Diao, LiqunCook, Richard J.Lee, Ker-Ai2016-03-012016-03-012013http://dx.doi.org/10.1007/s10985-013-9259-3http://hdl.handle.net/10012/10291The final publication (Diao, Liqun, Richard J. Cook, and Ker-Ai Lee. (2013) A copula model for marked point processes. Lifetime Data Analysis, 19(4): 463-489) is available at Springer via http://dx.doi.org/10.1007/s10985-013-9259-3Many chronic diseases feature recurring clinically important events. In addition, however, there often exists a random variable which is realized upon the occurrence of each event reflecting the severity of the event, a cost associated with it, or possibly a short term response indicating the effect of a therapeutic intervention. We describe a novel model for a marked point process which incorporates a dependence between continuous marks and the event process through the use of a copula function. The copula formulation ensures that event times can be modeled by any intensity function for point processes, and any multivariate model can be specified for the continuous marks. The relative efficiency of joint versus separate analyses of the event times and the marks is examined through simulation under random censoring. An application to data from a recent trial in transfusion medicine is given for illustration.encopula functionjoint analysismarksrecurrent eventsA copula model for marked point processesArticle