## Search

Now showing items 1-10 of 23

#### Complexity of Proper Prefix-Convex Regular Languages

(Springer, 2017-06-27)

A language L over an alphabet Σ is prefix-convex if, for any words x,y,z∈Σ∗, whenever x and xyz are in L, then so is xy. Prefix-convex languages include right-ideal, prefix-closed, and prefix-free languages, which were ...

#### Most Complex Non-returning Regular Languages

(Springer, 2017-07-03)

A regular language L is non-returning if in the minimal deterministic finite automaton accepting it there are no transitions into the initial state. Eom, Han and Jirásková derived upper bounds on the state complexity of ...

#### Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages

(Institute of Informatics: University of Szeged, 2017)

A language L over an alphabet E is prefix-convex if, for any words x, y, z is an element of Sigma*, whenever x and xyz are in L, then so is xy. Prefix-convex languages include right-ideal, prefix-closed, and prefix-free ...

#### Quotient Complexity of Bifix-, Factor-, and Subword-Free Regular Language

(Institute of Informatics: University of Szeged, 2014)

A language $L$ is prefix-free if whenever words $u$ and $v$ are in $L$ and $u$ is a prefix of $v$, then $u=v$. Suffix-, factor-, and subword-free languages are defined similarly, where by ``subword" we mean ``subsequence", ...

#### Quotient Complexities of Atoms in Regular Ideal Languages

(Institute of Informatics: University of Szeged, 2015)

A (left) quotient of a language L by a word w is the language w(-1) L = {x vertical bar wx is an element of L}. The quotient complexity of a regular language L is the number of quotients of L; it is equal to the state ...

#### Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages

(Springer, 2017-03-06)

A language L over an alphabet Σ is suffix-convex if, for any words x,y,z∈Σ∗, whenever z and xyz are in L, then so is yz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free ...

#### Quotient Complexity of Ideal Languages

(Elsevier, 2013-01-28)

A language L over an alphabet Σ is a right (left) ideal if it satisfies L=LΣ∗ (L=Σ∗L). It is a two-sided ideal if L=Σ∗LΣ∗, and an all-sided ideal if L=Σ∗L, the shuffle of Σ∗ with L. Ideal languages are not only of interest ...

#### In Search Of Most Complex Regular Languages

(World Scientific Publishing, 2013-09-01)

Sequences (L-n vertical bar n >= k), called streams, of regular languages L-n are considered, where k is some small positive integer, n is the state complexity of L-n, and the languages in a stream differ only in the ...

#### Complexity Of Atoms Of Regular Languages

(World Scientific Publishing, 2013-11-01)

The quotient complexity of a regular language L, which is the same as its state complexity the number of left quotients of L. An atom of a non-empty regular language L with n quotients is a non-empty intersection of the n ...

#### Quotient Complexity Of Closed Languages

(Springer, 2014-02-01)

A language L is prefix-closed if, whenever a word w is in L, then every prefix of w is also in L. We define suffix-, factor-, and subword-closed languages in an analogous way, where by factor we mean contiguous subsequence, ...