Ingram, Christopher2006-08-222006-08-2220032003http://hdl.handle.net/10012/1039For modelling curves, B-splines [3] are among the most versatile control schemes. However, scaling this technique to surface patches has proven to be a non-trivial endeavor. While a suitable scheme exists for rectangular patches in the form of tensor product B-splines, techniques involving the triangular domain are much less spectacular. The current cutting edge in triangular B-splines [2] is the DMS-spline. While the resulting surfaces possess high degrees of continuity, the control scheme is awkward and the evaluation is computationally expensive. A more fundamental problem is the construction bears little resemblance to the construction used for the B-Spline. This deficiency leads to the central idea of the thesis; what happens if the simple blending functions found at the heart of the B-Spline construction are used over higher dimension domains? In this thesis I develop a geometric generalization of B-Spline curves over the triangular domain. This construction mimics the control point blending that occurs with uniform B-Splines. The construction preserves the simple control scheme and evaluation of B-Splines, without the immense computational requirements of DMS-splines. The result is a new patch control scheme, the G-Patch, possessing <i>C</i>0 continuity between adjacent patches.application/pdf1297902 bytesapplication/pdfenCopyright: 2003, Ingram, Christopher. All rights reserved.Computer Sciencegeometric designb-splinetriangular surfacesA Geometric B-Spline Over the Triangular DomainMaster Thesis