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Abstract

Many complex systems that exist in nature and society can be expressed in terms of networks (e.g.,
social networks, communication networks, biological networks, Web graph, among others). Usually a node
represents an entity while an edge represents an interaction between two entities. A community arises in a
network when two or more entities have common interests, e.g., related proteins, industrial sectors, groups
of people, documents of a collection. There exist applications that model a community as a fixed graph
H [98, 10, 119, 2, 142, 136]. Additionally, it is not expected that an entity of the network belongs to only
one community; that is, communities tend to share their members.

The community discovering or community detection problem consists on finding all communities in a
given network. This problem has been extensively studied from a practical perspective [61, 137, 122, 116].
However, we believe that this problem also brings many interesting theoretical questions. Thus in this
thesis, we will address this problem using a more rigorous approach. To that end, we first introduce
graph problems that we consider capture well the community discovering problem. These graph problems
generalize the classical H-Packing problem [88] in two different ways.

In the H-Packing with t-Overlap problem, the goal is to find in a given graph G (the network) at
least k subgraphs (the communities) isomorphic to a member of a family of graphs H (the community
models) such that each pair of subgraphs overlaps in at most t vertices (the shared members). On the
other hand, in the H-Packing with t-Membership problem instead of limiting the pairwise overlap, each
vertex of G is contained in at most t subgraphs of the solution. For both problems each member of H has
at most r vertices and m edges. An instance of the H-Packing with t-Overlap and t-Membership problems
corresponds to an instance of the H -Packing problem for t = 0 and t = 1, respectively. We also restrict
the overlap between the edges of the subgraphs in the solution instead of the vertices (called H-Packing
with t-Edge Overlap and t-Edge Membership problems).

Given the closeness of the r-Set Packing problem [87] to the H-Packing problem, we also consider
overlap in the problem of packing disjoint sets of size at most r. As usual for set packing problems, given
a collection S drawn from a universe U , we seek a sub-collection S ′ ⊆ S consisting of at least k sets
subject to certain disjointness restrictions. In the r-Set Packing with t-Membership, each element of U
belongs to at most t sets of S ′ while in the r-Set Packing with t-Overlap each pair of sets in S ′ overlaps
in at most t elements. For both problems, each set of S has at most r elements. We refer to all the
problems introduced in this thesis simply as packing problems with overlap. Also, we group as the family
of t-Overlap problems: H-Packing with t-Overlap, H-Packing with t-Edge Overlap, and r-Set Packing with
t-Overlap. While we call the family of t-Membership problems: H-Packing with t-Membership, H-Packing
with t-Edge Membership, and r-Set Packing with t-Membership.

The classical H-Packing and r-Set Packing problems are NP-complete [87, 88]. We will show in this
thesis that allowing overlap in a packing does not make the problems “easier”. More precisely, we show
that the H-Packing with t-Membership and the r-Set Packing with t-Membership are NP-complete when
H = {H} and H is an arbitrary connected graph with at least three vertices and r ≥ 3, respectively.

Parameterized complexity, introduced by Downey and Fellows [44], is an exciting and interesting ap-
proach to deal with NP-complete problems. The underlying idea of this approach is to isolate some aspects
or parts of the input (known as the parameters) to investigate whether these parameters make the problem
tractable or intractable. The main goal of this thesis is to study the parameterized complexity of our pack-
ing problems with overlap. We set up as a parameter k the size of the solution (number of communities),
and we consider as fixed-constants r, m and t.
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We show that our problems admit polynomial kernels via two types of techniques: polynomial para-
metric transformations (PPTs) [16] and classical reduction algorithms [43]. PPTs are mainly used to show
lower bounds and as far as we know they have not been used as extensively to obtain kernel results as
classical kernelization techniques [96, 42]. Thus, we believe that employing PPTs is a promising approach
to obtain kernel reductions for other problems as well. On the other hand, with non-trivial generalizations
of kernelization algorithms for the classical H-Packing problem [114], we are able to improve our kernel
sizes obtained via PPTs. These improved kernel sizes are equivalent to the kernel sizes for the disjoint
version when t = 0 and t = 1 for the t-Overlap and t-Membership problems, respectively.

We also obtain fixed-parameter algorithms for our packing problems with overlap (other than running
brute force on the kernel). Our algorithms combine a search tree and a greedy localization technique and
generalize a fixed-parameter algorithm for the problem of packing disjoint triangles [54]. In addition, we
obtain faster FPT-algorithms by transforming our overlapping problems into an instance of the disjoint
version of our problems.

Finally, we introduce the Π-Packing with α()-Overlap problem to allow for more complex overlap
constraints than the ones considered by the t-Overlap and t-Membership problems and also to include
more general communities definitions. This problem seeks at least k induced subgraphs in a graph G
subject to: each subgraph has at most r vertices and obeys a property Π (a community definition) and for
any pair of subgraphs Hi, Hj , with i 6= j, we have that α(Hi, Hj) = 0 holds (an overlap constraint).

We show that the Π-Packing with α()-Overlap problem is fixed-parameter tractable provided that Π
is computable in polynomial time in n and α() obeys some natural conditions. Motivated by practical
applications we give several examples of α() functions which meet those conditions.
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Chapter 1

Introduction

1.1 Motivation: Discovering Communities in Networks

Many complex systems that exist in nature and society can be expressed in terms of networks. In these
networks, each node is an entity, for example a protein, a paper, or a person, and each edge represents a
relationship between two entities, e.g., protein interaction, co-citation, or communication [104, 122].

