McConkey, Thomas2018-07-092018-07-092018-07-092018-07-03http://hdl.handle.net/10012/13464Quantum computing architectures with ten or more quantum bits (qubits) have been implemented using trapped ions and superconducting devices. The next milestone in the quest for a quantum computer is the realization of quantum error correction codes. Such codes will require a large number of qubits that must be controlled and measured by means of classical electronics. This scaling up leads to a number of problems and sources of error that must be accounted for in order to have an operational system. One architectural aspect requiring immediate attention is the realization of a suitable interconnect between the quantum and classical hardware. Our proposed solution to this wiring problem is the quantum socket, a three-dimensional wiring method for qubits with superior performance as compared to two-dimensional methods based on wire bonding. The quantum socket also provides a means to counteract another scaling problem, the coupling of qubits to unwanted cavity modes resulting in coherent leakage error. By following our proposed wiring methodologies, half-wave fencing or antinode pinning, we show how the error due to leakage can be mitigated to orders of magnitude below current state-of-the-art error probabilities.enQuantum ComputingCQEDSuperconducting QubitsQuantum SocketCoherent LeakageQuantum information architecturesSuperconducting Microwave EngineeringExtensible Architecture for Superconducting Quantum ComputingDoctoral Thesis