Show simple item record

dc.contributor.authorTan, Xiaoyu
dc.date.accessioned2022-08-25 18:06:28 (GMT)
dc.date.available2022-08-25 18:06:28 (GMT)
dc.date.issued2022-08-25
dc.date.submitted2022-08-12
dc.identifier.urihttp://hdl.handle.net/10012/18645
dc.description.abstractPlatinum (Pt) nanoparticles with different sizes of 2nm and 5nm supported on functionalized high surface area carbon (HSC) have been successfully synthesized with a one-pot synthesis technique in large scale. Of the interest for the proton exchange membrane fuel cell applications, the synthesized supported catalysts are evaluated by physical characterizations, half-cell and scaled up single cell tests to study the impact of the catalyst sizes on cell performance and durability. Physical characterizations clearly demonstrate the sizes, shapes, crystallinity phases, and the total loading of the Pt nanoparticles on HSC. Half cell characterizations demonstrate higher electrochemical surface area, higher mass activity, and less durability for the working electrode prepared by the smaller Pt nanoparticle sizes (2nm) than the larger Pt nanoparticles (5nm). Scaled up single cell tests using air and hydrogen as the cathode and anode reactants demonstrate the membrane electrode assembly (MEA) prepared by smaller Pt nanoparticle sizes (2nm) shows the maximum power density of 1.1 W/cm2, which is 7% higher than the maximum power density of MEA prepared by larger Pt nanoparticles (5nm) under similar operational conditions. The 30,000 cycles of accelerated stress test on the membrane electrode assembly prepared by larger Pt nanoparticles (5nm) demonstrates 13% drop at maximum power density, illustrating the excellent performance against degradation (ageing).en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectPt/C catalystsen
dc.subjectPt particle sizesen
dc.subjectMass activityen
dc.subjectDurabilityen
dc.subjectProton exchange membrane fuel cells (PEMFC)en
dc.titleDevelopment and Characterization of Size-controlled Non-spherical Platinum Nanoparticles as Catalyst for Proton Exchange Membrane Fuel Cellsen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentMechanical and Mechatronics Engineeringen
uws-etd.degree.disciplineMechanical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Scienceen
uws-etd.embargo.terms0en
uws.contributor.advisorLi, Xianguo
uws.contributor.affiliation1Faculty of Engineeringen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages