Zhang, Yanfeng2009-08-242009-08-242009-08-242009http://hdl.handle.net/10012/4586In this thesis, we compared electrical performance and stability of a novel nanocrystalline Si (nc-Si) thin film phototransistor (TFT) phototransistor and a regular amorphous silicon (a-Si:H) TFT phototransistor for large area imaging applications. The electrical performance parameters of nc-Si TFT phototransistor were extracted from the electrical (current-voltage) testing in dark and under illumination. The field-effect mobility is found to be around 1.2 cm2V-1s-1, the threshold voltage around 3.9V and the sub-threshold voltage slope around 0.47V/Dec. Optical properties of nc-Si TFT phototransistor have been evaluated under the green light illumination in the range of 1014 – 1017 lum, and the photocurrent gain and the external quantum efficiency were extracted from the experimental results. By comparing the results with those for a-Si:H TFTs measured under the same conditions, we found that nc-Si TFT has higher photo current gain under low illumination intensity, 5 ×1014 to 7 ×1015 lum. This thesis shows the relations bewteen the photo current gain, the external quantum efficiency, TFT drain and TFT gate bias; the photo current gain and the external quantum efficiency can be controlled by the Vds and the Vgs.ennc-SiphototransistorNano-Crystalline &Amorphous Silicon PhotoTransistor Performance AnalysisMaster ThesisElectrical and Computer Engineering