Show simple item record

dc.contributor.authorParviz, Roozbeh
dc.date.accessioned2013-08-01 17:43:31 (GMT)
dc.date.available2013-08-01 17:43:31 (GMT)
dc.date.issued2013-08-01T17:43:31Z
dc.date.submitted2013-07-12
dc.identifier.urihttp://hdl.handle.net/10012/7667
dc.description.abstractThe present work reports a study of the effects of the compositions, and various catalytic additives and nanostructuring by high-energy ball milling, on the hydrogen storage properties of LiBH4, NaBH4, LiNH2 and LiAlH4 complex hydrides and their composites. The composites of (NaBH4+2Mg(OH)2) and (LiBH4+2Mg(OH)2) without and with nanometric nickel (n-Ni) added as a potential catalyst were synthesized by ball milling. The effect of the addition of 5 wt.% nanometric Ni on the dehydrogenation behavior of both the NaBH4-and LiBH4-based composites is rather negligible. In the (LiNH2+nMgH2) system, the phase transformations occurring as a function of the ball milling energy injected into the hydride system (LiNH2+nMgH2), having molar ratios n=0.5 to 2.0, have been thoroughly studied. The milling energy is estimated by a semi-empirical method. The results show that for the molar ratios n<1.0 three new phases such as LiH, amorphous Mg(NH2)2 (a-Mg(NH2)2) and Li2Mg(NH)2 are formed during ball milling depending on the injected energy. For the molar ratios n≥1.0 the new phase of MgNH forms whose formation is accompanied by a profound release of hydrogen. Addition of 5 %wt. KH can improve desorption rate of the LiNH2+0.5 MgH2 system. Furthermore this hydride system can be nearly fully rehydrogenated at 200°C and 50 bar H2 pressure. LiAlH4 containing 5 wt.% of nanometric Fe and Ni shows a profound mechanical dehydrogenation by continuously desorbing hydrogen (H2) during ball milling. X-ray diffraction studies show that Fe and Ni ions dissolve in the lattice, replacing the Al ions and forming a substitutional solid solution. Both Fe and Ni decrease the activation energies of stage I and II , but stage I is more sensitive to the particle size . The addition of 5 wt.% nano-size “interstitial compound” (n-TiC, n-TiN and n-ZrC) shows a continuous desorption of H2 is observed during high energy milling. Mechanical dehydrogenation rate of the doped samples increases noticeably during high-energy ball milling in the order of TiN > TiC > ZrC. The interstitial compound additives are able to strongly reduce the activation energy of Stage II dehydrogenation but do not substantially affect the apparent activation energy of Stage I .en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectSolid state hydrogen Storagen
dc.subjectComplex hydrideen
dc.subjectNanostructureen
dc.subjectBall millingen
dc.subjectDehydrogenationen
dc.subjectRehydrogenationen
dc.titleNanostructured Light Metal Hydrides Based on Li, Al, Na, B and N for Solid State Hydrogen Storageen
dc.typeDoctoral Thesisen
dc.pendingfalseen
dc.subject.programMechanical Engineeringen
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degreeDoctor of Philosophyen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages