Show simple item record

dc.contributor.authorShum, Marco Yan Shing
dc.date.accessioned2022-01-06 14:59:32 (GMT)
dc.date.available2022-01-06 14:59:32 (GMT)
dc.date.issued2022-01-06
dc.date.submitted2021-12-23
dc.identifier.urihttp://hdl.handle.net/10012/17834
dc.description.abstractThis thesis provides an exploration of the interplay between imprecise probability and statistics. Mathematically, one may summarise this relationship as how (Bayesian) sensitivity analysis involving a set of (prior) models can be done in relation to the notion of coherence in the sense of de Finetti [32], Williams [84] and, more recently, Walley [81]. This thesis explores how imprecise probability can be applied to foundational statistical problems. The contributions of this thesis are three folds. In Chapter 1, we illustrate and motivate the need for imprecise models due to certain inherent limitations of elicitation of a statistical model. In Chapter 2, we provide a primer of imprecise probability aimed at the statistics audience along with illustrative statistical examples and results that highlight salient behaviours of imprecise models from the the statistical perspective. In the second part of the thesis (Chapters 3, 4, 5), we consider the statistical application of the imprecise Dirichlet model (IDM), an established model in imprecise probability. In particular, the posterior inference for log-odds statistics under sparse contingency tables, the development and use of imprecise interval estimates via quantile intervals over a set of distributions and the geometry of the optimisation problem over a set of distributions are studied. Some of these applications require extensions of Walley’s existing framework, and are presented as part of our contribution. The third part of the thesis (Chapters 6, 7) departs from the IDM parametric assumption and instead focuses on posterior inference using imprecise models in a finite dimensional setting when the lower bound of the probability of the data over a set of elicited priors is zero. This setting generalises the problem of zero marginal probability in Bayesian analysis. In Chapter 6, we explore the methodology, behaviour and interpretability of the posterior inference under two established models in imprecise probability: the vacuous and regular extensions. In Chapter 7, we note that these extensions are in fact extremes in imprecision, the variability of an inference over the elicited set of probability distributions. Then we consider extensions which are of intermediate levels of imprecision, and discuss their elicitation and assessment.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectimprecise probabilityen
dc.subjectimprecise probabilitiesen
dc.subjectstatisticsen
dc.subjectinferenceen
dc.subjectstatistical inferenceen
dc.subjectcoherenceen
dc.titleOn imprecision in statistical theoryen
dc.typeDoctoral Thesisen
dc.pendingfalse
uws-etd.degree.departmentStatistics and Actuarial Scienceen
uws-etd.degree.disciplineStatisticsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeDoctor of Philosophyen
uws-etd.embargo.terms0en
uws.contributor.advisorMarriott, Paul
uws.contributor.advisorWirjanto, Tony
uws.contributor.affiliation1Faculty of Mathematicsen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages