Shahdah, Usama Elrawy2009-04-302009-04-302009-04-302009http://hdl.handle.net/10012/4359A good understanding of the relationship between highway performance, such as crash rates and travel delays, and winter road maintenance activities under different winter weather and traffic conditions is essential to the development of cost-effective winter road maintenance policies and standards, operation strategies and technologies. This research is specifically concerned about the mobility benefit of winter road maintenance. A microscopic traffic simulation model is used to investigate the traffic patterns under adverse weather and road surface conditions. A segment of the Queen Elizabeth Way (QEW) located in the Great Toronto Area, Ontario is used in the simulation study. Observed field traffic data from the study segment was used in the calibration of the simulation model. Different scenarios of traffic characteristics and road surface conditions as a result of weather events and maintenance operations are simulated and travel time is used as a performance measure for quantifying the effects of winter snow storms on the mobility of a highway section. The modeling results indicate that winter road maintenance aimed at achieving bare pavement conditions during heavy snowfall could reduce the total delay by 5 to 36 percent, depending on the level of congestion of the highway. The simulation results are then applied in a case study for assessing two maintenance policy decisions at a maintenance route level.enWinter road maintenanceMobilityQuantifying the Mobility Benefits of Winter Road Maintenance – A Simulation Based ApproachMaster ThesisCivil Engineering