Chemical Engineering
Permanent URI for this collectionhttps://uwspace.uwaterloo.ca/handle/10012/9904
This is the collection for the University of Waterloo's Department of Chemical Engineering.
Research outputs are organized by type (eg. Master Thesis, Article, Conference Paper).
Waterloo faculty, students, and staff can contact us or visit the UWSpace guide to learn more about depositing their research.
Browse
Browsing Chemical Engineering by Issue Date
Now showing 1 - 20 of 1015
- Results Per Page
- Sort Options
Item Effect of Nanoscopic Particles on the Mesophase Structure of Diblock Copolymers(American Chemical Society, 2002) Lee, Jae Youn; Thompson, Russell B.; Jasnow, David; Balazs, Anna C.Introduction. The fabrication of novel biomimetic photonic and electronic materials requires the manipulation of both organic and inorganic materials at the nanometer length scale. One possible means of achieving this level of control is to add inorganic nanoparticles to a melt of diblock copolymers. The microphase separation of the copolymers into nanoscopic, ordered domains could be harnessed to “template” the organization of the particles into nanoplanes, -wires, or -spheres within the polymer matrix. However, as we show below, the particles are not passive and can affect the overall morphology of the mixture. We also show that this effect is sufficiently robust that it can be found in both the strong and intermediate segregation limits of the diblock melts (i.e., both low and intermediate temperatures).Item Block Copolymer-Directed Assembly of Nanoparticles: Forming Mesoscopically Ordered Hybrid Materials(American Chemical Society, 2002) Thompson, Russell B.; Ginzburg, Valeriy V.; Matsen, Mark W.; Balazs, Anna C.Mixtures of diblock copolymers and nanoscopic spherical particles can yield well-ordered hybrid materials, which can be used for separation processes, catalysis, and optoelectronic applications. Predicting the morphologies of these systems is difficult because the final structures depend not only on the characteristics of the copolymer but also on the features of the particles. Combining self-consistent field and density functional theories, we develop a model that allows us to determine the equilibrium or metastable phases of diblock copolymer/spherical nanoparticle composites, without making a priori assumptions about the structure of the system. Using this model, we illustrate various examples where mixtures of diblocks and nanoparticles self-assemble into mesoscopically ordered phases. The model can be generalized to other types of copolymers and particles and can be modified to include homopolymers or solvent molecules. Thus, the technique constitutes a useful tool for determining the structures of a large class of nanocomposites.Item Evaluation of Polymeric Membranes for Gas Separation Processes: Poly(ether-b-amide)(PEBAX® 2533) Block Copolymer(University of Waterloo, 2002) Chen, Jennifer Chih-YiThe development of polymeric membranes for gas separations has provided an alternative to traditional energy-intensive processes, especially for hydrocarbon separations. Material studies of the membrane can provide insights to its formation and modification. Gas permeation behaviour through two types of polymeric membrane material is investigated herein. Though the main objective of our investigation was to determine the hydrocarbon gas permeation properties of poly(ether-b-amide) PEBAX®2533 copolymer membranes over a range of operating temperatures and pressures, we first tested a poly(ethylene oxide) (PEO) membrane for permeability of ethane and ethylene. The screening results from the tests of PEO membranes containing silver salts, indicate that although PEO membranes may possess high olefin/paraffin selectivity through facilitated transport, difficult membrane preparation and unstable structure remain major obstacles to their commercial use. However, the knowledge acquired on preparation technique and permeability testing from these trials was carried over to our study of PEBAX®2533 membranes. Permeability coefficients were determined at temperatures ranging from 25°C to 75°C, and pressures from 25 psig to 200 psig for ethane, ethylene, nitrogen, propane, propylene, and carbon dioxide. The PEBAX®2533 membranes showed high organic gas permeabilities. Plasticization effects on the membrane were pronounced with propane and propylene at elevated pressure (100 psig). Activation energies of permeation (Ep) were determined. Ep of nitrogen is nearly constant and is the highest among gases tested in the pressure range. Ep shows a linear decreasing trend as pressure increases for hydrocarbons. Relatively high selectivities (12 to 26) were observed for the polar and non-polar gas pair CO2/N2. As temperature increased, the selectivity of CO2/N2 decreased. This study provides the groundwork for the use of PEO and PEBAX®2533 membranes for hydrocarbon separations.Item Approaches to Tailoring the Structure and Properties of Polyethylene(University of Waterloo, 2002) Li Pi Shan, ColinAlternative methods to control the molecular weight and short chain branching distribution of polyethylene were investigated. The ability to produce polyolefins with multimodal microstructural distributions using single catalyst/single reactor set-up is very attractive and could, in principle, be used to produce polyolefin resins with advanced molecular architecture. In this thesis, resins with controlled microstructures were produced, characterized and properties tested in order to develop a better understanding of polymerization structure-property relationships. Copolymerizations of ethylene and 1-hexene were carried out with an in-situ supported metallocene catalyst. Copolymers were produced with different alkylaluminum activators and the effect on molecular weight and short chain branching distributions was examined. It was found that different activator types produce polymer with unimodal and narrow molecular weight distributions but with very different short chain branching distributions. Each activator exhibits unique comonomer incorporation characteristics to produce bimodal short chain branching distributions with the use of a single activator. By using individual and mixed activator systems, it is possible to control the short chain branching distributions of the resulting copolymers while maintaining narrow molecular weight distributions. To further investigate the capabilities of this in-situ supported catalyst system, an experimental design was carried out to study the effect of polymerization conditions on the catalyst activity and microstructure of poly(ethylene-co-1-octene). The parameters investigated were: polymerization temperature, monomer pressure, chain transfer to hydrogen, comonomer/ethylene