Hays, Christopher2007-05-082007-05-0820062006http://hdl.handle.net/10012/2917<html> <head> <meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1"> </head> Let &Sigma;<em><sub>g</sub></em> be a closed Riemann surface of genus <em>g</em>. Generalizing Ivan Smith's construction, for each <em>g</em> &ge; 1 and <em>h</em> &ge; 0 we construct an infinite set of infinite families of homotopic but pairwise non-isotopic symplectic surfaces inside the product symplectic manifold &Sigma;<em><sub>g</sub></em> ×&Sigma;<em><sub>h</sub></em>. In particular, we achieve all positive genera from these families, providing first examples of infinite families of homotopic but pairwise non-isotopic symplectic surfaces of even genera inside &Sigma;<em><sub>g</sub></em> ×&Sigma;<em><sub>h</sub></em>.application/pdf633210 bytesapplication/pdfenCopyright: 2006, Hays, Christopher. All rights reserved.MathematicsSymplectic ManifoldsIsotopy ProblemBranched CoversNon-Isotopic Symplectic Surfaces in Products of Riemann SurfacesMaster Thesis