Show simple item record

dc.contributor.authorIeritano, Christian
dc.contributor.authorCrouse, Jeff
dc.contributor.authorCampbell, J. Larry
dc.contributor.authorHopkins, W. Scott
dc.date.accessioned2020-10-29 18:55:04 (GMT)
dc.date.available2020-10-29 18:55:04 (GMT)
dc.date.issued2019
dc.identifier.urihttps://doi.org/10.1039/C8AN02150C
dc.identifier.urihttp://hdl.handle.net/10012/16483
dc.description.abstractIon mobility-based separation prior to mass spectrometry has become an invaluable tool in the structural elucidation of gas-phase ions and in the characterization of complex mixtures. Application of ion mobility to structural studies requires an accurate methodology to bridge theoretical modelling of chemical structure with experimental determination of an ion's collision cross section (CCS). Herein, we present a refined methodology for calculating ion CCS using parallel computing architectures that makes use of atom specific parameters, which we have called MobCal-MPI. Tuning of ion-nitrogen van der Waals potentials on a diverse calibration set of 162 molecules returned a RMSE of 2.60% in CCS calculations of molecules containing the elements C, H, O, N, F, P, S, Cl, Br, and I. External validation of the ion-nitrogen potential was performed on an additional 50 compounds not present in the validation set, returning a RMSE of 2.31% for the CCSs of these compounds. Owing to the use of parameters from the MMFF94 forcefield, the calibration of the van der Waals potential can be extended to additional atoms defined in the MMFF94 forcefield (i.e., Li, Na, K, Si, Mg, Ca, Fe, Cu, Zn). We expect that the work presented here will serve as a foundation for facile determination of molecular CCSs, as MobCal-MPI boasts up to 64-fold speedups over traditional calculation packages.en
dc.description.sponsorshipThe authors would like to acknowledge the financial support provided by the Natural Sciences and Engineering Research Council (NSERC) of Canada.en
dc.language.isoenen
dc.publisherRoyal Society of Chemistryen
dc.subjection mobility spectrometryen
dc.titleA parallelized molecular collision cross section package with optimized accuracy and efficiencyen
dc.typeArticleen
dcterms.bibliographicCitationIeritano, Christian, Jeff Crouse, J. Larry Campbell, and W. Scott Hopkins. “A Parallelized Molecular Collision Cross Section Package with Optimized Accuracy and Efficiency.” Analyst 144, no. 5 (2019): 1660–70. https://doi.org/10.1039/C8AN02150C.en
uws.contributor.affiliation1Faculty of Scienceen
uws.contributor.affiliation2Chemistryen
uws.typeOfResourceTexten
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.scholarLevelPost-Doctorateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages