hardware platforms. This imputes higher importance to the issue of sample complexity
for multiple reasons. Firstly, real world learning may be magnitudes slower in training



time as compared to simulated settings which can benefit from greatly accelerated envi-
ronment dynamics. Additionally, robot interaction with the environment exposes hardware
to increased potential for damage and deterioration. Hierarchical Reinforcement Learning
(HRL), advocated as a means of tackling the sample complexity issue, attempts to realize
learning efficiencies and better generalization by employing mechanisms for abstractions
in the learning process.

Many robotics applications, particularly in the domain of robotic manipulation, can be
represented as sequential compositions of subtasks. Classical approaches to manipulation
commonly leverage this structure to address such tasks. However, few works in Reinforce-
ment Learning exploit abstraction at the subtask level, and fewer have attempted to learn
and chain subtasks in an end-to-end learning scheme.

Explainable Artificial Intelligence (XAI) and Explainable Reinforcement Learning (XRL)
[37, 11] have been gaining prominence in research, with the aim of affording greater insight
and transparency into the decisions taken by learning agents. This is seen to be especially
important in applications with implications on safety, in particular, with robots operating
in real environments.

In this thesis, we present a framework for simultaneously learning appropriate behaviors
across a set of pre-defined subtasks and when to transition between them, in order to solve
robotic tasks which can be represented as a sequential composition of these subtasks. With
the learning of visually meaningful and interpretable subtasks, we take a step towards
fostering explainability in reinforcement learning for robotics. We leverage a popular HRL
model, known as the Options Framework [17, 30], for the foundation of our work.

1.1 Contributions

Our primary contribution is the formulation of a novel, potential-based reward scheme to
enable simultaneous learning of distinct subtask policies and transition policies between
subtasks, under the Options Framework [17]. To the best of our knowledge, this is the
first work to achieve end-to-end learning for robotic manipulation under an options-based
method, without the need for human demonstrations. Our contributions can be summa-
rized as follows:

e A novel, potential-based reward formulation and decomposition to enable cooperative
and distinct behavior learning across subtasks

e A chained options execution model for improved behavior specialization



e Use of default actions to inject expert knowledge of subtask action spaces into the
learning process and reduce the burden of exploration

e Options-based adaptation of the off-policy Soft Actor-Critic [18] (SAC) Deep RL
Algorithm with demonstrated learning for high-dimensional robotics tasks

1.2 Thesis Organization

In this thesis, we draw on developments and key observations from a number of prior works
targetting different aspects of the RL problem. The central works contributing to our
approach have largely been adapted for our problem formulation and target applications,
having previously been used in RL under different contexts.

To ensure a coherent layout of the subject matter with relevance to prior works being
clearly highlighted, we organize this document as follows:

e In Chapter 2, we provide a brief review of the fundamentals of RL. We then proceed
to discuss the central works surrounding our method. To this effect, we start with
a review of the Proximal Policy Optimization [12] (PPO) and SAC [18] algorithms
for Deep RL, two popular algorithms for on-policy and off-policy RL respectively.
Next, we discuss the nature of reward functions commonly used in RL, and focus on
a particular class of reward shaping known as Potential-Based Reward Shaping [35]
(PBRS). Subsequently, we present an overview of a simple count-based exploration
technique that allows for solving sparse reward problems. We conclude the chapter
with a presentation of the Options Framework [17, 36], and the Option-Critic Ar-
chitecture [1], the former representing a model for Hierarchical RL and the latter
providing some key results for end-to-end learning under the Options Framework.

e In Chapter 3, we formalize our problem setting and propose an approach for con-
structing subtask-focused reward functions. Furthermore, we offer the use of default
actions to reduce the burden of exploration through expert-specified abstractions of
the action space for different subtasks. Additionally, we develop an off-policy learn-
ing algorithm that may be used under our framework. Lastly, an overview of related
works is provided.

e In Chapter 4, we demonstrate the ability to learn under our framework through
simulated experiments on 2D and 3D manipulation tasks. In particular, we show-
case the ability of the agent to solve the required tasks with appropriate subtask
specialization.



e In Chapter 5, we conclude this thesis with a summary of the proposed ideas- and
results, and with a discussion of possibile avenues for future research.



Chapter 2

Background

In this chapter, we aim to set forth the fundamental knowledge that our work builds upon.
We begin with a review of key concepts and terminology in Reinforcement Learning. Next,
we provide a brief background on Deep RL, and outline the Proximal Policy Optimization
(PPO) [12] and Soft Actor-Critic (SAC) [18] algorithms, representing popular choices for
on-policy and off-policy Deep RL algorithms respectively. We then provide an overview of
the types of reward functions commonly utilized in RL works, and focus on a particular form
of reward shaping known as Potential-based Reward Shaping [35]. This is followed by a look
at Count-Based Exploration Rewards [18], a simple mechanism to encourage exploration
in sparse reward environments. Subsequently, we discuss the Options framework [17, 30],
a Hierarchical RL extension to the standard RL framework that has observed considerable
research in the last 20 years. Finally, we conclude the background material with an overview
of the Option-Critic Architecture [1] and its key results.

2.1 Reinforcement Learning

2.1.1 Markov Decision Process

A Markov Decision Process (MDP) provides a framework for modelling sequential decision-
making tasks, and in the context of RL, is often represented by the following elements:

e A set of states, S

e A set of actions, A (optionally a function of state i.e. A(s), Vs € S)
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Agent
state reward action
S, R, 4
E_‘ Rz+1 [
Se | Environment

Figure 2.1: Agent-Environment Interaction in a Markov Decision Process. Image obtained
from [15]

e Reward function, r(s,a,s’), wherer : S x A xS - R
e Discount factor, v € [0, 1), and,

e State Transition Probability Distribution, p(s'|s,a), where p: S x A — (S — [0, 1])

Under the standard RL setting, the interaction between a decision-making agent and
its environment under an MDP is illustrated in Figure 2.1. At each timestep, the agent
receives the current state S; € S from the environment, chooses and executes an action
Ay € A, resulting in a state transition to Sy ; € S in accordance to the environment
dynamics represented by the state transition probability distribution p(S;y1|Si, A;). The
agent also receives a scalar reward R;y1 = (5, Ay, Si1). Note that state representations
(for fully-observable environments) in S typically comprise of the state of the agent, the
state of additional entities in the environment and any context information associated with
the task.

Rewards serve as reinforcement signals, where the objective of the agent is to maximize
the cumulative return (sum of rewards) obtained through interacting with the environment.
The discount factor, v, is typically employed to keep the sum of rewards finite and guarantee
convergence of RL algorithms. Thus, the discounted return starting at timestep t, Gy, is
given by:

Go= > "Ry (2.1)

k=t+1

6



The sum to infinity represents the case for continuing tasks, where the agent continues
to interact with the environment forever. In practice, it is common to work with episodic
tasks, where the task terminates if the agent encounters certain absorbing states and/or
a maximum time horizon is reached. Hence, the sum of rewards has a finite number of
terms, up to the time when an episode ends.

2.1.2 Notations and Terminology

We are now ready to introduce a few key terms and concepts in Reinforcement Learning.

The objective of RL, previously defined in Section 2.1.1, can be restated as finding a
state-dependent control law or policy, that if followed by the agent, maximizes its expected
(discounted) return. A policy may be stochastic and represented by a state-conditioned
probability distribution over actions, m(als), 7 : S x A — [0, 1], or it may be a deterministic
function of state, a = u(s), pn: S — A. In this thesis, we are interested in the former class
of policies and henceforth, we shall adopt the notation 7 to represent a policy.

A Value Function, V(s), Vy : § — R, seeks to estimate the expected return as a func-
tion of state, for an agent that that follows a policy w. A simple procedure for estimating
the expected return for state s, is to average the returns (Equation (2.1)) starting in state
s across multiple episode rollouts. Section 2.1.4 introduces some nuanced algorithms for
value estimation that allow for bias-variance tradeoffs.

An Action-Value Function, Qr(s,a), Qr : S x A — R, may also be utilized to estimate
the expected return for an agent in state s which takes a particular action a in the current
step and subsequently acts according to 7.

Lastly, an Advantage Function, A.(s,a), A : S x A — R, represents the gain in
expected return afforded by taking the action a in the current state s and following the
policy thereafter, as opposed to acting purely according to the policy. Hence, we have that

Ar(s,a) = Qr(s,a) — Vi(s).

2.1.3 Bellman Equations

The Bellman equations formalize the relationships between rewards, value and action-value
functions, and policies. This forms the basis of policy evaluation in RL.

The Bellman Expectation Equations mathematically define V,(s) and Q,(s,a) as fol-
lows:



Va(s) = Ex [Rea + 7Va(Sei1)| St = ] (2.2)
. :

Qr(s,a) = Ex [Rip1 + 7Qr(Sig1, Ai1)| St = 5, Ay = a]

These equations can be expanded to produce the following recursive formulas, with r
representing the reward obtained for the state transition from state s to s’ by applying
action a:

Vo(s) = 3 n(als)Qu(s,0)

acA
Qn(s,a) =) p(s'ls, a) [r +7Va(s)]
s'€S (23)
—Zp |5, a) r+’yz d'|s)Qx (s, a")
s'eS a’eA
Vi(s) =Y m(als) Y p(s']s,a) [r +yVa(s)]
acA s'eS

Another set of equations, known as the Bellman Optimality Equations, seek to directly
express the value and action-value functions under the optimal policy (represented by *):

Vi(s) = max Q.(s, a)
Q:(s,a) = Y p(s']s,a) [r +AVi(s)]

s'eS

= Zp(3'|5,a) [r + ’ymai(Q*(s/’@/)
a’'e

s'eS

(2.4)

Vi(s) = max > p(s'ls, a) [r +Va(s))
s'eS

Note that the transition probabilities p(s’|s,a) and rewards r are not (generally) ex-
plicitly known to the agent, but rather obtained as samples after each step of interaction
with the environment. If both functions are known, it would be possible to solve the RL
problem purely by dynamic programming without any environmental interactions. A body
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of RL works dealing with World Models [17, 19] seek to do this by reserving environmental
interactions for modelling transition dynamics and reward functions, and solving the rest of
the RL problem offline. However, this is tangential to the work in this thesis. Regardless,
the Bellman equations provide a means of estimating value and action-value functions in
expectation, in the absence of direct knowledge of the transition probability distributions
and reward functions, through Equation (2.2).

2.1.4 Temporal Difference Learning

Thus far, we have seen two methods of policy evaluation; the unbiased Monte-Carlo method
of averaging returns calculated using Equation (2.1) following visits to states/state-action
pairs, and the Bellman Expectation Equations (given by Equation (2.2)). The primary
difference between these two schemes is that the latter truncates the sum of rewards by
bootstrapping on current estimates of the value/action-value functions. Temporal Difference
(TD) Learning allows us to vary the degree of truncation (via n-step TD methods), to
achieve bias-variance tradeoffs. With a low degree of truncation, policy evaluation schemes
are prone to large variance owing to stochasticity of policies and/or environment dynamics,
coupled with long episode horizons. On the flip side, large degrees of truncation inject
increasing bias into the policy evaluation scheme due to greater influence of bootstrapped
estimates.

Temporal-Difference (TD) learning incrementally shifts value estimates towards 7D
targets formed by the bootstrapping. A n-step TD target for a value function, V"¢ (S,),
is given by:

t+n

VirrEet(S,) = Z Y R 4+ 9" Va (Seqn) (2:5)

k=t+1

A TD error, §;, represents the difference between the TD target and the current estimate
of the value function:

515 — V;arget(st) - Vﬂ(St) (26)

With a learning rate «, the value function can be iteratively updated to reduce the TD
error and converge to the true function:

Va(s) « Vi(s) + ady (2.7)

9



Note that action-value functions can also be estimated via TD learning in an analogous
way. There exist a number of value estimation schemes utilizing n-step TD targets or
a combination of different n-step TD targets, but we omit these details as they are not
pertinent to the understanding of the materials in this thesis.

2.1.5 Policy Gradient Theorem

Thus far, we have seen how the performance of an agent, with a given policy, may be esti-
mated by means of policy evaluation using Monte Carlo or Temporal Difference Learning
methods. However, we also need to perform policy improvement steps to incrementally
adjust the policy of the agent in learning to maximize returns. The iterative application
of policy evaluation and policy improvement steps is referred to as policy iteration. The
Policy Gradient Theorem [16] provides a method for policy improvement that directly op-
timizes for the expected return through stochastic gradient ascent. Parameterizing the
policy 7 by 6 and defining a performance measure J(f), representing the expected return,
as follows:

J(0) = Z 11(50)Vz (0) (2.8)

S0ES

where p(-) represents the probability distribution over initial states, the key result of the
policy gradient theorem [16, 15] is given by:

Vo J(0) x E; [Vglnm(als, 0)Q(s,a)] (2.9)

In policy gradient methods, this result is applied on state-action pairs generated by
rolling out the policy 7, starting at initial states generated according to p. Importantly, this
result is invariant to transformations of Q,(s,a) through addition/subtraction of baseline
functions which are only a function of state. A common choice for this baseline function
is V(s), which is subtracted from Q. (s,a) to yield the advantage function A, (s, a). This
reduces variance in learning with policy gradient methods.

A special case of the policy gradient theorem is realized by the REINFORCE [52]
algorithm, which directly uses the observed returns G; in place of Q. (s, a). However, it is
common to maintain estimates of Q(s,a) and/or V;(s) in learning with policy gradient
methods. Such methods are known as actor-critic methods, where the actor and critic
refer to the policy and value/action-value function(s) respectively.

10



2.1.6 On-Policy vs Off-Policy RL

In the taxonomy of RL algorithms, one can classify any algorithm as on-policy or off-policy.

On-policy methods require that any updates to the agent’s current policy are derived
from states and/or state-action pairs observed under that policy. Alternatively, if a dif-
ferent behaviour policy is utilized, deviations from the agent’s current policy must be
accounted for by importance sampling. In the former case, on-policy methods usually al-
ternate between policy rollouts to generate samples, and training on the observed data.
The samples generated from each set of rollouts are discarded after the training phase. The
result of the policy gradient theorem given by Equation (2.9) is (theoretically) only valid
for on-policy samples, although practical usage has yielded success with certain off-policy
methods such as the Soft Actor-Critic (SAC) [1&] algorithm.

Off-policy methods, on the contrary, do not have such stipulations and can (re-)use
samples generated from previous versions of the agent’s policy or a behavior policy that
deviates from the agent’s current policy, without importance sampling. A replay buffer is
commonly used to store experience tuples, (S;, A, Riy1, Siv1), for each step taken in the
MDP. These experience tuples are sampled from the replay buffer to update the policy
and/or value estimates. Off-policy methods typically exhibit lower sample-complexity as
they can continue to reuse samples generated over the course of learning. However, theoret-
ical guarantees of convergence are lost with off-policy methods, and training may become
unstable. Off-policy learning represents one of the elements of the Deadly Triad [15], in ad-
dition to Bootstrapping and Function Approximation (using parameterized representations
for policies, value functions etc), contributing to potential learning instability.

2.1.7 Exploration vs Exploitation

The exploration versus exploitation dilemma represents a key issue in RL. A learning agent
needs to achieve a good balance between exploring the combined state-action space, and
exploiting what it has previously learnt. Excessive exploration can lead to the agent taking
too long to converge to a solution, whereas, too little exploration may result in locally
optimal solutions or a failure to find any solutions at all. The latter applies especially to
sparse reward tasks, where non-zero rewards are only encountered for a small subset of
states (or state-action pairs).

There exist many mechanisms to induce exploration in RL. The stochasticity (or en-
tropy) of a policy, in itself, provides a means of exploration. A policy with large entropy
will act with more diversity, which will likely lead to visiting a more diverse set of states.

11



Hence, many algorithms under the umbrella of Maximum Entropy RL or Entropy Regu-
larized RL, attempt to maximize a weighted sum of expected returns and policy entropy.

2.2 Deep Reinforcement Learning

Deep RL represents the intersection of reinforcement learning with deep learning. In Deep
RL, some or all elements of RL e.g policies, value functions, state transition probability
distributions etc., are represented using neural networks. Neural networks provide means
of learning complex input-output relationships, and are especially useful in tasks with
high-dimensional, continuous state and action spaces.

The use of parameterized representations in RL, with a finite number of parameters,
is referred to as function approrimation. As briefly mentioned in Section 2.1.6, the use
of function approximation may contribute to learning instability. Over the years, there
have been a number of advances aimed at mitigating the effects of the aforementioned
entities constituting the Deadly Triad [15], resulting in tractable algorithms for Deep RL.
Below, we review the Proximal Policy Optimization [12] and Soft Actor-Critic [18] Deep
RL algorithms, two popular works for on-policy and off-policy learning respectively.

2.2.1 Proximal Policy Optimization (PPO)

PPO [12] is an on-policy, actor-critic method that maintains and updates the agent’s policy
m(als) and value function(s) V;(s) over the course of learning. It directly optimizes for the
expected return (and optionally the policy entropy) using a modified form of the policy
gradient theorem (Equation (2.9)).

In order to promote learning stability, a number of algorithmic novelties are employed.
Central to the success of the algorithm, is the use of an approrimate trust-region formula-
tion, to limit the degree by which a policy may change over each cycle of data collection and
policy updates. This follows from a predecessor work, Trust Region Policy Optimization
(TRPO) [11], which utilizes a second-order method to implement a strict trust-region set-
ting, by imposing constraints on the Kullback-Leibler (KL) divergence between successive
policy iterates. To the benefit of improved computational speed, PPO optimizes a Clipped
Surrogate Objective [12], LY (), to achieve an approximate trust-region:

LY (0) =K, [min (MA(S, a), clip (M@) I+e1— e> Als, a)>] (2.10)

T 014 (CL|S) T 0014 (CL|S
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Note that LCUP () shares a close form with J(#) from Equation (2.9), in the absence
of the min and clip operators and with the use of the advantage function in place of
action-value function to reduce variance of the gradient estimates. The PPO method is
presented in Algorithm 1.

Algorithm 1 Proximal Policy Optimization (PPO) > Adapted from [I]
1: Input: initial policy parameters 6, initial value function parameters ¢q
2: for k=10,1,2,..do
3: Collect set of N trajectories Dy, = {7;}¥, of length T, by running policy 7 = 7(0})
in the environment

4: Compute rewards-to-go R > Equation (2.1)

Compute advantage estimates A, (using any method of advantage estimation) based
on the current value function Vj,
6: Update the policy by maximizing the Clipped Surrogate Objective:

53 min ( ool 4 crip (L') Lel- ) At>
old at|8t) 7T901d(at|5t)

TED), t=0

0
k+1 — maX |Dk’T

typically via stochastic gradient ascent.
7 Fit value function by regression on mean-squared error:

ZZ(W S¢) )

TED t=0

= ar mln

typically via some gradient descent algorithm.
8: end for

2.2.2 Soft Actor-Critic (SAC)

SAC [18] is an off-policy, actor-critic method which iteratively updates the agent’s policy
m(als) and action-value function(s) Q(s,a). The foundation of the algorithm lies in Max-
imum Entropy Reinforcement Learning [56], where the objective of the RL problem is a
combination of the expected return and policy entropy (with « as a temperature hyperpa-
rameter and H (7 (-|s)) representing the entropy of the policy):
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J(m) =E;[r(s,a) + aH(n(:]s))] (2.11)

In light of the Maximum Entropy RL formulation, a modified Bellman operator and
policy iteration method (known as Soft Policy Iteration) are utilized. In essence, the value
function is replaced by the soft value function in the policy evaluation procedure, where:

Va(8) = Eqmnio [Q(s, @) — alog(a]s)] (2.12)

Hence, the Bellman Expectation Equation for action-value evaluation transforms as
follows:

Qr(s,a) = Er [Re1 + 7 (Qn(St1, A1) — alogm(ASy)) Sy = s, Ay = d (2.13)

For the policy improvement step(s), the updated policy is derived by minimizing the
KL Divergence between the exponentiated Q-function and parameterized policy:

(2.14)

0 = inD . k
k+1 argm@m KL <7T9( |S) Zm;k (s)

eXp(Qﬂe (Sa )))

where Z, (s) represents the partition function, [ M exp(@wek (s,a))da, to normalize the
distribution.

Additionally, to foster stability for off-policy learning, a couple of algorithmic inventions
from previous works are applied. Most notably, these include the use of target networks
[33] for action-value estimation and, taking the minimum over two (or more) action-value
networks to avoid value overestimation [15]. The complete algorithm for SAC is presented
in Algorithm 2.

2.3 Rewards

We now shift our discussion to the nature of reward functions used in RL. Reward functions
can generally be categorized into one of two classes; Sparse and Dense reward functions.

In sparse reward environments, the agent only receives non-zero rewards for a small
subset of the state and/or state-action space. It is common to receive a non-zero reward
only upon the completion of a task or on achieving particular milestones within a task.
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Algorithm 2 Soft Actor-Critic (SAC) > Adapted from [2]

1: Input: initial policy parameters 0, Q-function parameters ¢, ¢o, empty replay buffer
D, Learning rates § (for Q-functions) and x (for policy), Target update parameter p

2: Set target parameteres equal to main parameters Garg1 < @1, Prarg,2 < P2

3: repeat

4: Observe state s and sample action a ~ my(-|s)

5: Execute action a in the environment
6: Observe next state s’, reward r, and done signal d to indicate whether s’ is a
terminal state
T: Store (s,a,r, s, d) in D
8 If ' is terminal, reset environment state
: if it’s time to update then

10: for j in range(however many updates) do
11: Randomly sample a batch of transitions, B = {(s,a,r,s',d)} from D
12: Compute targets for the Q functions:

y(r,s',d) =r+~(1—d) <m%1% Qs (8,0") — alog 7T9(ZL’\3')> ,a@ ~m(-]s)
13: Update Q-functions by one step of gradient descent using

1
¢i — d)i - 5V¢l§’ Z (Q¢(S, a) — y(r’ 8/, d))2 for Z:1,2
(s,a,r,s',d)eB

14: Update policy by one step of gradient ascent using

0 0-xVy—= S (min Quls.ag(s)) — alogm (@(s)ls) ) . nls) ~ mo(-ls)

—kVy— min s,ag(s)) — alogmy (Gg(s)|s ag(s) ~ mo(-|s
9‘B|S€B mm&els, ag g o (Ao ) 0 0
15: Update target networks with
¢targ,i — p¢targ,i + (1 - p)gbz for Z:L2

16: end for
17: end if

18: until convergence
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Reward Type Pros Cons

Sparse e Easy to design e Lack of reward signals can
e Low chance for reward-induced make learning difficult
behaviour bias

Dense e Rich reward signals for easier e Domain-level knowledge of task
learning required for reward shaping
e Potentially complex reward
designs

e Shaped rewards may induce
behavior bias in learning

Table 2.1: Pros and Cons of Sparse and Dense Reward Functions

Dense reward functions, on the other hand, bestow the agent with non-zero rewards
over a large portion of the state and/or state-action space. The act of designing these
dense reward functions is referred to as Reward Shaping, typically done by an expert with
domain-level knowledge of a task.

The pros and cons of each reward class is summarized in Table 2.1. Sample complexity
can be drastically improved through the use of dense reward functions, however, reward
shaping may be complex depending on the task and may inadvertently result in policy
biases induced by the expert-designed reward functions.

2.3.1 Potential-Based Reward Shaping

Potential-Based Reward Shaping [35] is a special class of reward shaping that guarantees
policy invariance under reward transformations. Hence, it offers a solution to transform
from sparse to dense reward MDPs while ensuring the optimal policy remains unchanged,
overcoming one of the typical pitfalls of reward shaping.

Formally stated, through potential-based reward shaping, we seek to transform the
MDP M = (S, A,r,v,p) to M' = (S, A,r',~,p), where r'(s,a,s") = r(s,a,s)+ F(s,a,s),
such that 7}, = 7},. F(s,a,s’) represents a potential-based shaping function based on a
difference in potentials:

F(s,a,s) =~®(s") — ®(s) (2.15)
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where ®(s) : & — R can be any function of state and is usually chosen based on the
task. Considering the undiscounted variant of this shaping function, it is apparent that
cyclic behaviour of the agent gives zero resultant reward i.e. for a state trajectory 7:
§1 = Sy = ... = 8y = 51, O _F(s,a,8) = O(s1) — B(s,) + S0, B(si1) — D(s;) = 0,
ensuring the agent cannot accrue positive rewards without making a net progress towards
solving the task. Violation of this property, where cyclic behavior may produce positive
returns, can lead to the agent learning unintended behaviours [39]. [35] offers support for
the use of undiscounted shaping functions of the form ®(s") — ®(s) even for v # 1.

2.3.2 Count-Based Exploration Rewards

We turn our attention to look at a simple method to address exploration in sparse reward
tasks.

A popular mechanism for inducing exploration in sparse reward MDPs is by augment-
ing the reward function with exploration bonuses, rewarding the agent for visits to novel
states and /or states associated with large uncertainties with respect to particular estimated
quantities. There are a significant number of exploration strategies employing this reward
mechanism, however, we review a particular approach which has observed good success in
solving sparse reward tasks and offers simplicity of implementation.

Count-based Exploration Rewards [18, 7, 13] bestow an agent with rewards based on
state visitation counts (or optionally state-action pair visitation counts). In tabular RL
settings, it is tractable to maintain visitation counts for each state. However, in high-
dimensional, continuous state spaces, a set of discretized features may be used as a proxy
of state, in computing the exploration bonuses. The discretized features, ¢(s), can be
derived from expert knowledge, learned via representation learning or obtained through
locality-sensitive hashing methods [13]. Representing the number of times a set of features
®(s) has been observed by N(¢(s)), the exploration bonus reward function r*(s,a,s’) is
given by:

(2.16)

with g € Ry representing a scaling factor for the magnitude of exploration rewards.

The reward to the agent is then given by the sum of the reward from the MDP and the
exploration bonus:
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RtJrl = T(St7At,St+1) +r+<st7At7St+1> (217>

In addition to the simplicity of count-based exploration rewards, another attractive
property is that the exploration rewards tend to zero in the limit with infinite exploration,
and the original MDP is recovered. This ensures that (sufficiently) trained policies will be
optimal with respect to the original MDP.

2.4 Options Framework

Hierarchical RL represents the notion that learning efficiencies can be achieved through
“decomposition of an RL problem into a hierarchy of subproblems or subtasks such that
higher-level parent-tasks invoke lower-level child tasks as if they were primitive actions”
[22]. This allows learning at different levels of abstraction, and is seen as a means of
addressing Bellman’s Curse of Dimensionality [3, 22].

The Options Framework [17, 36] presents a model for Hierarchical RL that attempts
to realize potential learning efficiencies through the use of temporally-extended actions (or
macro-actions). Under this framework, macro-actions are represented by a set of options
2 := {w}, where each option embodies a policy that may be executed for some period of
time before switching to another option/policy. An option w = (Z,, 7, 5,) is comprised
of three elements:

e Initiation Set (Z,,): Z, C S refers to the set of states over which the option may be
invoked

e Policy (m,): The policy that is utilized by the agent to output actions, when an
option w is active

e Termination Condition (f,): A state-dependent probability distribution 5,(s), 5, :
S — [0, 1], under which the option stochastically terminates

The interaction between the agent and the environment under the Options Framework
is as follows. At time ¢, an action is sampled from the policy of the currently active option,
a; ~ m,(+|st), and executed in the environment. A state transition to s;.; is observed,
upon which the option terminates with probability 3, (s;+1) or continues with probability
1 — Bu(s441). If the option terminates, another option may be invoked in accordance to its

18



Time —

MDP State

SMDP

Options »/\ /\},
over MDP A

Figure 2.2: The trajectory in the MDP is comprised of small, evenly spaced, discrete-
time state transitions while the SMDP contains irregularly spaced, option transitions at a
coarser temporal resolution. Figure obtained from [17]

initiation set and a policy over options, mg(w|s), which may be learnt. If an explicit policy
over options is not learnt, a greedy or e-soft policy (or any other arbitrary policy) acting
on the value estimates of all options may be used to select a new option.

An MDP acted upon by a set of options, produces a Semi-Markov Decision Process
(SMDP) [38, 47]. This can be graphically seen in Figure 2.2. The presence of a two
level hierarchy can be observed, with the option transitions occuring at a coarse temporal
resolution and state trajectories being generated at finer regular intervals in accordance
with the option active at each point in time.

Learning in the SMDP necessitates the introduction of additional Bellman-like equa-
tions for value learning at the option level. Since the choice of option represents a higher-
level "action”, a Value Function over Options Vq(s) and Option-Value Function Qq(s,w)
are introduced [17]. Additionally, an Option-Value Function Upon Arrival [17, 1], Ug(s,w),
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is used to denote the value of a state-option pair immediately prior to deciding whether to
terminate or continue with the current option for the given state:

Ua(s,w) = (1 = B(s))Qals, w) + Bu(s)Vals)

(
This allows for the specification of the Bellman Expectation equivalents for Vi (s), Qq(s,w
and optionally, the value of executing an action a under a state-option pair Qq(s,w,a) |

2.18)

)
]:

Va(s) = ) ma(wls)Qa(s,w)

weN
Qa(s,w) = Z m.(als) Zp(s’|3, a) [r+yUq(s', w)] (2.19)
acA E/GS P
Qﬂ(zwva)

Similarly, the Bellman Optimality equivalents may be defined, but we omit these details
as they follow in a straightfoward manner from the above. In the following section, we will
see how end-to-end learning under the Options framework may be realized using policy
gradients.

2.5 Option-Critic Architecture

The Option-Critic Architecture [1] provides policy gradient theorems [16] for the end-to-end
learning of option policies 7, (or intra-option learning) and option termination conditions
B, Yw € €, to directly optimize for expected returns. An explicit policy over options, mq,
may also be learnt under this scheme [24]. This framework operates on the call-and-return
option execution model, whereby an option w may be picked using a policy over options
o and, primitive actions are then sampled and executed from the option policy 7, until it
terminates according to 3, which is probed at each step during the lifetime of the option,
upon which the procedure is repeated. A key assumption under this architecture is that
all options may be executed in any state i.e. Z, = S, Vw € €.

In the following subsections, we present the policy gradient theorems employed to opti-
mize the option policies and termination conditions, and subsequently depict an algorithm
which demonstrates learning under these developments. Henceforth, we parameterize the
option policies by a set of parameters # and the termination conditions by a set of inde-
pendent parameters .
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2.5.1 Intra-Option Policy Gradient Theorem

Here, we describe the policy gradient theorem formulation for optimizing the intra-option
policies, m, ¢ Yw € 2.

For the policy gradient theorem under the standard RL framework, the objective to
maximize is given by Equation (2.8). In light of the developments and notations introduced
by the Options Framework [17, 30], the re-stated objective to be maximized with respect
to the distribution of initial states and options, u(sg,wp), is given by:

J(0) = Z 11(S0, wo) Qa(s0, wo) (2.20)
S0ES
woEN
The gradient of this objective function [, 21] is then given in expectation by:
Vo J(0) < Ergor 5, [Volnm, g(als)Qa(s, w, a)] (2.21)

Variance reduction for learning with intra-option policy gradients can be achieved
through subtracting Qq(s,w) from Qq(s,w,a) in Equation (2.21), similar to the utilization
of V(s) as a baseline function for policy gradients in the standard RL framework.

2.5.2 Termination Gradient Theorem

Now we look at a policy gradient theorem for learning termination conditions, 3,4 Vw € €.

The objective function to be optimized for the termination condition is expressed a
little differently compared to its intra-option policy counterpart, and is given by:

J(0) =Y puls1,wo)Ual(s1,wo) (2.22)

S1ES
woEN
Both the intra-option policy and termination gradient objective functions are consistent
with each other and focus on maximizing the expected reward. The reason for a modified
objective function is because the termination condition never acts on the initial state s,
and is invoked for the first time on the successor state produced from acting according wy
and starting in state sg.

The policy gradient for the termination condition [, 21] is given by:
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Vo (V) < Brg iz, 6, [= Vo Bup(s)Aa(s, w)] (2.23)

Aq(s,w) = Qals,w) — Vals)

The appearance of the advantage function over options is a direct consequence of the

derivation of the termination gradient theorem. It’s role in the policy gradient can be

interpreted as follows; if the option-value of a particular option in a given state exceeds the

value function over all options for that state, then the expected reward can be improved
through lowering the termination probability of the option for that state.

2.5.3 Algorithm

Consolidating both of the results from the intra-option policy gradient and termination
gradient theorems, a practical algorithm from [1] is presented in Algorithm 3. Note that
in this algorithm, the policy over options, mq, is represented by an e-soft choice over the
option-value functions.

2.5.4 Option Degeneracy

Option Degeneracy [1, 20, 21] represents an area of concern in end-to-end learning with
options. This refers to a collapse in learning, where the agent may learn to quickly ter-
minate all options, in the extreme case utilizing any option for only one timestep. While
short-lived options may still yield solutions to the task at hand, it goes against the main
idea behind options, which is to acquire reusable sets of temporally extended skills (also
known as Option Discovery).

Value Estimation uncertainty [20, 21] has been identified as a major contributor to
the option degeneracy problem. Over the course of learning, the agent has to build up
option-value estimates, Qq(s,w), for all options. However, termination gradients (Equa-
tion (2.23)) acting on noisy/biased estimates in the computation of Aq(s,w) can result in
option degeneracy and derail the learning process. To exemplify why this might happen,
we consider the following scenario.

All options may share similar option-value estimates, especially in the early stages of
training. This can result in an effectively random policy over options and little change
in the termination probabilities for all options (since Qq(s,w) ~ Vq(s), Vw € Q). As
a consequence, all options may be short-lived, especially if the agent is initialized with
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Algorithm 3 Option-Critic with tabular intra-option Q-learning > Obtained from [/]

1: s < Sg

2: Choose w according to an e-soft policy over options mq(+|s)

3: repeat

4: Choose a according to 7, (+|$)

5: Take action a in s, observe s',r

6: 1. Options Evaluation:

7: d 71— Qaqls,w,a)

8: if ¢’ is non-terminal then

0 6 0+ (1= Bu())Qa(s',w) + flp(s') max Qa(s', @)|

10: end if
11: Qal(s,w,a) + Qq(s,w,a)+ ad

12: 2: Options Improvement:

13: 0 < 9"—@9%9(‘1‘5)@(2(8,&},@)

14: Y9 — 0419—65“52(8/) (QQ(SI, w) — VQ(S’))

15: terminate ~ Bernoulli(3,,4(s"))

16: if terminate then

17: choose new w according to e-soft(mq(-|s'))
18: end if

19: s s

20: until s’ is terminal
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an (approximately) unbiased termination probability of 0.5 for all states and options. As
previously mentioned, bootstrapping using TD learning with a high degree of truncation
(since we may only experience consecutive rewards for any option over a single step or
a small number of steps) can make it difficult to correct for bias from the boostrapped
estimates. Hence, the agent may get entangled in a web of noisy value estimates that
prevents it from experiencing any option for an extended period of time and building
better value estimates.

Harb et al. [20] propose the use of deliberation costs, a reward penalty (n € R.g)
incurred by the agent every time an option terminates, to encourage prolonged option use
in the face of noisy value estimates. The termination gradient is accordingly changed to:

Vo (0) X Erg m, 5, [=VoPuw(s) (Aals, w) +1)] (2.24)
where 77 may be interpreted as a margin [20]. However, learning may be highly sensitive to
the hyperparameter 1, which can be difficult to tune [21]. Harutyunyan et al. [21] present

the Termination Critic, where the objective of the termination condition(s) is to compress
or reduce the entropy of states in which options can terminate. They demonstrate that
their approach produces options with more intuitive behaviours and option terminations
are directed into a small number of states. However, the compromise is that the option
termination behaviours no longer attempt to directly optimize for rewards, and hence, are
not consistent with the objective of option policies i.e. the agent has potentially competing
interests. Additionally, the approach of [21] requires estimation of additional functional
entities in comparison to [, 20], making it less appealing for learning in complex domains
due to the introduction of additional sources of variance/uncertainty.
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Chapter 3

Sequential Task Learning

In this chapter, we begin with a description and formalization of our problem setting, with
the premise of learning for tasks which can be broken down into a sequential composition
of subtasks. Subsequently, we present our Options Chain model and a novel reward formu-
lation that allows for learning distinct and cooperative policies for each subtask, in order to
solve the entire task. Next, we introduce the idea of default actions which can reduce the
burden of exploration by leveraging expert knowledge of the subtasks comprising the task.
Then, we introduce and emphasize the importance of entropy regularization in the learning
of termination conditions. An option-based variant of the off-policy SAC [18] algorithm
with policy and termination condition entropy regularization is presented, that can learn
under our framework. Finally, we conclude this chapter with a quick look at some relevant
works and final remarks on our methodology.

Before laying out our methodology, we re-iterate the goals of this work. We wish to
develop an explainable and hierarchical reinforcement learning agent for robotic tasks.

Explainability refers to transparency into the behavior of reinforcement learning agents,
which is needed for safe and predictable use of RL in real-world applications. Conventional
reinforcement learning agents are often represented by monolithic neural network policies
that are difficult to introspect. A major concern with contemporary deep learning models
(both in RL and the broader Al space) is that generated explanations for the behaviors of
these models are often not intuitive to end-users of these systems [37, 1], which we aim
to rectify through this work.

The use of hierarchy, on the other hand, has been shown to improve sample efficiency
in RL. Sample efficiency is a core issue in Reinforcement Learning, and is particularly
important in the robotics domain, where reduced learning interactions translate to reduced
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costs of operation and mitigation of potential damage to robots and their environments.
While there exist many approaches to HRL, we utilize the Options Framework [17] to
realize the combined goal of hierarchy and explainability.

The insight that we build upon is that many robotic tasks, especially in robotic ma-
nipulation, can be represented as an ordered sequence of subtasks. This, in turn, offers
an opportunity to leverage the Options Framework, where we can specialize each option
towards a particular subtask. Decomposition of robotic tasks into distinct subtasks is a
common feature of classical approaches to robotics, and promotes explainability into the
behavior of the agent. So the question that we attempt to answer over this chapter is “How
to specialize each option towards a particular subtask (and do it well) while simultaneously
learning all subtask policies and transitions between subtasks?”.

3.1 Problem Setting

In this work, we aim to solve a long-horizon task by breaking it down into a chain of se-
quential subtasks (collectively represented by €2), where all subtask policies and transitions
between subtasks are simultaneously learnt. We represent each subtask by an option, such
that an agent learns distinct policies and termination conditions specific to each subtask
in the chain. In a similar vein to the Option-Critic Architecture [1], we assume that the
initiation set for all options spans the entire state space i.e Z, = S, Yw € (.

We extend the definition of an option to include an option-specific reward function
R, (s,a,s’) and (optionally) an option-specific action space A,, such that m, : & x A, —
[0,1], yielding w = (Z,, 7y, fu, Ru, Ay). The use of option-specific rewards allows for
learning behaviors relevant to each subtask while the use of option-specific action spaces
may allow for a reduction in the size of the action-space for subtasks, where appropriate,
reducing the total amount of exploration needed in solving the entire task. For our work,
we rely on an expert to specify the option-specific reward functions and action spaces.
Works that attempt to learn action space manifolds [3], may potentially be employed to
learn these action spaces instead.

3.2 Options Chain Model

For a sequential task, it is natural to chain subtasks, such that each subtask along the chain
completes a particular portion of the task and enables successful behaviour for subtasks
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Figure 3.1: Options Chain Architecture for Sequential Task Learning
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further along the chain. Using a lifting task with a robotic arm as an example, the task
may be broken down into reaching, grasping and lifting subtasks, where each stage needs
to be successfully completed in the respective order to finish the task. To this effect, we
propose an Options Chain to represent the agent, as illustrated in Figure 3.1 (by the dotted
box).

In the Options Chain model, each m; Vi € {1,2,..., N} represents a policy for one of
N subtasks and each termination condition §; Vi € {1,2,..., N} represents a probability
distribution according to which the agent stochastically transitions to the next subtask in
the chain. Notably, this architecture also allows for transitions (through Sy) from the last
subtask back to the first subtask. This provision is made to the benefit of both training and
testing stages. During training, especially in the early phases, the agent may pre-maturely
transition to successor subtasks/options along the chain. The ability to circumnavigate
the chain of subtasks allows the agent to resume interactions with the appropriate subtask.
Additionally, during testing time, catastrophic failures in behaviour for a subtask along
the chain that leads to loss of progress for prior subtasks, can be elegantly handled by
repeating a traversal of the options chain. In the context of the aforementioned lifting
task, an example of a catastrophic failure might be the dropping of an object during the
lifting phase, thereby eradicating any progress made during the reaching and grasping
subtasks in addition to the lifting.
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Corollary 1 (Options Chain Termination Gradient Theorem). With the utilization of the
Options Chain architecture, the termination gradient theorem (as given by Equation (2.23)
for the Option-Critic Architecture) is now given by:

Vo (0) % Eng s, [=VoBus(s) (Qals,w) — Qals,w'))] (3.1)

where w’ corresponds to the option that immediately succeeds option w in the chain.

Proof. The change in the termination gradient theorem comes from the replacement of
Va(s) with Qq(s,w’). However, both these quantities are equal for a fixed, deterministic
policy over options given by mq(w’|s,w) = 1, that arises from the rigid, sequential structure
of the Options Chain model.

The new form has a equally intuitive interpretation as the original termination gradient
theorem given by Equation (2.23); if the value of an option w in a given state s, exceeds the
value of the next option w’ in the same state, then the termination probability of option w
in state s should be lowered, and vice versa.

To justify the use of the Options Chain Architecture over the Option-Critic Architecture
[1], we ask the following question.

What benefits might using a chain of options provide over the ability to pick
any option?

e With a pre-defined execution order for options, we no longer require learning an
explicit policy over options, mq

e Learning of good/robust policies in RL requires exposing an agent to both good and
bad states [I1]. Pre-mature transitions out of a subtask ensures that all successive
options get to experience the bad states at least once as the agent attempts to traverse
the Options Chain back to the appropriate subtask

e In line with the previous argument, a pre-mature transition out of a subtask requires
at least NV environment interactions to arrive back at the correct subtask. Hence, the
agent may incur a significant loss of rewards as a result of any pre-mature subtask
terminations. In turn, this can provide the agent with more robust learning signals
for termination conditions
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3.3 Reward Formulation

In many Options-based works [1, 24, 20], it is common to generate a reward for each agent
interaction using the same reward function, regardless of the option utilized. However,
this may yield trained options that lack intuitively meaningful behaviours and distinct
skills. Additionally, learning may result in option degeneracy in the absence of algorithmic
novelties, as previously noted in Section 2.5.4.

In order to encourage option specialization/discovery, a number of heurisitic methods
have historically been employed. A popular line of thought has been to identify bottle-
neck states [31, 5] from demonstrations or during learning, through the construction of
state transition graphs and application of graph partitioning and clustering methods. The
bottleneck states act as subgoals to create subgoal-driven options. The subgoals, in turn,
allow for the specification of pseudo-reward functions where entsagen are rewarded for at-
taining these subgoals. The construction and decomposition of state transition graphs for
continuous state-spaces presents a more difficult problem than discrete state-spaces [5].

Instead, we propose the use of reward functions that can express the reward for a
task using a set of potential and gating functions (defined below), which in turn may be
decomposed to form option-specific reward functions to encourage behaviour specialization.
We begin with the follow definitions.

Definition 1 (Potential Function). A bounded, continuous and positive-valued function
of state, ®(s) : S — Ry

Definition 2 (Gating Function). A binary function of state, g(s) : S — {0,1}

Definition 3 (Feasible Set for Gating Functions). A set of states S; for a gating function
gi(s) st gi(s) =1, Vs € §;

Definition 4 (Congruent Gating Functions). For any pair of gating functions (g;, g;) with
corresponding feasible state sets S; and S; respectively, the gating functions are congruent
itSNS; #0

In manipulation tasks (and many robotic applications), potentials/rewards for partic-
ular subtasks (e.g. reaching) may be naturally represented via distance-based functions in
Euclidean space. However, it may be difficult to design continuous-valued potential /reward
functions for subtasks such as grasping without inducing significant expert biases in be-
haviour. On the other hand, it may be reasonably easy to verify if an object is grasped
given the state of the environment e.g. through force-closure conditions, and hence allow
the condition to be expressed via a gating function.
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A reward function for a task may be described using a combination of potential and
gating functions corresponding to a set of subtasks. We consider a particular form of
composing these functions to design a reward potential for the overall task, which we refer
to as the Composite Task Potential.

Definition 5 (Composite Task Potential). Consider an arbitrary, ordered set of potential
and/or gating functions, corresponding to an ordered sequence of N subtasks, given by
{f1, f2, .-, fn} where any f;, i € {1,2,..., N} may be a potential or gating function. The
composite task potential, ®,q(s), is then given by the following program:

function COMPUTECOMPOSITETASKPOTENTIAL(state s)
q)task(s) A fN(S)
fori=N-1,...,1do

if f; is a potential function then
q)task(5> — fz(s) + (btask(s)
else if f; is a gating function then
q)task(3> < fz(s) : CI)task(s)
end if
end for
return P, (s)
end function

Assumption 1 (Congruent Gating Function Set). Any pair of gating functions used in
Definition 5 are congruent.

We note that acting under Assumption 1 may restrict the class of sequential task
problems that can be addressed using this reward model (in the absence of appropriate
modifications to the task state-space). To illuminate this statement, we consider two
variations of the task illustrated by Figure 3.2, and detailed in Table 3.1 and Table 3.2.

For the sake of understanding, without loss of generality, we can assume that the form
of the potential functions is given by ®; = 1.0 — tanh(d,(s)), where d;(s) corresponds to
the distance between the robot and the switch (corresponding to that subtask). When the
switch is in the required state, we can set d;(s) to zero, to avoid invalidating the potential
associated with reaching a particular switch, as the robot moves to other locations at later
times during the task execution.

For Scenario 1 (Table 3.1), we can express the composite reward potential using Defi-
nition 5 as follows:
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Potential /Gating Feasible Set

Subtask Function
Move to Switch 1 b, -
Turn on Switch 1 go Switch 1 ON
Move to Switch 2 D4 -
Turn on Switch 2 g4 Switch 2 ON
Move to Flag b5 -

Table 3.1: Sequential Task Example: Scenario 1

Potential/Gating Feasible Set

Subtask Function

Move to Switch 1 P, -
Turn on Switch 1 92 Switch 1 ON
Move to Switch 2 D4 -
Turn on Switch 2 g4 Switch 2 ON
Move to Switch 1 b5 -
Turn off Switch 1 96 Switch 1 OFF

Move to Flag oz -

Table 3.2: Sequential Task Example: Scenario 2
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CI)task, Scenario 1(3) = <D1(5> + 92(s> : (CDS(S) + 94(5) : (I)5(S))

— By(5) + ga()B(s) + ga(5)9a () (5) (3:2)

Through Equation (3.2), we can see that in order to access any potential from turning
on Switch 2 (through g4(s)), we also need Switch 1 to be on (i.e. ga2(s) = 1). Additionally,
the potentials corresponding to moving towards Switch 2 and the Flag are not available to
the agent until the necessary switches have been turned on. Thus, we are able to capture
the sequential nature of the task in the formulation of the task potential.

We can attempt to follow the same approach for Scenario 2 (Table 3.2) below:

(I)task, Scenario 2(3) = (I)l(s) + 92(5> ' (CDS(S) + 94(5) ' (@5(8) + 96(5) : @7(8)))

— D1(5) + 92(5)Ds(5) + 92(5)9a() D (5) + 92(5)0a ()96 (5)Br(s) )

However, it is immediately clear that the pair of gating functions (g2, g¢) have mutually
exclusive feasible sets since Switch 1 cannot be on and off for any given state. Hence, we
have a pair of incongruent gating functions that violate Assumption 1. Since go(s)gs(s) =
0,Vs € §, we cannot access any potential for gg or ®;, and therefore, the agent has no
incentive to turn off Switch 1 or move towards the flag. In effect, the agent needs to be
able to discern the progress along a task as a function of the current state alone, which
cannot be achieved in the presence of incongruent gating functions. Modifications to the
state-space can resolve such issues. For example, the state-space may be augmented with
a history of particular events (e.g. previous activations of switches) occuring during task
execution which may in turn be directly used by the gating functions.

Having established the form of the composite task potential, we are still left with the
task of deriving subtask-specific rewards for the agent. As previously noted in Section 2.3.1,
the use of rewards expressed as a difference in potentials disincentivizes cyclical behaviour
and otherwise induces no behaviour biases (in the undiscounted case) for the learning
agent. Hence, we can express the reward obtained across the entire task from a single
agent interaction, as a difference in the composite task potential over the state change
induced by the agent’s action i.e. R(s,a,s’) = Ppask(s’) — Prask(s). Using the task potential
from Equation (3.2) as an example, the reward can then be expressed in its expanded form
as follows:
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Switch 1 Switch 2

Figure 3.2: Sequential Task Example. Robot has to turn switches on/off in a defined
sequence and head to the flag (Depicted: Task Scenario 1 from Table 3.1). Illustrations
obtained from Vecteezy.com

Ris.a.s) = [Bi(s) + ga()Bs(s') + gals')ga(s )0 (5")]
— [B1(5) + 92(5)Ba(s) + g2(5)g(5) B ()]
' ga(5)®3(5)]

= [01) = 2]+ [0a()Ps() — a(5)2s(5)

- (3.4)
Ri(s,a,s’) R2+3(s a,s’)
+[92(5)ga(s") @5 (s') — g2(5)ga(5) D5 (s)]
R4+5E;a,s’)

As per Equation (3.4), we have decomposed the task reward into a sum of potential
differences (indicated by Ry, Ro.3 and Ry, 5 where the indices correspond to the respective
subtasks) of the constituents of the composite task potential. However, thus far, we have
decomposed the reward for the five stage task (based on Table 3.1) into a set of three
reward functions corresponding to the first, second + third, and fourth + fifth subtasks.
We can go a step further in decomposing the Rs,3 and R4.5 reward functions through
some algebraic manipulation:
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Ryi3(s,a,5") = ga(s") @3(s") — ga(s)P3(s)
=l

92(8") = 92(5)] P5(5) + g2(s") [P3(s") — D3(s)] (3.5)
Ra(s,a,s’) R3(s,a,s)

Rays(s,a,5') = ga(s")ga(s')P5(s") — g2(5)ga(s) P5(s)
= [92(5)9a(s") — 92(5)ga ()] P5(s) + g2(5")ga(s) [B5(5) — P5(s)]  (3.6)

(.

R4(5 a,s’) Rs(s,a,s’)

Interpreting the form of Ry(s,a,s’), the transition from a state s ¢ Sy to s’ € Sy provides
the agent with a reward of ®3(s). Conversely, the agent will be penalized for the reverse
transition. For Rs(s,a,s’), the agent will accrue reward based on the difference in poten-
tial of @3 as long as the subsequent states remain in the feasible set of go. Definition 6
acting under Assumption 2 formalizes the decomposition of the reward functions into the
subtask-specific reward functions. Assumption 2 is stipulated to allow for the algebraic
manipulation in the decomposition of reward functions seen in Equations 3.5 and 3.6.

Assumption 2 (Consecutive Gating Functions). For an ordered set of N potential and/or
gating functions, { f1, f2, ..., fn}, there exist no consecutive gating functions in the ordered
set

Definition 6 (Subtask Reward Functions). Under the ordered set of N potential and/or
gating functions, {fi, fa,..., fn}, constituting the Composite Task Potential of Defini-
tion 5, the reward function for a subtask i € {1,..., N} is given by the following program:

function SUBTASKREWARDFUNCTION(subtask i, state s, next state s’)

gcombined(5> +—1
gcombined(sl) «— 1
for j=1...i-1 do
if f; is a gating function then
gcombined<3) — fj (S) : gcombined(s)
gcombined<5/> < fj(sl) : gcombined(sl)
end if
end for
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if f; is a potential function then
Ri(sa a, S/) A gcombined(s/)(fi<8/> - fz(‘S))
else if f; is a gating function then
gcombined(s — fz(s) : gcombined(s)
gcombined<3/) — fi<3/> : gcombined<3/>
k<+i+1
if f; is a potential function then
Ri(s,a,s") <0
while f; is a potential function do
Ri<87 a, 8/> — Ri(sa a, Sl) + (gcombined(sl) - gcombined(s>) fk(s)
k< k+1
end while
else
Ri(s7 a, Sl) — gcombined(sl) - gcombined(s)
end if
end if
return R;(s,a,s’)
end function

Lastly, we attempt to answer the following question, “If an agent acts using the pol-
icy of an option ¢ (or subtask i), is it sufficient to reward the agent with the subtask
reward (generated via Definition 6) of that option alone?”. In short, the answer is no.
This is because during the execution of an option ¢, the agent may attempt to maximize
it’s cumulative reward by inducing negative progress for other subtasks without incurring
penalities. This may allow the agent to recover undone progress on the other subtasks and
add to its total reward. As an example, during the subtask to press Switch 1, the agent
may be incentivized to move away from the switch, so that it may collect the reaching
reward associated with moving towards the switch again at a later time. To discourage
such behaviour, we propose the following reward scheme:

Definition 7 (Reward Scheme). For a set of subtasks 2 = {1,2,..., N}, the reward for

acting in accordance to a subtask/option policy w € € is given by:

R(s,a,s' ,w) = Ry,(s,a,s") + Z min (R, (s,a,s’),0) (3.7)

w'F#w
w'eN

Under Definition 7, we penalize the agent for any loss of rewards induced in other
subtasks when attempting to act within a given subtask. This makes it impossible for the
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agent to accumulate extra rewards through the aforementioned behaviour. Furthermore,
the agent is not rewarded for inducing positive rewards in other subtasks, in order to
promote behavior specialization for each option towards its assigned subtask.

3.4 Default Actions

To reduce the burden of exploration, we may also inject expert knowledge into the action
spaces of any options. For example, we may require the gripper to be open during a
reaching subtask and have it always close during the grasping subtask. Therefore for any
option, we can specify a known function to output certain elements of the action space
(thus restricting the option to a modified action space A, C A), and have the option policy
learn the remaining action elements. In the extreme case, all action elements for a given
option may be specified through a function, obviating the need to learn an explicit option
policy. We refer to the expert-defined elements of the action spaces as default actions.

We note that this approach to learning may prevent the agent from realizing the optimal
policy. In the aforementioned example, the optimal policy may involve the gripper closing
as it approaches the target object, during the reaching subtask. The use of a default
action which attempts to keep the gripper open over the reaching option can restrict
such behaviour. However, similar to the use of discretized control schemes [19, 31] in
reinforcement learning, default actions may provide a suitable tradeoff for optimality in
favour of sample complexity by limiting exploration in certain action dimensions.

3.5 Entropy Regularization of Termination Conditions

In previous works, the learning of termination conditions is generally dealt from the per-
spective of maximizing returns only. However, we argue that entropy regularization of the
termination condition can play a significant role in learning.

To elucidate our argument, we assess the effect of biased option values in learning.
Consider an option w and its adjacent option w’ (in the Options chain) in a given state
s. Assume the option value Q(s,w) has a positive bias while the true value of Q(s,w’)
is known, and where the true values of Q(s,w) and Q(s,w’) are equal. Based on Equa-
tion (3.1), the termination probability of option w, f,(s), should (rightly) decrease since
Q(s,w) > Q(s,w’) based on initial option-value estimates. Over the course of learn-
ing, we can expect the option-value Q(s,w) to converge to its true value. However, as

36



the option-value converges, the change in the termination probability goes to zero (since
Q(s,w) — Q(s,w’)). Therefore, the termination probability remains biased in favour of
option w despite the true option-values being equal, with irreversible damage occuring due
to the initial bias in option-value estimates. This effect may be especially apparent in the
case of sequential subtasks, as we can expect that option-values for subtasks further along
the chain will take longer to converge to their true value estimates. This is because the
nature of such tasks requires the agent to develop good policies and value estimates for
earlier subtasks before it is able to adequately address subsequent subtasks and observe
relevant state distributions.

We contend that entropy regularization of the termination conditions provides a means
of addressing this shortcoming, through attempting to maximize a weighted sum of the
expected return and entropy of the termination condition. Hence, we modify the objective
of the original termination condition from Section 2.5.2 to include the entropy objective,
with the hyperparameter a playing a role akin to the temperature hyperparameter in
Equation (2.11):

J(0) = Brg 0 [0H(Bo0(5)) — Bow(s)Aals, w)] (3-8)

Note that the result from sampling a termination condition can be represented as a
Bernoulli random variable i.e. sampling from the termination condition can result in one
of two possible discrete events, continuing or terminating the corresponding option. Hence,
the entropy of the termination condition is simply given by:

H(Buw(s)) = = [Bu(s)10g fun(s) + (1 = fuw(s)) log(l = fuu(s))] (3.9)

The entropy is maximized with 3, 9(s) = 0.5. Hence, in the absence of any value
advantage from pursuing a given option, the new termination condition objective will shift
the termination probability towards the unbiased probability of 0.5.

3.6 Sequential Soft Option Actor-Critic (SeqSOACQC)
Algorithm

To accomodate the developments of our work, we build on the SAC [18] algorithm to offer
an off-policy method for learning under our framework. We note that there are precedents
to the implementation of the SAC [18] algorithm for option-based learning [29, 30].

37



We propose our algorithm from the perspective of operating under the Options Chain
model (Section 3.2), with associated modifications to the termination gradient equation
given by Equation (3.1), and the reward formulation from Section 3.3. Additionally, we
incorporate entropy regularization of the termination conditions (Section 3.5) and include
the possibility of utilizing default actions (Section 3.4) in these algorithms. Another source
of differentiation in our algorithm stems from avoiding the estimation of Q(s,w) Vw € €,
and only estimating Q(s,w,a). The procedure for generating data from agent rollouts in
depicted in Algorithm 4.

Algorithm 4 Collect Rollouts
1: for t=0...T-1 do

2: ar < [Tu,,0(5t), Guy defautt (St)] > Combine learnt and default actions
3: Sep1 ~ P(-]se, ar)
4: Tev1 < Ruy (86, e, 841) + D wrz min (Ruy (8¢, ag, S¢41), 0) > Section 3.3
w'eN
5: terminate ~ Bernoulli(f,,.9(St4+1))
6: if terminate then
T: wir1 < Next option in Options Chain
8: else
9: Wi < Wy
10: end if
11: if 54,7 is terminal then
12: dt+1 +—1
13: else
14: dt+1 +—0
15: end if
16: end for
Li et al. [29] introduce an SAC-style [1&] method for option learning, called the Soft

Option Actor-Critic (SOAC), and demonstrate the utility of off-policy maximum entropy
deep RL in improving the sample complexity for option-based learning. Additionally, they
perform entropy regularization of a high-level option selection policy, analogous to our
approach of entropy regularization of the termination conditions. Lobo et al. [30] present
a similar method to [29], attempting to maximize a weighted sum of the returns and,
entropies of the option policies and the policy over options.

Under our maximum entropy formulation, we attempt to optimize the following objec-
tive:
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J(G 19 gw ﬁﬁ Z 7 Stv Aty St41, Wt) + ath(Trwt 6 |3t + Z Y ’fwt Bwt ﬂ(St))
we t—0 _
(3.10)

where o, and &, represent the temperature parameters for the (action) policies and ter-
mination conditions respectively.

The form of the option-value function is accordingly described by:

=Y mulals) Y p(s'ls, a){R(s,a, 5", w) + a,H(muo(|s)) +

acA, s'eS

VM (Bop(s) + (1 = Buo(s))Q(s", w) + B (s)Q(s, )]}
(3.11)

Hence, we express the option-value function upon arrival by:

U(s,w) = kM (Buw(s)) + (1 = Bus()Q(s,w) + Buw(s)Q(s, o) (3.12)

Similar to the relationship between the value function V,(s) and action-value function
Qx(s,a) in [18], we establish the following relationship between Q(s,w) and Q(s,w,a):

Q(s,w) = Equr, [Q(s,w, a) + aH(m,(als))] (3.13)

Put differently, Q(s,w,a) can be expressed using the following recursive form:

Q(s,w,a) = Zp '|s,a){R(s,a, s’ ,w)+

s'eS

’Y[ﬁwH(ﬁw,ﬁ(S/)) + (1 - ﬁw,ﬂ(sl))Q(3/7w> + ﬁw,ﬁ(S/)Q(Sla w/>]}

R(s,a,s ,w)+
_E ( )

VweQ 7[’%7'[(&,19(3’)) + (1 . 6w719(8,))Q(8/,w) ‘f’ﬁw,ﬂ(S/)Q(S/,w/)] (314)

In our algorithm, we employ a critic to estimate Q(s,w,a), using Equation (3.14) to
generate target values for Q(s,w, a) and minimizing a mean squared error loss between the
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estimated and target values. As in the Option-Critic architecture [1], option policies are
optimized through maximizing Q(s,w), which can be evaluated through Equation (3.13).
Similarly, the termination conditions are optimized through maximizing U(s,w), as ex-
pressed in Equation (3.12). Additionally, we compute critic estimates for the termination
conditions from the target critic networks as opposed to the main critic networks. As
argued by prior works employing hierarchical policy structures and off-policy algorithms
[28], the learning of lower-level policies requires a degree of stationarity in the higher-level
policies of the hierarchy, which we achieve by utilizing the smoothly changing (through ex-
ponential averaging) target critic networks in the computation of Equation (3.12). Under
the options framework, this higher-level policy is represented by the termination conditions
(and a policy over options, if one is utilized).

As in the SAC algorithm [13], to promote stability, two target networks are employed
to derive targets for the critics. Additionally, the option policy entropy is estimated using
the negative log likelihood of the actions (in the absence of a closed form expression for
the policy entropy) i.e. H(m,(als)) = Euur, [~ logm,(als)]. Our complete algorithm is
presented in Algorithm 5.

3.7 Relevant Works

In addition to the preceding cited works, we highlight some other works that have at-
tempted learning through task decomposition, and have provided inspiration for our method-

ology.

The idea of chaining options has support from prior works in Skill Chaining, where “the
goal of each skill in the chain is to enable the agent to reach a state where its successor
skill can be successfully executed” [25]. In these works [25, (], a sequence of options are au-
tonomously constructed backwards from a goal state, where the initiation and termination
sets of adjacent options in the chain overlap. However, we opine that due to the back-
chaining procedure employed in these works, their application has been largely restricted
to navigation tasks where it is feasible to construct valid agent states leading to a goal. In
manipulation tasks, due to interaction of the agent with objects in the environment, such
an approach appears infeasible.

Our work shares similar ideas with the Max-(Q) Value Function Decomposition frame-
work [13], which leverages expert knowledge to decompose a task into a hierarchy of sub-
tasks and defines pseudo-reward functions for each subtask. Additionally, it leverages
state/action abstractions for sub-tasks to improve learning efficiencies. However, it also
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Algorithm 5 Sequential Soft Actor-Critic (SeqSOAC)

1: Input: Option set 2. Initial parameters 6 (policies), ¢; and ¢y (option-action-
values/Q-functions), ¥ (termination conditions). Actor and Termination Condition
Entropy coefficients «,, and &, respectively, and Default actions a, gefauit(-) Yw € €.
Empty replay buffer D. Target update parameter p

2: Set target parameters equal to main parameters Quarg 1 < @1, Prarg2 < P2

3: repeat

4: Perform single rollout step (i.e. T'= 1) using Algorithm 4

5 Store (wi, St, g, Ti41, St41, A1) in D

6 for w € Q2 do

7 if it’s time to update option w then

8 for j in range(however many updates) do

9 Sample a batch of transitions generated by option w, B, =

{(s,a,r,s',d)}, from the replay buffer D
10: Compute targets for the Q functions using r, d and s’ from B,,:

(1= Buw(s)) LIE%I% Qrarg. (8w, @) — vy log 7Tw79(d|8,):| +
N N
Uﬁ(w, S ) - Bw,ﬂ(sl) {min Q¢targ,i(sl’ w/’ d,) — ay log 7rw/79((~z'|s')] +

i=1,2
"{wH(ﬁw,ﬁ (5/))

with @~ ma(|8), @ ~ T o(-]s)

11: Update Q-functions by one step of gradient descent using

1
V@B_ Z (Q@(S,W,CL) - y(W,T’7 Sl7d>>2 for 22172

“ | (s,a,r,s',d)€B,
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12:

13:

14:

15:
16:
17:

Update option policy by one step of gradient ascent using

Veﬁ (gi% Qs (s, w,a9(s)) — o, logm,e (d9(3)|s)> L ag(s) ~ Tuel-ls)

sSEB,

Update option termination condition by one step of gradient ascent using
the values of Ug(w, s') calculated for samples in Line 10:

xPILCE

s'eBy,

Update target networks with

¢targ,i — (1 - p)¢targ,i + p¢z for 22172

end for

end if
end for

18: until convergence
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requires the expert to partition the state-space for each sub-task into 2 disjoint spaces,
where the sub-task either continues with probability 0 or terminates with probability 1.
While such a scheme may be feasible for discrete space tasks, application to continu-
ous space tasks may be difficult, particularly in regards to the specification of explicit
goal /termination states for sub-tasks.

There have also been attempts at Hierarchical Reinforcement Learning for manipulation
tasks, which we review below.

Graph-based approaches leveraging sub-task structure learnt from demonstration data
[32, 27, 26] have been successfully employed for manipulation tasks in previous works, albeit
only for generating manipulator trajectories without any grasping actions. Graph-based
methods seek to construct options through discovery of sub-task structures via clustering
methods operating on demonstration data. In these works [27, 26], however, transition
regions between options identified from the demonstration data remain fixed over the
training of the individual options, and effectively break the problem into a number of
disjoint Markov Decision Processes (MDPs). This makes the RL agent vulnerable to out-
of-distribution task contexts in regards to the demonstration data, and the use of fixed
transition regions precludes the ability for RL to overcome such scenarios through further
learning.

In another approach to HRL for manipulation, Stulp et al. [11] decomposed a pick-
and-place task into a sequence of subtasks and subsequently trained a sequence of two
Dynamic Movement Primitives (DMPs) [10] to complete the overall task through simulta-
neous learning of the shaping parameters for the primitives and the goals for each primitive.
One primitive was utilized to move towards the object and a second primitive to transport
the object to the final location, with the grasp and release operations occuring at the com-
pletion of the respective primitives. By their own admission, the object was chosen due to
ease of grasping and the orientation of the end-effector used in their experiments was fixed
over both primitives.

In regards to explainable HRL for manipulation, Beyret et al. [9] developed a two-level
hierarchical model, with a higher level policy outputting subgoals for a lower level policy
that learns to control the robot to achieve the given subgoals. The visualization of the
subgoals leading to the goal offer explainability to the behavior of the RL agent. Under a
similar policy structure, Gupta et al. [16] used a combination of imitation learning and RL
fine-tuning to learn multi-stage tasks in a kitchen simulation environment. Both of these
works represent realizations of a competing HRL approach to the Options framework,
known as Feudal Reinforcement Learning [12, 51].
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3.8 Final Remarks

Having delineated our methodology in the previous sections, we remark on some elements
of our approach.

The reward formulation described in Section 3.3 utilizes differences in potentials to form
the reward function. However, in Section 2.3.1, it was noted that complete elimination of
expert bias in the specification of reward functions can only be attained with the inclusion
of the discount factor v by expressing the difference in potentials by v®(s") — ®(s). We
recognize that the inclusion of the discount factor may result in practical complications
with learning. For example, consider that a particular action a does not result in any
change of state i.e. s = s, for any state s € S. This will result in a loss of reward
equal to (1 —v)®(s). However, since ®(s) is higher for increasingly optimal states under
a subtask, the agent will get penalized more in such states. Hence, the inclusion of the
discount factor may deter the agent from making progress during learning. Additionally,
we contend that the amount of bias that is introduced in the learning problem through
our reward formulation will likely be minimal, as it is common to utilize discount factors
close to one in most reinforcement learning problems.

There may be questions surrounding the nature of the neural networks used for learning
policies, option value functions, and/or termination conditions across all options. Partic-
ularly, should parameters be shared between the different options? The practitioner may
choose any approach, however, in some instances it may be beneficial to create indepedent
networks for each option. This is because certain elements of the state space may only be
pertinent to some options/subtasks and not others. For example, the position of the target
location in a pick-and-place task is not important to the subtasks of reaching and grasping
the object. Hence, using separate networks may allow for state space reductions that can
improve sample complexity in learning.
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Chapter 4

Experiments

To validate our methodology developed in Chapter 3, we perform simulated experiments
for manipulation tasks in 2D and 3D domains. We break down these manipulation tasks
into sets of sequential subtasks and design appropriate reward functions based on the
formulation from Section 3.3.

We recognize that most prior options-based works operate under grid-world, arcade or
locomotion environments [, 24, 20, 21]; thereby exhibiting little applicability to real-world
use cases in the robotics domain, especially for robotic manipulation. This motivates our
choice of environments, along with the fact that most manipulation tasks have a clear se-
quential structure to allow for task decomposition. Also, of note, is the fact that the chosen
environments do not constrain the posture of the end-effector for the manipulation tasks
or artifically open/close the gripper at speeds inconsistent with real hardware platforms,
which is commonly seen in many reinforcement learning works [10, 9].

Since the primary contribution of this work is a subtask-focused reward formulation
and decomposition, we first attempt to assess the ability of the proposed reward scheme
to incentivize the agents to solve the composite tasks. With the composite task potential
acting as a proxy to the progress made along a task, we can use it to quantify the extent
to which any agents are able to solve a given task.

Recalling our goals of a hierarchical and explainable RL agent for robotic tasks, in
this chapter, we seek to evaluate the extent to which these goals are achieved. Note
that hierarchical learning is automatically achieved through the nature of our formulation
presented in Chapter 3, building on the HRL approach offered by the Options Framework.
However, the aim of hierarchy and any concomitant mechanisms to learning that it affords
(e.g. default actions, state abstractions, option execution models etc.) is to improve the
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sample efficiency in addressing the given tasks. To this end, we utilize a conventional
SAC agent to serve as a benchmark in evaluating the sample efficiency of our agents over
the training regime, again, using the composite task potential as a measure of the progress
made along the tasks. For the SAC agent, since we do not use any options (or alternatively
we can interpret it as using a single option, with no termination condition, for the entire
task), we express its reward function as the difference in composite task potentials seen
over the state transitions i.e. R(s,a,s) = Ppaek(s’) — Prask(s). Additionally, to ensure a
fair comparison, we utilize the same count-based reward bonuses (detailed below) as for
our options-based methods, to induce appropriate exploration of the state space.

Next, with the aim of evaluating the explainability of our agent, we seek to deter-
mine if our options-based agents that specialize at the subtask level, partition the tasks
appropriately and utilize the options in a discernible manner over the execution of the
tasks. Moreover, with the proposal of our Options Chain model (Section 3.2), we compare
option utilization behaviors between the option execution models represented by our Op-
tions Chain model and the Option-Critic Architecture [1]. Note that our reward scheme
reflects the subtask specialization requirement in its design. Thereby, the returns gener-
ated by these agents also serve as a good indicator of their ability to specialize and yield
explainable agents.

We briefly reiterate the similarities and differences between the two option execution
models. The primary difference lies in the nature of the option invocation. Under the
Option-Critic model, upon the termination of an option, another option is picked using
a policy over options. In comparison, for the Options Chain model, the agent is strictly
required to pick the option in the chain that is immediately adjacent to the terminated
option (refer to Figure 3.1 for the visualization of the Options Chain). Speaking to the
similarities between the models, we utilize the same algorithm, with minor differences
arising from the nature of the option invocation, and we utilize default actions in both
implementations for a fair comparison. The output of both models remains the same
i.e. for N subtasks/options that are specified, the agent learns N distinct policies, N
termination conditions and N critics to estimate Q(s,w,a) Yw € Q.

For the implementation of the Option-Critic baseline, we utilize the same algorithm
and hyperparameters as for our Options Chain model. The policy over options, mq(+|s), is
represented by a softmax distribution over option values. Accordingly, the value function,
Va(s), is estimated using ) ., Ta(w|s) (Q(s,w, a) — a,, log m,(a|s)) and appropriately uti-
lized in Lines 10 and 13 of Algorithm 5. Additionally, we omit the use of termination
condition entropy regularization, since the agent might otherwise be incentivized to keep
the termination probabilities close to 0.5, as the policy over options can simply re-pick the
same option upon termination.
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Figure 4.1: Manipulator Environment with bring_ball task from the DeepMind Control
Suite [50]

For all experiments, we utilize independent feedforward neural networks for the learning
of actors, critics and termination conditions, for all options.

4.1 DeepMind Control Suite Manipulator

The DeepMind Control Suite [50] provides a collection of 2D and 3D simulation envi-
ronments for reinforcement learning research. In particular, we look at the manipulator
environment with the bring_ball task. Under this setting, a planar, redundant manipula-
tor (with four arm joints and a single gripper joint) operates using joint torques in a 2D
environment under gravity, with the aim of picking up a ball (free to roll around) and
transporting it to a specified goal position. A visualization of the environment can be seen
in Figure 4.1.

Under the original task formulation, the agent is only provided a dense reward depen-
dent on the distance between the ball and the target location. Additionally, the agent is
initialized with the ball in the gripper for 10% of all task initializations, and with the ball
at the target location in another 10% of the initializations. We modify this task, employing
our own reward formulation and initializing the ball on the ground, away from the gripper,
100% of the time.

During training, the time limit for each episode is set to 500 timesteps. Additionally,
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no terminal states are used i.e. all episodes run for 500 timesteps, regardless of whether or
not the ball has reached the target location.

4.1.1 Subtask and Reward Formulation

We decompose this task into 3 distinct subtasks; reaching, grasping and placing. We define
potential functions for each of the reaching and placing subtasks, and a gating function
for the grasping subtask that indicates a successful/failed grasp. The form of the potential
functions is given by:

®(s) = 1.0 — tanh (arctanh <\/md(s)>) (4.1)

scale

where d(s) corresponds to the distance between the gripper and ball for the reaching
subtask, and the distance between the ball and target position for the placing subtask. A
scale value of 0.8 is used for both subtasks. Additionally, we use multipliers of 25 and
100 to scale the ranges of the potential functions for the reaching and placing subtasks
respectively i.e. @reacn(s) = 25P(s) and Ppjace(s) = 100D (s).

For the grasping subtask, the feasible set of the corresponding gating function, ggrasp(s),
encompasses all states where the ball is sufficiently close to the center of the gripper and
the gripper is adequately closed.

The resulting composite task potential is given by:

(I)task(s) = CI)reach(s) + ggrasp(s)q)place(s) (42>

and the subtask specific reward functions, generated according to Definition 6, are thus
given by:

Rreach(57 a, S/) = (I)reach(sl) - (I)reach(s)
Rgrasp (5, @, 8") = (Jgrasp(s") — Garasp(5)) Lplace(s) (4.3)
Rplace<87 a, 8,) = ggrasp(s/) ((I)place<3/) - q)place(s))

Since the reward for the grasping condition is sparse (non-zero only for transition of
state into or out of the feasible set), we additionally augment the grasping reward with
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a count-based exploration reward, as given by Equation (2.16) with £ = 10.0. A set of
hand-engineered features with appropriate discretization are utilized for count tracking.
This set of features consist of:

1. Distance between the gripper and the ball, discretized uniformly using 20 intervals,
on a (base-10) logarithmic scale between 0.01m and 0.1m

2. Angle of the gripper, discretized in 10° intervals between (—m, 7]

3. Distance between the gripper fingertips, uniformly discretized between Om to 0.08m,
in intervals of 0.008m

4.1.2 Default Actions

In order to reduce the burden of exploration, we utilize default actions for each of the
subtasks.

For both the reaching and placing subtasks, we restrict the agent to learning joint
torque actions for the four arm joints, while specifying the value of the gripper joint torque
action. For the reaching option, the gripper joint torque action is set to the maximum
opening torque, while the placing option applies a moderate closing torque only if the
object is already grasped (and no torque otherwise). For the grasping option, all elements
of the action space are specified, applying no torque on the arm joints and the maximum
closing torque on the gripper joint, and thus we do not learn an explicit option policy for
the grasping subtask.

Note that no default actions are utilized for the SAC benchmark, as this scheme only
seems to be exploitable under an options-based worked where different neural networks are
utilized for each subtask.

4.1.3 State Representation and Abstractions

In Table 4.1, we list the observations available from the environment. Note that while the
gripper of the manipulator is actuated using a single joint torque, the gripper is actually
comprised of four joints.

As previously mentioned, separate feedforward neural networks are employed in the
learning of the actor, critic(s) and termination condition for each option. Accordingly, this
allows for the specification of different subsets of the complete state space to be utilized
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Size Description

Manipulator arm joint positions 8 sin(#), cos(6)
gripper joint positions 8 sin(6), cos(6)
arm joint velocities 4 w (radians/s)
gripper joint velocities 4 w (radians/s)
gripper touch sensors 5 Axial force
hand pose 4 X, Z, qW, qy

Object object position 2 X, 7
object orientation 2 qw, qy
object velocity 3 VX, VZ, WY

Target target position 2 X, Z
target orientation 2 qw, qy

Total 44

Table 4.1: State Space for bring_ball task of the manipulator domain from the DeepMind
Control Suite [50]

as inputs to these networks. Tables 4.2, 4.3 and 4.4 details the elements of the state
space used in the actors, critics and termination conditions respectively, for each of the
options/subtasks.

For the SAC benchmark, as is conventional, the agent is represented by a single actor
and critic network. To make as fair of a comparison as possible with our option-based
methods, the states fed into the actor and critic networks are the cumulative states used
across all the actors and critics of the option-based methods respectively.

4.1.4 Hyperparameters

Again, in light of using separate neural networks for the actors, critics and termination
conditions across the options, we need to define the sizes of the neural networks and
other hyperparameters associated with the learning of these components. We list the
hyperparameters utilized for each of the actors, critics and termination conditions in Tables
4.5, 4.6 and 4.7 respectively.

Additionally, the hyperparameters used for the actor and critic network in the SAC
implementation is given by Tables 4.8 and 4.9 respectively.
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Reaching Grasping Placing

arm joint positions
gripper joint positions
arm joint velocities
gripper joint velocities
gripper touch sensors
hand pose

object position

object orientation
object velocity

target position

target orientation

XX X X LN XX NS
XU X XX X XS

Table 4.2: State-Space Abstractions for Actors in 2D Manipulator Task

Reaching Grasping Placing

arm joint positions
gripper joint positions
arm joint velocities
gripper joint velocities
gripper touch sensors
hand pose

object position

object orientation
object velocity

target position

target orientation

XAUXXSNIUXXSCSNSN
XWX X LN X X X X
XU X X LN X XX

Table 4.3: State-Space Abstractions for Critics in 2D Manipulator Task
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Reaching Grasping Placing

arm joint positions
gripper joint positions
arm joint velocities
gripper joint velocities
gripper touch sensors
hand pose

object position

object orientation
object velocity

target position

target orientation

X X X X LXK NN X
X X X X LN X X X X
X X X X LN X X X X

Table 4.4: State-Space Abstractions for Option Termination Conditions in 2D Manipulator
Task

Reaching Grasping Placing

Hidden Layers [200,100] - [200,100]
Activation Function ReLU - ReLU
Learning Rate be-4 - be-4
Entropy Coefficient (a,) le-4 - le-3

Table 4.5: Hyperparameters for Actors in 2D Manipulator Task

A discount factor of v = 0.98 is used in computing the returns for all agents.

4.1.5 Results

To validate the ability of our reward formulation to incentive the options-based agents to
address the composite task, despite individual options only being offered rewards for their
respective subtasks, we evaluate the maximum composite task potentials seen by these
agents over the course of training. These quantities refer to the maximum composite task
potential that is seen over the execution of any given episode, since the composite task
potential acts as a proxy for the progress made along the task. In Figure 4.2, we see
that both the Options Chain and Option-Critic architectures, operating under the same
reward formulation, are appropriately motivated to maximize the composite task potential
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Reaching Grasping Placing

Hidden Layers [300,200] [300,200] [300,200]
Activation Function ReLU ReLU ReLU
Learning Rate 3e-5 3e-5 3e-5
Smoothing Constant (7) 5e-3 5e-3 5e-3

Table 4.6: Hyperparameters for Critics in 2D Manipulator Task

Reaching Grasping Placing

Hidden Layers [200,200] [200,200] [200,200]
Activation Function ReLLU ReLU ReLU
Learning Rate oe-T7 Se-T7 oe-T7
Entropy Coefficient (k,) 5e-1 be-1 Se-1

Table 4.7: Hyperparameters for Termination Conditions in 2D Manipulator Task

Hidden Layers [200,100]
Activation Function ReLU
Learning Rate Se-4

Entropy Coefficient (a,) 1le-3

Table 4.8: Hyperparameters for SAC Actor in 2D Manipulator Task

Hidden Layers [300,200]
Activation Function ReLU
Learning Rate 3e-5

Smoothing Constant (7) 5e-3

Table 4.9: Hyperparameters for SAC Critic in 2D Manipulator Task
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over the course of training. Note that the SAC benchmark which directly optimizes for
the composite task potential through its reward function, also attains a similar level of
performance towards the end of the training regime. This offers support for the claim that
our options-based reward scheme is consistent with the primary goal of solving the task. It
should also be noted that the upper bound for the composite task potential is 125, based
on the formulation described in Section 4.1.1.

To evaluate any benefits in sample efficiency from the use of our hierarchical RL agents,
we again refer to Figure 4.2. We note that the conventional SAC agent proves to be
more sample efficient in the early stages of training, but is outpaced as learning proceeds.
Comparing the sample efficiency of the agents in reaching their peak task potentials, the
Option-Critic architecture exhibits the best performance, followed by the SAC and Options
Chain agents showing a similar level of performance.

However, the goal of the (options-based) reward formulation is two-fold; the first being
to solve the composite task and the second being to utilize appropriate options for different
aspects of the task (i.e. explainability /behavior specialization). Our reward formulation,
as described by Definition 7, penalizes errant behaviours. It does so by not allowing the
agent to claim rewards if the utilization of a wrong option induces progress along the task,
and penalizing the agent for undoing progress in other subtasks when operating under a
given subtask/option. In Figure 4.3, we show the rewards obtained by the agent over the
course of training under both option models. It is seen that the Options Chain model is
able to generate higher returns compared to the Option-Critic model, towards the latter
stages of training. With comparable levels of proficiency in solving the composite task as
seen in Figure 4.2, we can attribute the higher returns seen by the Options Chain model
to better behavior specialization.

To visualize the behavior exhibited by the agents operating under both models, we
execute the final trained agents under both option models, over a test episode of 150
timesteps. We show in Figure 4.4, the nature of the option utilization and the corresponding
evolution of the composite task potentials over the test episodes. We can see that the
Options Chain model in Figure 4.4a exhibits cleaner option utilization, considering the
sequential nature of the task. Meanwhile, referring to Figure 4.4b, the Option-Critic
architecture shows larger variance in its utilization of options over the episode.

For the training plots given by Figures 4.2 and 4.3, 10 episodes are utilized for the
evaluation of the mean and standard deviations.
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Figure 4.2: Training Plot of Maximum Task Potentials achieved by the Options Chain,
Option-Critic and SAC Agents for the 2D Manipulation Task
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Figure 4.3: Training Plot of Rewards achieved by the Options Chain and Option-Critic
Architectures for the 2D Manipulation Task
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Figure 4.4: Option Usage for 2D Manipulation Task over a test episode of 150 timesteps
for (a) Options Chain Architecture (b) Option-Critic Architecture
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