Xie, Yuqing2023-09-052023-09-052023-09-052023-08-30http://hdl.handle.net/10012/19837The ever-increasing volume of web-based documents poses a challenge in efficiently accessing specialized knowledge from domain-specific sources, requiring a profound understanding of the domain and substantial comprehension effort. Although natural language technologies, such as information retrieval and machine reading compression systems, offer rapid and accurate information retrieval, their performance in specific domains is hindered by training on general domain datasets. Creating domain-specific training datasets, while effective, is time-consuming, expensive, and heavily reliant on domain experts. This thesis presents a comprehensive exploration of efficient technologies to address the challenge of information access in specific domains, focusing on retrieval-based systems encompassing question answering and ranking. We begin with a comprehensive introduction to the information access system. We demonstrated the structure of a information access system through a typical open-domain question-answering task. We outline its two major components: retrieval and reader models, and the design choice for each part. We focus on mainly three points: 1) the design choice of the connection of the two components. 2) the trade-off associated with the retrieval model and the best frontier in practice. 3) a data augmentation method to adapt the reader model, trained initially on closed-domain datasets, to effectively answer questions in the retrieval-based setting. Subsequently, we discuss various methods enabling system adaptation to specific domains. Transfer learning techniques are presented, including generation as data augmentation, further pre-training, and progressive domain-clustered training. We also present a novel zero-shot re-ranking method inspired by the compression-based distance. We summarize the conclusions and findings gathered from the experiments. Moreover, the exploration extends to retrieval-based systems beyond textual corpora. We explored the search system for an e-commerce database, wherein natural language queries are combined with user preference data to facilitate the retrieval of relevant products. To address the challenges, including noisy labels and cold start problems, for the retrieval-based e-commerce ranking system, we enhanced model training through cascaded training and adversarial sample weighting. Another scenario we investigated is the search system in the math domain, characterized by the unique role of formulas and distinct features compared to textual searches. We tackle the math related search problem by combining neural ranking models with structual optimized algorithms. Finally, we summarize the research findings and future research directions.eninformation retrievaldeep learningtransfer learningInformation Access Using Neural Networks For Diverse Domains And SourcesDoctoral Thesis