feed ratio and concentration of alkylaluminum. The effect of each parameter on the catalyst activity, comonomer incorporation and molecular weight distribution was investigated. The results obtained were not typical of a conventional single-site catalyst. The copolymerization system was sensitive to all of the parameters and many interactions were evident. The most prominent effect was the catalyst response to temperature. As the temperature was decreased, the short chain branching distributions of the copolymers became broad and bimodal. Overall, it was found that a wide range of microstructures could be produced, ranging from copolymers with low and high 1-octene content with unimodal to broad short chain branching distributions, and from low to high molecular weight with narrow to broad molecular weight distributions. To examine the effect of these broad short chain branching distributions on the polymer properties, a series of poly(ethylene-co-1-hexene) resins with very distinct, and in some cases bimodal crystalline distributions, were synthesized. The attractive feature of the resins in this study is that their molecular weight distributions are similar but each possesses a different short chain branching distribution, thus effectively minimizing the effect of molecular weight on the properties investigated. It was found that the tensile properties of a copolymer could be controlled by the ratio of the crystalline species present in the sample. In this study, a balance of stiffness and toughness was exhibited by a copolymer containing a large proportion of crystalline material and a small fraction of material of lower crystallinity. A series of poly(ethylene-co-1-octene) resins with tailored molecular weight and short chain branching distributions were synthesized with a heterogeneous metallocene catalyst in a two-stage polymerization process. Blends of high molecular weight copolymer and low molecular weight homopolymer and reverse blends of low molecular weight copolymer and high molecular weight homopolymer were produced. The physical properties of these resins were tested for their dynamic mechanical (tensile) and rheological properties. Increasing the copolymer content in the blend resulted in a decrease in stiffness. However, the energy dampening properties of these blends benefit from the presence of the copolymer. It was also confirmed that the melt flow properties of polymers mostly depend on their molecular weight distribution. Regardless of the comonomer content, the melt viscosities decreased with the addition of low molecular weight polymer.Item Separation of Volatile Organic Compounds from Nitrogen by Hollow Fiber Composite Membranes(University of Waterloo, 2003) Liu, YujingMany industrial processes handling organic solvents produce volatile organic compounds (VOCs). These VOCs not only cause environmental pollution, but also represent an economic loss. VOC removal and recovery have become a big issue that needs to be addressed. Traditional techniques for VOCs removal include carbon adsorption, condensation, and absorption, and none is efficient enough to meet every need. Membrane separation has emerged as an excellent alternative or complementary technology for VOC separation. Separation of VOCs from nitrogen by composite hollow fiber membranes is studied in this thesis. Microporous hollow fiber membranes were spun from polyvinylidene fluoride (PVDF) using the phase inversion method, and the hollow fibers were coated with a thin layer of poly(ether block amide) (PEBA), thereby forming composite membranes. PVDF was chosen as the substrate material because of its excellent thermal and chemical stabilities and good mechanical strength, and PEBA was selected as the active separating layer because of its good permselectivity and film forming properties. In PEBA polymer, the hard polyamide blocks provide high mechanical strength, and the soft polyether blocks provide flexibility and elasticity. This study is focused on the preparation and characterization of PEBA/PVDF composite hollow fiber membranes. The membranes were tested for the removal of representative VOCs including hexane, heptane and cyclohexane, which are the main components of gasoline, and dimethyl carbonate (DMC), ethanol, methanol, and methyl t-butyl ether (MTBE) that are the oxygenates and octane number enhancers of gasoline. The separation of gasoline vapor from nitrogen was also investigated. It was found that the PEBA/PVDF composite hollow fiber membranes are effective for the separation of hydrocarbon vapors from nitrogen. The effects of hollow fiber membrane preparation conditions on the membrane performance were studied, and the separation performance of the composite hollow fiber membranes at various operating conditions (e. g. feed concentration, operating temperature) was evaluated.Item Rock Stability under Different Fluid Flow Conditions(University of Waterloo, 2003) Han, GangIt is widely known in oil industry that changes in fluid flow conditions such as water breakthrough or unsteady flow due to well shut-in can lead to sand destabilization, with a possible consequent sand production. In this research, different flow situations are incorporated into stress and stability analysis for the region around a wellbore producing oil from weak or unconsolidated sands, and the analyses involve strength weakening, stress redistribution, and decrease of rock stiffness. Two main mechanisms, chemical reactions of rock with formation water and variations of rock capillary strength, are identified and analyzed to study strength weakening after water breakthrough, both qualitatively and quantitatively. Using theories from particle mechanics, rock mechanics, and interfacial science, four novel capillarity models are developed and verified to analytically capture the physical behaviors of capillary strength at the grain scale. Based on model calculations, significantly better understanding of strength behavior in two-phase fluid environments is achieved. Based on a simplified model that can conservatively but efficiently quantify capillary strength with only two input parameters (i. e. particle radius and water saturation), a verified new method that physically calculates pore pressure in a multiphase environment, and a coupled poro-inelastic stress model, the redistributions of effective stresses with water saturation around a wellbore are solved. In terms of stress changes and growth of a plastic radius defining shear-failure zone, the effects of different stability factors, including capillarity through water-oil menisci, pore pressure changes due to the variations of fluid relative permeabilities, and loss of strength through chemical reactions of water-sensitive cementation materials, are quantified and compared in order to clarify when and how they contribute to sand production after water breakthrough. The nonlinearities of rock elastic properties in stressed and biphasic fluid environments is analytically addressed, based on an improved nonlinear theory that considers both a failure-based mechanism and a confining-stress-based mechanism, the strength model, and the coupled stress model. The calculations demonstrate the redistributions of stress-dependent rock stiffness around a wellbore and its evolution with increase of water saturation, clarify the relative importance of each mechanism in reducing rock stiffness, and fundamentally explain why current predictive technologies are invalid when water appears in a flowing wellbore. To quantify the effect of well shut-down on rock stability, the redistributions of fluid pressure in reservoir are analytically solved and coupled with the stress model, while the water hammer equations provide a boundary condition for the bottom-hole pressure. This approach allows direct solution of the relationships among fluid properties, rock properties and production parameters, within the context of rock stability. The proposed new approaches and models can be applied to evaluate sand production risk in multiphase and unsteady fluid flow environment. They can also serve as points of departure to develop more sophisticated models, or to develop more useful constitutive laws for numerical solutions.Item Robust Control Design of Gain-scheduled Controllers for Nonlinear Processes(University of Waterloo, 2004) Gao, JianyingIn the chemical or biochemical industry most processes are modeled by nonlinear equations. It is of a great significance to design high-performance nonlinear controllers for efficient control of these nonlinear processes to achieve closed-loop system's stability and high performance. However, there are many difficulties which hinder the design of such controllers due mainly to the process nonlinearity. In this work, comprehensive design procedures based on robust control have been proposed to efficiently deal with the design of gain-scheduled controllers for nonlinear systems. Since all the design procedures proposed in this work rely strongly on the process model, the first difficulty addressed in this thesis is the identification of a relatively simple model of the nonlinear processes under study. The nonlinearity of the processes makes it often difficult to obtain a first-principles model which can be used for analysis and design of the controller. As a result, relatively simple empirical models, Volterra series model and state-affine model, are chosen in this work to represent the nonlinear process for the design of controllers. The second major difficulty is that although the nonlinear models used in this thesis are easy to identify, the analysis of stability and performance for such models using nonlinear control theory is not straightforward. Instead, it is proposed in this study to investigate the stability and performance using a robust control approach. In this approach, the nonlinear model is approximated by a nominal linear model combined with a mathematical description of model error to be referred to, in this work, as model uncertainty. In the current work it was assumed that the main source of uncertainty with respect to the nominal linear model is due to the system nonlinearity. Then, in this study, robust control theoretical tools have been especially developed and applied for the design of gain-scheduled Proportional-Integral (PI) control and gain-scheduled Model Predictive Control (MPC). Gain-scheduled controllers are chosen because for nonlinear processes operated over a wide range of operation, gain-scheduling has proven to be a successful control design technique (Bequette, 1997) for nonlinear processes. To guarantee the closed-loop system's robust stability and performance with the designed controllers, a systematic approach has been proposed for the design of robust gain-scheduled controllers for nonlinear processes. The design procedure is based on robust stability and performance conditions proposed in this work. For time-varying uncertain parameters, robust stability and performance conditions using fixed Lyapunov functions and parameter-dependent Lyapunov functions, were used. Then, comprehensive procedures for the design and optimization of robust gain-scheduled PI and MPC controllers tuning parameters based on the robust stability and performance tests are then proposed. Since the closed-loop system represented by the combination of a state-affine process model and the gain-scheduled controller is found to have an affine dependence on the uncertain parameters, robust stability and performance conditions can be tested by a finite number of Linear Matrix Inequalities (LMIs). Thus, the final problems are numerically solvable. One of the inherent problems with robust control is that the design is conservative. Two approaches have been proposed in this work to reduce the conservatism. The first one is based on parameter-dependent Lyapunov functions, and it is applied when the rate of change of the time-varying uncertainty parameters is a priori available. The second one is based on the relaxation of an input-saturation factor defined in the thesis to deal with the issue of actuator saturation. Finally, to illustrate the techniques discussed in the thesis, robust gain-scheduled PI and MPC controllers are designed for a continuous stirred tank reactor (CSTR) process. A simple MIMO example with two inputs and two outputs controlled by a multivariable gain-scheduled MPC controller is also discussed to illustrate the applicability of the methods to multivariable situations. All the designed controllers are simulated and the simulations show that the proposed design procedures are efficient in designing and comparing robust gain-scheduled controllers for nonlinear processes.Item Evaluation of instantaneous and cumulative models for reactivity ratio estimation with multiresponse scenarios(University of Waterloo, 2004) Zhou, XiaoqinEstimating reactivity ratios in multicomponent polymerizations is becoming increasingly important. At the same time, using cumulative models is becoming imperative, as some multicomponent systems are inherently so fast that instantaneous "approximate" models can not be used. In the first part of the thesis, triad fractions (sequence length characteristics) are employed in a multiresponse scenario, investigating different error structures and levels. A comparison is given between instantaneous triad fraction models and instantaneous composition model, which represent the current state-of-the-art. In the second part of the thesis, extensions are discussed with cumulative composition and triad fraction models over the whole conversion range, thus relating the problem of reactivity ratio estimation to the optimal design of experiments (i. e. optimal sampling) over polymerization time and conversion. The performance of cumulative multiresponse models is superior to that of their instantaneous counterparts, which can be explained from an information content point of view. As a side-project, the existence of azeotropic points is investigated in terpolymer (Alfrey-Goldfinger equation) and tetrapolymer (Walling-Briggs equation) systems.Item CO2 Capture With MEA: Integrating the Absorption Process and Steam Cycle of an Existing Coal-Fired Power Plant(University of Waterloo, 2004) Alie, ColinIn Canada, coal-fired power plants are the largest anthropogenic point sources of atmospheric CO2. The most promising near-term strategy for mitigating CO2 emissions from these facilities is the post-combustion capture of CO2 using MEA (monoethanolamine) with subsequent geologic sequestration. While MEA absorption of CO2 from coal-derived flue gases on the scale proposed above is technologically feasible, MEA absorption is an energy intensive process and especially requires large quantities of low-pressure steam. It is the magnitude of the cost of providing this supplemental energy that is currently inhibiting the deployment of CO2 capture with MEA absorption as means of combatting global warming. The steam cycle of a power plant ejects large quantities of low-quality heat to the surroundings. Traditionally, this waste has had no economic value. However, at different times and in different places, it has been recognized that the diversion of lower quality streams could be beneficial, for example, as an energy carrier for district heating systems. In a similar vein, using the waste heat from the power plant steam cycle to satisfy the heat requirements of a proposed CO2 capture plant would reduce the required outlay for supplemental utilities; the economic barrier to MEA absorption could be removed. In this thesis, state-of-the-art process simulation tools are used to model coal combustion, steam cycle, and MEA absorption processes. These disparate models are then combined to create a model of a coal-fired power plant with integrated CO2 capture. A sensitivity analysis on the integrated model is performed to ascertain the process variables which most strongly influence the CO2 energy penalty. From the simulation results with this integrated model, it is clear that there is a substantial thermodynamic advantage to diverting low-pressure steam from the steam cycle for use in the CO2 capture plant. During the course of the investigation, methodologies for using Aspen Plus® to predict column pressure profiles and for converging the MEA absorption process flowsheet were developed and are herein presented.Item Optimal Online Tuning of an Adaptive Controller(University of Waterloo, 2004) Huebsch, JesseA novel adaptive controller, suitable for linear and non-linear systems was developed. The controller is a discrete algorithm suitable for computer implementation and is based on gradient descent adaptation rules. Traditional recursive least squares based algorithms suffer from performance deterioration due to the continuous reduction of a covariance matrix used for adaptation. When this covariance matrix becomes too small, recursive least squares algorithms respond slow to changes in model parameters. Gradient descent adaptation was used to avoid the performance deterioration with time associated with regression based adaptation such as Recursive Least Squares methods. Stability was proven with Lyapunov stability theory, using an error filter designed to fulfill stability requirements. Similarities between the proposed controller with PI control have been found. A framework for on-line tuning was developed using the concept of estimation tracks. Estimation tracks allow the estimation gains to be selected from a finite set of possible values, while meeting Lyapunov stability requirements. The trade-off between sufficient excitation for learning and controller performance, typical for dual adaptive control techniques, are met by properly tuning the adaptation and filter gains to drive the rate of adaptation in response to a fixed excitation signal. Two methods for selecting the estimation track were developed. The first method uses simulations to predict the value of the bicriteria cost function that is a combination of prediction and feedback errors, to generate a performance score for each estimation track. The second method uses a linear matrix inequality formulation to find an upper bound on feedback error within the range of uncertainty of the plant parameters and acceptable reference signals. The linear matrix inequality approach was derived from a robust control approach. Numerical simulations were performed to systematically evaluate the performance and computational burden of configuration parameters, such as the number of estimation tracks used for tuning. Comparisons were performed for both tuning methods with an arbitrarily tuned adaptive controller, with arbitrarily selected tuning parameters as well as a common adaptive control algorithm.Item Seeding Induced Assembly of Ionic-Complementary Peptide EAK16-II(University of Waterloo, 2004) Dhadwar, SukhdeepSeeding is an important variable in controlling or directing the assembly of peptides. The presence of impurities, responsible for creating a 'dip' in the surface tension versus peptide concentration profile, is used to determine the critical aggregation concentration (CAC). This phenomenon is investigated to differentiate crude and high purity EAK16-II peptide. The purified peptide did not show this 'dip' and clearly indicated a critical aggregation concentration for EAK16-II at 0. 09 mg/mL by surface tension measurements. Conversely, a surface tension 'dip' is clearly observed for the crude EAK16-II peptide. Atomic Force Microscopy imaged the nanostructures of aggregates. The presence of impurities induces fibre formation below the CAC. This study provides information about the seeding effect of peptide assembly at low concentrations as well as the modification of surface activity of assembled peptide particles. Alanine, glutamic acid and lysine were used as model seeding agents to simulate the seeding phenomenon and better understand the nucleation mechanism of peptide assembly. All amino acid monomers were able to induce fibre formations at low peptide concentrations. However, only glutamic acid and lysine were able to produce the surface tension dip profile observed in the crude peptide. This information may be of importance in understanding fibrillogenesis occurring in conformational diseases and other biomedical applications including drug delivery.Item Kinetic Investigation and Modelling of Multi-Component Polymer Systems with Depropagation(University of Waterloo, 2005) Leamen, MichaelThe phenomenon of depropagation or reverse polymerization for multicomponent polymerizations has been studied in detail. The monomer Alpha-Methyl Styrene (AMS) has been copolymerized with Methyl Methacrylate (MMA) and Butyl Acrylate (BA) at temperatures ranging from 60oC to 140oC and the kinetics have been studied in the form of propagation/cross propagation and depropagation parameters. There have been multiple attempts with varying amounts of success in the past to determine the kinetic parameters for depropagating systems including work by Lowry and Wittmer as well as other modelling methodologies that are not as mechanistic. The most recent development of the mechanistic terminal model is that of the Kruger model. The model is robust and can take into account all special cases as well as all reactions being reversible. The kinetic parameters have been estimated for each of the three binary systems using the Kruger model (MMA/AMS, MMA/BA, BA/AMS). The Alfrey-Goldfinger model is inadequate to describe depropagating terpolymer systems and in order to study them, a new model was developed based upon the binary Kruger model. This new model takes into account a fully depropagating terpolymer system leading to a total of 15 parameters to be estimated. These 15 parameters have the same definitions as those estimated from the binary Kruger model, thus making accurate analysis of the binary systems crucial since these will be used as first estimates for the terpolymer system. Extensive experimental data (composition, conversion and molecular weights) was collected and analysed for the MMA/AMS and BA/AMS systems. For the BA/AMS system both the bulk and solution copolymerizations were studied in detail with the results from the Kruger model not showing a significant difference in the reactivity ratios between the two types of polymerization. For the MMA/AMS system, a bulk study only was done which revealed an interesting phenomenon that points toward a break down of the long chain approximations used for all of the models being studied. For both of these systems, extensive 1H NMR analysis was done to determine the copolymer composition. Data collected in previous research for the MMA/BA system was reanalysed using the Kruger model and it was found that the parameter estimates did not differ significantly from the published values. Extensive benchmarking was done with the newly developed terpolymer model on non-depropagating systems using data from the literature to ensure it worked for the simplest cases. It was found that the model matched the parameter estimates from the literature and in some cases improving upon them to fit the data better. Along with the benchmarking a sensitivity analysis was done which revealed some interesting information. For the MMA/BA/AMS terpolymer system a set of experiments (based upon practical considerations) were performed and the composition of the polymer was determined using 13C NMR instead of the usual 1H NMR due to the difficulty of peak separation for the complex terpolymer. Using the depropagating terpolymer composition data in conjunction with the parameter estimates from the three binary systems allowed for estimation of the 15 kinetic parameters, which showed only minor variation from the binary estimates.Item Effects of a Non-Condensable Gas on the Vapex Process(University of Waterloo, 2005) Friedrich, KarenIt is estimated that Canada has 1. 7 trillion barrels of oil contained in oil sands located mainly in Alberta. However, the oil contained in the oil sands is a very viscous, tar-like substance that does not flow on its own and cannot be produced with conventional methods. Economical production of this vast resource requires new technology and research. Research in Canada has helped maintain leadership in heavy oil recovery technology.
One method of viscosity reduction is through dilution, which is controlled by two mechanisms—mass transfer and gravity drainage. In the vapour extraction (Vapex) process, vapour of a light hydrocarbon solvent is injected into the reservoir. The mass transfer of vapour into bitumen is driven by a concentration gradient; the vapour diffuses into the heavy oil, causing a reduction in viscosity. The viscosity reduced oil is referred to as "live oil" and is now able to flow by gravity to a horizontal production well. At the surface, solvent can be easily separated and recovered from the produced oil through a flash separation/distillation process.
Under reservoir conditions, extraction solvents such as butane and pentane would condense, increasing the amount of solvent required and decreasing the density difference between solvent and bitumen. The solvent can be maintained in a gaseous phase, by co-injecting a non-condensable gas (NCG), reducing the partial pressure of the solvent and thus preventing condensation. Two types of models were used to observe the VAPEX process while varying the concentration of air and pentane in the system. Experimental results will help to determine the effect of increasing NCG concentration on the rate of live oil production.
The apparatus consists of a porous media model saturated with bitumen and placed inside acrylic housing. NCG (air) exists in the housing before liquid pentane is added. Pentane vapour continuously evolves from a reservoir of liquid pentane, maintained at constant temperature. A concentration gradient was established allowing pentane to flow into the system where the partial pressure of pentane in the bitumen phase is lower than the vapour pressure of pentane. The bitumen, diluted at the bitumen-gas interface, drains under the action of gravity. The advancement of the bitumen-gas interface was monitored to determine the live oil production rate. By varying the temperature of liquid pentane, the partial pressure of pentane in the extraction vessel was varied.
Results from five experiments in trough models and two in micromodels show that the rate of interface advancement in the presence of a NCG is proportional to the square root of time. Similarly, cumulative volume of oil produced was proportional to the square root of time. Previous works [Ramakrishnan (2003), James (2003), Oduntan, (2001)] have shown that interface advancement and production using a pure solvent was proportional to time. In the experimental range examined (24-32°C) temperature did not effect the rate of production for a given time or interface location.
The average steady state effective diffusion coefficient was calculated from production data to be 0. 116 cm2/s, five times larger than estimated from the Hirschfelder Equation.
Live oil properties were found to be consistent throughout each experiment and between experiments. On average, live oil contained 46-48 wt% pentane and viscosity was reduced by four orders of magnitude from 23,000 mPa?s to 4-6 mPa?s.Item Techno-Economic Study of CO2 Capture Process for Cement Plants(University of Waterloo, 2005) Hassan, S. M. NazmulCarbon dioxide is considered to be the major source of GHG responsible for global warming; man-made CO2 contributes approximately 63. 5% to all greenhouse gases. The cement industry is responsible for approximately 5% of global anthropogenic carbon dioxide emissions emitting nearly 900 kg of CO2 for every 1000 kg of cement produced! Amine absorption processes in particular the monoethanolamine (MEA) based process, is considered to be a viable technology for capturing CO2 from low-pressure flue gas streams because of its fast reaction rate with CO2 and low cost of raw materials compared to other amines. However, MEA absorption process is associated with high capital and operating costs because a significant amount of energy is required for solvent regeneration and severe operating problems such as corrosion, solvent loss and solvent degradation. This research was motivated by the need to design size and cost analysis of CO2 capture process from cement industry. MEA based absorption process was used as a potential technique to model CO2 capture from cement plants. In this research four cases were considered all to reach a CO2 purity of 98% i) the plant operates at the highest capacity ii) the plant operates at average load iii) the plant operates at minimum operating capacity and iv) switching to a lower carbon content fuel at average plant load. A comparison among four cases were performed to determine the best operating conditions for capturing CO2 from cement plants. A sensitivity analysis of the economics to the lean loading and percent recovery were carried out as well as the different absorber and striper tray combinations.Item Experimental and Modelling Investigation of a Novel Tetrafunctional Initiator in Free Radical Polymerization(University of Waterloo, 2005) Scorah, MatthewAn experimental and modelling investigation of a tetrafunctional initiator designed for free radical polymerizations is presented. Multifunctional initiators are believed to provide two advantages over traditional monofunctional initiators. With a higher number of functional sites per molecule, they are able to increase polymer production while simultaneously maintaining or increasing polymer molecular weight. Examination of the literature indicates the majority of academic and industrial published studies have investigated difunctional initiators with most focusing on styrene. In this thesis, a tetrafunctional initiator, JWEB50, was systematically investigated for a variety of monomer systems in order to develop a better understanding of the behaviour of multifunctional initiators in free radical polymerizations.
A kinetic study comparing the tetrafunctional initiator to a monofunctional counterpart, TBEC, demonstrated that the impact of a multifunctional initiator is dependent upon monomer type. Regardless of the homo- or copolymer system examined, it was observed that the tetrafunctional initiator could produce higher rates of polymerization due to the greater number of labile groups per initiator molecule. However, the influence of the tetrafunctional initiator on the polymer molecular weight was dictated by the polymerization characteristics of the system in question. In the case of styrene, the tetrafunctional initiator maintained similar molecular weights compared to the monofunctional initiator while for methyl methacrylate (MMA), switching from a mono- to a tetrafunctional initiator actually decreased the polymer molecular weight. Other monomers such as butyl acrylate and vinyl acetate and copolymers of MMA and styrene or alpha-methyl styrene were examined to study the effect of initiator functionality in free radical polymerizations.
Subsequent to the kinetic investigation, polystyrene and poly(methyl methacrylate) samples produced with the tetrafunctional initiator were characterized in detail in order to examine the effects of initiator functionality on polymer properties. Samples generated with the monofunctional initiator were used for comparison purposes. Chromatographic and dilute solution methods were able to detect significant levels of branching in the polystyrene sample produced with JWEB50, while poly(methyl methacrylate) samples showed no evidence of branching. Rheological tests involving a combination of oscillatory and creep shear measurements were completed in order to detect differences between samples. The presence of branching using rheological techniques was clearly observed for both polystyrene and poly(methyl methacrylate) samples produced with the tetrafunctional initiator.
In order to explain the experimental results observed in the kinetic and polymer properties studies, a reaction mechanism for polymerizations initiated with a tetrafunctional initiator was proposed and used in the development of a mathematical model. Reactions involving the fate/efficiency of functional groups are properly accounted for, while in the past this had been ignored by modelling work in the literature. Based on model predictions, di-radical concentrations were estimated to be several orders of magnitude smaller than mono-radical concentrations and their contribution in the reaction mechanism was found to be negligible. Modelling results also demonstrated that the concentration and chain length of various polymer structures (i. e. , linear, star or coupled stars) depend upon monomer type and reaction conditions.Item Hydrogenation of unsaturated polymers in latex form(University of Waterloo, 2005) Lin, XingwangDiimide generated from the hydrazine/hydrogen peroxide/catalyst system can be used to hydrogenate unsaturated polymers in latex form. As an economical and environmentally benign alternative to the commercial processes based on hydrogen/transition metal catalysts, this method is of special interest to industry. This thesis provides a detailed description of the diimide hydrogenation process. Reaction kinetics, catalysts and gel formation mechanism have been investigated.
Four main reactions and a mass transfer process form three parallel processes in this system: diimide is generated at the interface of the latex particles; diimide diffuses into the organic phase to saturate carbon-carbon double bonds; diimide may be consumed at the interface by hydrogen peroxide, and may also be consumed by the disproportionation reaction in the organic phase. The two side reactions contribute to the low hydrogenation efficiency of hydrogen peroxide. Slowing down hydrogen peroxide addition and using stable interfacial catalysts may totally suppress the side reaction in the aqueous phase. The actual catalytic activity of metal ions in the latex depends on the hydrogen peroxide concentration and the addition procedure of reactants. Cupric ion provides better selectivity for hydrogenation than ferric ion and silver ion do. Boric acid as a promoter provides improved selectivity for hydrogenation and faster diimide generation rate. The side reaction in the rubber phase results in low efficiency and gel formation. The rate constants of the four reactions in this system are estimated.
It is shown that the hydrogenation of nitrile rubber latex with an average particle diameter of 72 nm is mainly a reaction-controlled process. Diimide diffusion presents limitation upon hydrogenation at high hydrogenation degree range. Antioxidants can not effectively inhibit gel formation during hydrogenation. Hydrogenation of a core-shell latex with NBR as the shell layer should be able to achieve a higher efficiency, a higher degree of hydrogenation and a lower level of crosslinking.Item Separation of Carbon Dioxide from Nitrogen Using Poly(vinyl alcohol)-Amine Blend Membranes(University of Waterloo, 2006) Francisco, Gil J.Abstract In this research, a facilitated transport membrane was developed. The reactive membrane consisted of a carrier entrapped in poly(vinyl alcohol) "PVA" matrix cast on a polysulfone support. PVA was selected to hold the reactive carrier because of its hydrophilicity and compatibility with the carrier. Several reactive amines were examined for their suitability as carrier. Among the amines tested as a carrier for CO2, diethanolamine "DEA" demonstrates a greater improvement in the permeation of CO2 as well as selectivity over N2. DEA is a secondary amine and one of the most commonly used amines for gas treating due to its favourable reaction kinetics with acid gases and because of its stability when regenerated. Initially, pure gas permeation was employed for materials selection and membrane preparation procedures. The effects of process conditions on the membrane performance, which involve carrier concentrations, feed pressures and operating temperatures were examined. Then the effects of membrane thickness and long-term stability tests were conducted. Once the appropriate membrane materials and preparation procedures were established, the next phase of the study involved the determination of the actual separation of CO2/N2 mixtures. These experiments were carried out by adjusting the feed gas composition, feed pressures and operating temperature. In general, the results obtained with CO2/N2 mixtures were in agreement with those obtained with pure gas permeation experiments. It was found that facilitation is more significant at lower CO2 partial pressure differential across the membrane. At higher partial pressure differentials, the reactive membrane may no longer serve as a facilitating medium due to the saturation of the reactive part of the membrane. Under such conditions the permeance values and selectivity obtained were simply due to the solubility and diffusivity of the CO2 and N2 in the membrane matrix. Since it was not possible to analyze concentration profiles inside the thin membrane experimentally, it was decided to analyze the effects of various parameters through the analytical transport equations. The zwitterion mechanism was used to illustrate the kinetics of the CO2-DEA systems. The mass transport equations were solved numerically. All relevant physicochemical properties needed to implement the mass transport equations were taken from the literatures. The calculated results support the experimental trends that were observed for the CO2 permeance as a function of partial pressure differentials and carrier concentrations.Item Simulation of Solid Oxide Fuel Cell - Based Power Generation Processes with CO2 Capture(University of Waterloo, 2006) Zhang, WeiThe Solid Oxide Fuel Cell (SOFC) is a promising technology for electricity generation. It converts the chemical energy of the fuel gas directly to electricity energy and therefore, very high electrical efficiencies can be achieved. The high operating temperature of the SOFC also provides excellent possibilities for cogeneration applications. In addition to producing power very efficiently, the SOFC has the potential to concentrate CO2 with a minimum of an overall efficiency loss. Concentration of CO2 is a desirable feature of a power generation process so that the CO2 may be subsequently sequestered thus preventing its contribution to global warming. The primary purpose of this research project was to investigate the role of the SOFC technology in power generation processes and explore its potential for CO2 capture in power plants.
This thesis introduces an AspenPlusTM SOFC stack model based on the natural gas feed tubular internal reforming SOFC technology. It was developed utilizing existing AspenPlusTM functions and unit operation models. This SOFC model is able to provide detailed thermodynamic and parametric analysis of the SOFC operation and can easily be extended to study the entire process consisting of the SOFC stack and balance of plant.
Various SOFC-based power generation cycles were studied in this thesis. Various options for concentrating CO2 in these power generation systems were also investigated and discussed in detail. All the processes simulations were implemented in AspenPlusTM extending from the developed natural gas feed tubular SOFC stack model. The study shows that the SOFC technology has a promising future not only in generating electricity in high efficiency but also in facilitating CO2 concentration, but the cost of the proposed processes still need be reduced so SOFCs can become a technical as well as economic feasible solution for power generation.Item Techno-Economic Study of CO2 Capture from Natural Gas Based Hydrogen Plants(University of Waterloo, 2006) Tarun, CynthiaAs reserves of conventional crude oil are depleted, there is a growing need to develop unconventional oils such as heavy oil and bitumen from oil sands. In terms of recoverable oil, Canadian oil sands are considered to be the second largest oil reserves in the world. However, the upgrading of bitumen from oil sands to synthetic crude oil (SCO) requires nearly ten times more hydrogen (H2) than the conventional crude oils. The current H2 demand for oil sands operations is met mostly by steam reforming of natural gas. With the future expansion of oil sands operations, the demand of H2 for oil sand operations is likely to quadruple in the next decade. As natural gas reforming involves significant carbon dioxide (CO2) emissions, this sector is likely to be one of the largest emitters of CO2 in Canada.
In the current H2 plants, CO2 emissions originate from two sources, the combustion flue gases from the steam reformer furnace and the off-gas from the process (steam reforming and water-gas shift) reactions. The objective of this study is to develop a process that captures CO2 at minimum energy penalty in typical H2 plants.
The approach is to look at the best operating conditions when considering the H2 and steam production, CO2 production and external fuel requirements. The simulation in this study incorporates the kinetics of the steam methane reforming (SMR) and the water gas shift (WGS) reactions. It also includes the integration of CO2 capture technologies to typical H2 plants using pressure swing adsorption (PSA) to purify the H2 product. These typical H2 plants are the world standard of producing H2 and are then considered as the base case for this study. The base case is modified to account for the implementation of CO2 capture technologies. Two capture schemes are tested in this study. The first process scheme is the integration of a monoethanolamine (MEA) CO2 scrubbing process. The other scheme is the introduction of a cardo polyimide hollow fibre membrane capture process. Both schemes are designed to capture 80% of the CO2 from the H2 process at a purity of 98%.
The simulation results show that the H2 plant with the integration of CO2 capture has to be operated at the lowest steam to carbon (S/C) ratio, highest inlet temperature of the SMR and lowest inlet temperatures for the WGS converters to attain lowest energy penalty. H2 plant with membrane separation technology requires higher electricity requirement. However, it produces better quality of steam than the H2 plant with MEA-CO2 capture process which is used to supply the electricity requirement of the process. Fuel (highvale coal) is burned to supply the additional electricity requirement. The membrane based H2 plant requires higher additional electricity requirement for most of the operating conditions tested. However, it requires comparable energy penalty than the H2 plant with MEA-CO2 capture process when operated at the lowest energy operating conditions at 80% CO2 recovery.
This thesis also investigates the sensitivity of the energy penalty as function of the percent CO2 recovery. The break-even point is determined at a certain amount of CO2 recovery where the amount of energy produced is equal to the amount of energy required. This point, where no additional energy is required, is approximately 73% CO2 recovery for the MEA based capture plant and 57% CO2 recovery for the membrane based capture plant.
The amount of CO2 emissions at various CO2 recoveries using the best operating conditions is also presented. The results show that MEA plant has comparable CO2 emissions to that of the membrane plant at 80% CO2 recovery. MEA plant is more attractive than membrane plant at lower CO2 recoveries.Item Conductive Thermoplastic Composite Blends for Flow Field Plates for Use in Polymer Electrolyte Membrane Fuel Cells (PEMFC)(University of Waterloo, 2006) Wang, YuhuaThis project is aimed at developing and demonstrating highly conductive, lightweight, and low-cost thermoplastic blends to be used as flow field bipolar plates for polymer electrolyte membrane (PEM) fuel cells.
The research is focused on designing, prototyping, and testing carbon-filled thermoplastic composites with high electrical conductivity, as well as suitable mechanical and process properties.
The impact of different types of fillers on the composite blend properties was evaluated, as well as the synergetic effect of mixtures of fill types within a thermoplastic polymer matrix. A number of blends were produced by varying the filler percentages. Composites with loadings up to 65% by weight of graphite, conductive carbon black, and carbon fibers were investigated. Research results show that three-filler composites exhibit better performance than single or two-filler composites.
Injection and compression molding of the conductive carbon filled polypropylene blend was used to fabricate the bipolar plates. A Thermal Gravimetric Analysis (TGA) was used to determine the actual filler loading of composites. A Scanning Electron Microscope (SEM) technique was use as an effective way to view the microstructure of composite for properties such as edge effects, porosity, and fiber alignment. Density and mechanical properties of conductive thermoplastic composites were also investigated. During this study, it was found that 1:1:1 SG-4012/VCB/CF composites showed better performance than other blends. The highest conductivity, 1900 S/m in in-plane and 156 S/m in through plane conductivity, is obtained with the 65% composite. Mechanical properties such as tensile modulus, tensile strength, flexural modulus and flexural strength for 65% 1:1:1 SG-4012/VCB/CF composite were found to be 584. 3 MPa, 9. 50 MPa, 6. 82 GPa and 47. 7 MPa, respectively, and these mechanical properties were found to meet minimum mechanical property requirements for bipolar plates. The highest density for bipolar plate developed in this project is 1. 33 g/cm³ and is far less than that of graphite bipolar plate.
A novel technique for metal insert bipolar plate construction was also developed for this project. With a copper sheet insert, the in-plane conductivity of bipolar plate was found to be significantly improved. The performance of composite and copper sheet insert bipolar plates was investigated in a single cell fuel cell. All the composites bipolar plates showed lower performance than the graphite bipolar plate on current-voltage (I-V) polarization curve testing. Although the copper sheet insert bipolar plates were very conductive in in-plane conductivity, there was little improvement in single cell performance compared with the composite bipolar plates.
This work also investigated the factors affecting bipolar plate resistance measurement, which is important for fuel cell bipolar plate design and material selection. Bipolar plate surface area (S) and surface area over thickness (S/T) ratio was showed to have significant effects on the significance of interfacial contact resistances. At high S/T ratio, the contact resistance was found to be most significant for thermoplastic blends. Other factors such as thickness, material properties, surface geometry and clamping pressure were also found to affect the bipolar plate resistance measurements significantly.