## Search

Now showing items 1-6 of 6

#### In Search Of Most Complex Regular Languages

(World Scientific Publishing, 2013-09-01)

Sequences (L-n vertical bar n >= k), called streams, of regular languages L-n are considered, where k is some small positive integer, n is the state complexity of L-n, and the languages in a stream differ only in the ...

#### Complexity Of Atoms Of Regular Languages

(World Scientific Publishing, 2013-11-01)

The quotient complexity of a regular language L, which is the same as its state complexity the number of left quotients of L. An atom of a non-empty regular language L with n quotients is a non-empty intersection of the n ...

#### Syntactic Complexity Of R- And J-Trivial Regular Languages

(World Scientific Publishing, 2014-11-01)

The syntactic complexity of a subclass of the class of regular languages is the maximal cardinality of syntactic semigroups of languages in that class, taken as a function of the state complexity n of these languages. We ...

#### Most Complex Regular Ideal Languages

(Discrete Mathematics and Theoretical Computer Science, 2016-10-17)

A right ideal (left ideal, two-sided ideal) is a non-empty language $L$ over an alphabet $\Sigma$ such that $L=L\Sigma^*$ ($L=\Sigma^*L$, $L=\Sigma^*L\Sigma^*$). Let $k=3$ for right ideals, 4 for left ideals and 5 for ...

#### Quotient Complexity of Bifix-, Factor-, and Subword-Free Regular Language

(Institute of Informatics: University of Szeged, 2014)

A language $L$ is prefix-free if whenever words $u$ and $v$ are in $L$ and $u$ is a prefix of $v$, then $u=v$. Suffix-, factor-, and subword-free languages are defined similarly, where by ``subword" we mean ``subsequence", ...

#### Quotient Complexities of Atoms in Regular Ideal Languages

(Institute of Informatics: University of Szeged, 2015)

A (left) quotient of a language L by a word w is the language w(-1) L = {x vertical bar wx is an element of L}. The quotient complexity of a regular language L is the number of quotients of L; it is equal to the state ...