Show simple item record

dc.contributor.authorJanzen, Noah
dc.date.accessioned2022-05-02 13:07:35 (GMT)
dc.date.available2023-05-03 04:50:04 (GMT)
dc.date.issued2022-05-02
dc.date.submitted2022-04-28
dc.identifier.urihttp://hdl.handle.net/10012/18213
dc.description.abstractOne of the most ubiquitous processes in nature is the interaction of matter and an electromagnetic field which is well described using the spin-boson model. These light- matter interactions are specified by an interaction strength which is nominally fixed by nature. However, superconducting circuits are able to devise systems using microfabricated quantum devices to increase the dimensionless coupling strength α. The coupling strength is defined as α = Γ01/π∆ where Γ01 is the decay rate and ∆ is the transition frequency of the system. As the strength increases and the rate of interaction approaches the frequency of the system, the light-matter interactions enter the ultra-strong coupling (USC) regime where α ∼ 0.1. Approximations that are often made to simplify the spin-boson model begin to break down in the USC regime making the analysis of these systems challenging. We demonstrate a flux tunable coupler with potential to explore these dynamics by coupling a persistent current qubit (PCQ) as artificial atom to an open transmission line (TL) as source of continuous bosonic modes. The tunable coupler is able to both decouple the PCQ from the TL as well as enable the USC regime of interactions with a coupling range spanning from αmin = 2.4 × 10−4 to αmax = 1.2 × 10−1. The future objective is to directly explore the time-domain properties of the USC regime and to open new research approaches to relativistic quantum information (RQI) by using the tunable coupler as a switching function.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectultra-strong couplingen
dc.subjectrelativistic quantum informationen
dc.subjectlight-matter interactionen
dc.subjectflux qubiten
dc.subjectsuperconducting circuiten
dc.subjecttunable coupleren
dc.titleDemonstration of a Tunable Coupler Suitable for Investigating Ultra-strong Coupling Light-matter Interactions in Superconducting Devicesen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentPhysics and Astronomyen
uws-etd.degree.disciplinePhysics (Quantum Information)en
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Scienceen
uws-etd.embargo.terms1 yearen
uws.contributor.advisorLupascu, Adrian
uws.contributor.affiliation1Faculty of Scienceen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages