Kitapli, Feyruz2011-09-302011-09-302011-09-302011http://hdl.handle.net/10012/6304Fabrication of nanoscale Josephson junctions and Superconducting Quantum Interference Devices (SQUID) is very promising but challenging topic in the superconducting electronics and device technology. In order to achieve best sensitivity of SQUIDs and to reproduce them easily with a straightforward method, new fabrication techniques for realization of nanoSQUIDs needs to be investigated. This study concentrates on investigation of new fabrication methodology for manufacturing nanoSQUIDs with High Temperature Bi-Crystal Grain Boundary Josephson Junctions fabricated onto SrTiO3 bi-crystal substrates using YBa2Cu3O7-δ (YBCO) thin-films. In this process nanoscale patterning of YBCO was realized by using electron beam patterning and physical dry etching of YBCO thin films on STO substrates. YBCO thin films were deposited using RF magnetron sputtering technique in the mixture of Ar and O2 gases and followed by annealing at high temperatures in O2 atmosphere. Structural characterization of YBCO thin films was done by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). Superconducting properties of thin films was characterized by AC magnetic susceptibility measurements. Nanoscale structures on YBCO thin films were fabricated by one E-Beam Lithography (EBL) step followed by Reactive Ion Etching (RIE) and physical dry etching. First SiO2 thin film were deposited on YBCO by RF magnetron sputtering and it was patterned by EBL using Polystyrene (PS) as resist material and RIE. Then SiO2 was used as an etch mask for physical dry etching of YBCO and nanoscale structures on YBCO were formed.enSuperconducting DevicesNanoelectronicsJosephson JunctionSQUIDHigh temperature superconductorsYBCOBi-crystal grain boundaryFabrication of Nanoscale Josephson Junctions and Superconducting Quantum Interference DevicesMaster ThesisMechanical Engineering