Yam, Edward2013-01-252013-01-252013-01-252013http://hdl.handle.net/10012/7288The simulation tools that are used to model vehicle systems have not been advancing as quickly as the growth of research and technology surrounding the advancements of vehicle technology itself. A topological vehicle systems modelling package would use Modelica to take advantage of the flexibility and modularity of the language, the inherent multi-domain workspace and analytical accuracy of model equations. This package is defined through the use of SuperBlocks, a generalized model that allows the user to select and parameterize the appropriate sub-system directly within the workspace. This palette of SuperBlocks would be implemented within MapleSim6 to create MapleCar. This provides a customized balance between speed and accuracy after taking advantage of advanced graph-theoretic solutions methods used in MapleSim. MapleCar provides several advantages to a user over conventional tools. The SuperBlocks would ease the required steps to model a full vehicle system by providing clear, simple connections to quickly get a simulation assembled. Next, each SuperBlock is represented by a model that contains a replaceable model, a Modelica function which allows its internal model to be changed through a user-friendly parameter selection. The combination of sub-systems accessible directly through a parameter allows a variety of vehicle systems to be easily assembled, as well as provide a container for future models to be shared and published. A short demonstration of connecting these vehicle SuperBlocks from the MapleCar package is provided using MapleSim6. The generalized vehicle component palette provides a straight-forward, customizable drag-and-drop interface to assist in generating vehicle models for simulation. Conclusions and recommendations are provided at the end.enVehicle SystemsModellingModelicaMapleSimTopology-Based Vehicle Systems ModellingMaster ThesisMechanical Engineering