Show simple item record

dc.contributor.authorHwang, Jake
dc.date.accessioned2009-05-22 18:27:44 (GMT)
dc.date.available2009-05-22 18:27:44 (GMT)
dc.date.issued2009-05-22T18:27:44Z
dc.date.submitted2009-05-05
dc.identifier.urihttp://hdl.handle.net/10012/4459
dc.description.abstractThis dissertation deals with the channel estimation techniques for orthogonal frequency division multiplexing (OFDM) systems such as in IEEE 802.11. Although there has been a great amount of research in this area, characterization of typical wireless indoor environments and design of channel estimation schemes that are both robust and practical for such channel conditions have not been thoroughly investigated. It is well known that the minimum mean-square-error (MMSE) estimator provides the best mean-square-error (MSE) performance given a priori knowledge of channel statistics and operating signal-to-noise ratio (SNR). However, the channel statistics are usually unknown and the MMSE estimator has too much computational complexity to be realized in practical systems. In this work, we propose two simple channel estimation techniques: one that is based on modifying the channel correlation matrix from the MMSE estimator and the other one with averaging window based on the LS estimates. We also study the characteristics of several realistic indoor channel models that are of potential use for wireless local area networks (LANs). The first method, namely MMSE-exponential-Rhh, does not depend heavily on the channel statistics and yet offer performance improvement compared to that of the LS estimator. The simulation results also show that the second method, namely averaging window (AW) estimator, provides the best performance at moderate SNR range.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectOFDMen
dc.subjectChannel Estimationen
dc.titleSimplified Channel Estimation Techniques for OFDM Systems with Realistic Indoor Fading Channelsen
dc.typeMaster Thesisen
dc.pendingfalseen
dc.subject.programElectrical and Computer Engineeringen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages