Falaki, Mohammad Hossein2008-08-152008-08-152008-08-152008http://hdl.handle.net/10012/3854The number of smartphones in use is overwhelmingly increasing every year. These devices rely on connectivity to the Internet for the majority of their applications. The ever-increasing number of deployed 802.11 wireless access points and the relatively high cost of other data services make the case for opportunistic communication using free WiFi hot-spots. However, this requires effective management of the WLAN interface, because by design the energy cost of WLAN scanning and interface idle operation is high and energy is a primary resource on mobile devices. This thesis studies the WLAN interface management problem on mobile devices. First, I consider the hypothetical scenario where future knowledge of wireless connectivity opportunities is available, and present a dynamic programming algorithm that finds the optimal schedule for the interface. In the absence of future knowledge, I propose several heuristic strategies for interface management, and use real-world user traces to evaluate and compare their performance against the optimal algorithm. Trace-based simulations show that simple static scanning with a suitable interval value is very effective for delay-tolerant, background applications. I attribute the good performance of static scanning to the power-law distribution of the length of the WiFi opportunities of mobile users, and provide guidelines for choosing the scanning interval based on the statistical properties of the traces. I improve the performance of static scanning, by 46% on average, using a local cache of previous scan results that takes advantage of the location hints provided by the set of visible GSM cell towers.enscanningWLANsmartphoneopportunisticWLAN Interface Management on Mobile DevicesMaster ThesisComputer Science