Show simple item record

dc.contributor.authorNanji, Tariq
dc.date.accessioned2010-08-26 19:12:38 (GMT)
dc.date.available2010-08-26 19:12:38 (GMT)
dc.date.issued2010-08-26T19:12:38Z
dc.date.submitted2010
dc.identifier.urihttp://hdl.handle.net/10012/5388
dc.description.abstractThis dissertation documents alternative designs of the Zero Forcing decoding algorithm with Successive Interference Cancellation (ZF-SIC) for use in Vertical Bell Laboratories Layered Space Time Architecture (V-BLAST) Multiple Input Multiple Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems, in an effort to reduce the computational complexity of the receiver. The development of a wireless platform utilizing this architecture intended for use in an indoor wireless multipath environment was created to analyze the multipath environment. This implementation is the result of efforts from several individuals within the CST group. My contributions are documented in this dissertation. In order to obtain channel state information (CSI), a training sequence is sent with each incoming frame. A pseudo-inverse operation is performed on the channel matrix and applied to each OFDM symbol that was received. Performing this operation on each tone and across each OFDM symbol is computationally inefficient in a MIMO configuration. If the number of pseudo-inverses can be reduced while maintaining acceptable levels of bit error, the processing time of each frame can be decreased. Traditionally, tests of the performance of ZF-SIC have been conducted with simulations modelling a multipath channel. In this thesis, CSI is observed using an open loop platform developed for MIMO-OFDM communications. The rate of change of the channel is observed for different multipath environments. The proposed methods of decoding require modifications to ZF-SIC. The suggested changes are only applicable to a MIMO OFDM based method of data transmission. The most effective method of reducing decoding complexity and maintaining an acceptable number of bit errors was observed to occur in the time domain rather than in the frequency domain. For selecting frames and averaging frames in the time domain it was determined that the optimal number of OFDM symbols per frame is 1932 and 174, respectively.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectMIMOen
dc.subjectOFDMen
dc.subjectZF-SICen
dc.titleReduction of Implementation Complexity in MIMO-OFDM Decoding for V-BLAST Architectureen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages