Kotey, Nathan AmonWright, John L.Collins, Michael R.2017-04-042017-04-042008-08http://hdl.handle.net/10012/11626Solar gain through fenestration has a significant impact on building peak load and annual energy consumption. Shading devices, attached to fenestration, offer a cost effective strategy in controlling solar gain. The performance of a particular shading device is dependent on solar optical and longwave radiative properties of the device. The current study considers longwave properties of three flat shading materials; drapery fabrics, insect screens and roller blinds. Each of these materials consists of a structure (i.e., yarn, wire, sheet) that is opaque with respect to longwave (infrared) radiation and each material is likely to have some openness. Material emittance and longwave transmittance measurements were taken with an infrared reflectometer using two backing surfaces. The results show emittance and longwave transmittance to be simple functions of openness, emittance and longwave transmittance of the structure. This is especially useful because openness can be determined from solar transmittance measurements while emittance and longwave transmittance of the structure was found to be constant for each category of shading material.enFenestrationLongwaveFabricRoller blindScreenDetermining Longwave Radiative Properties Of Flat Shading MaterialsConference Paper