Real networks have different properties compared to random graphs. They present a high level of
order and organization. For example, many vertices with low degree coexist with some vertices with large
degree. In addition, there are more edges within groups of vertices than edges connecting these groups.
This feature of real networks is called community structure [66].

A community arises in a network when two or more entities have common interests. We can see examples
of communities in different contexts. For example, in society we can think of groups of friends, families,
or co-workers as communities [29, 63]. In protein-interaction networks, communities could be a group of
proteins having the same or similar function in the same cell [26, 124]. On the other hand, in the World
Wide Web a community may represent a group of web pages related to the same topic [40]. In this way,
the members of a community tend to share several properties. For example, in social networks, people that
belong to a community are likely to have relative homogeneity of customs, beliefs, and interests [51, 112].
Figure 1.1 shows a Protein-Interaction network and the communities formed in this network.

Extracting these communities is helpful to understand the structure of the network, the interactions
among members, and the way that information spreads through the network. For example, benefits in the
World Wide Web are to automate the process of creating Web directories and to visualize search results
grouped by categories [7]. On the other hand, identifying communities of customers with similar purchasing
interests can help in providing more efficient recommendation systems [97]. The problem of extracting
these communities is known as the community discovering problem or community detection problem. With
the advent of the Internet, the problem of discovering communities in online social networks (such as
Facebook or LinkedIn) has received even more attention [113, 135, 107].

Intuitively, we could consider a community as a part of the network in which the nodes are highly
interconnected with each other and loosely connected to the rest of the network [112]. However, there is
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Figure 1.1: Overlapping communities in a Protein-Interaction network. Figure obtained from [119].

no universal definition of a community. In fact, the way a community is modeled is highly dependent on
the application being modeled by the network. There are applications that model a community as a fixed
graph H [98, 10, 119, 2, 142, 136].

Early approaches to solve the community discovering problem consider member disjoint communities
[46, 66, 59, 7]. Naturally, one person can have different groups of friends, and one protein can belong to
more than one protein complex. Therefore, in realistic scenarios, communities can share members [119,
112, 136, 122, 107]. In Figure 1.1 we can observe that the overlapping proteins are highlighted in red.

The community discovery problem has been extensively studied in practice [61, 137, 122, 116]. To our
knowledge, few works [111, 5] have considered the problem of discovering overlapping communities from a
more theoretical or rigorous approach. This is not a negative situation at all, as it is a problem that arises
in practice. However, we believe that there are many interesting questions that need a more theoretical
treatment. For example, to determine the computational complexity of the problem, propose particular
classes of networks or community models that make the problem “easier”, determine which aspects of the
problems (number of communities, degree or diameter of the network, etc) could make this problem more
approachable, among others.

In this work, we focus on treating the community discovering problem from a theoretical viewpoint.
To that end, in the next section, we introduce graph problems that we believe abstract and formalize the
community discovering problem.
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1.2 Packing Problems Allowing Overlap

Given a graph G and a family of graphs H, the H-Packing problem asks for the maximum number of
vertex-disjoint subgraphs in G where each one is isomorphic to a member of the family H. This set of
vertex-disjoint subgraphs is called a packing of G. This problem arises in practical applications such as
scheduling [89, 9, 76], wireless sensor tracking [11], wiring board design and code optimization [88], among
others, and it has been widely studied (see Section 2.4 for a condensed list on results on this problem).

If we take a closer look at the definition of this problem, and we consider that the input graph G
represents a network while each member in H represents a community model (recall that there exists
applications that model communities as fixed-graphs [2, 119, 142, 98]), then each subgraph in a packing of
G could represent a community of the network. However, the H-Packing fails to abstract the community
discovering problem as it will output only member-disjoint communities (subgraphs in a packing are
vertex-disjoint), and we learned in the previous section that overlap between communities is an inherent
characteristic of the network structure.

On the other hand, despite about 40 years of study in the H-Packing problem, no generalization that
consider overlap between the subgraphs in a packing has been proposed (as far as we are aware). Therefore
in this thesis, we generalize the H-Packing problem to consider overlap in a packing in two different ways.

The H-Packing with t-Overlap problem seeks for the maximum collection of subgraphs (the commu-
nities) in a graph G (the network) such that: i. each subgraph is isomorphic to a member of H (the
community models) and ii. each pair of subgraphs overlaps in at most t vertices, for some t ≥ 0 (the
shared members). Notice that for t = 0, we are back to the classical H-Packing problem.

The H-Packing with t-Overlap problem restricts the overlap between a pair of communities. Such
type of overlap can be found in certain clustering algorithms as in [8]. Bounding the pairwise overlap is
not the only way of allowing overlap in a packing. Thus, we formulate a different generalization of the
the H-Packing problem which instead of restricting the pairwise overlap, bounds the number of times a
vertex of G is contained in a subgraph of a packing. This generalization is called the H-Packing with
t-Membership problem and is defined next.

Given a graph G, the H-Packing with t-Membership problem seeks the maximum collection of sub-
graphs, each one isomorphic to a member of H, such that each vertex of G (a member of the network)
belongs to at most t subgraphs of the collection, for some t ≥ 1. Once again, for t = 1 this problem is the
classical H-Packing.

Based on the facts that a community can be represented as a fixed graph H (thus a family of graphs H
is more flexible as it allows for more than one community model) and that overlap is a necessary feature
in the community discovering problem, we believe our problems capture well the community discovering
problem. In addition, we formulate variants for these problems that regulate the overlap in terms of edges
instead of vertices or consider induced subgraphs in G as well. All these problems are formally defined in
Chapter 2.

Packing problems also arise in the context of sets. We are referring to the classical Set Packing problem.
Given a collection of sets S drawn from a universe U , the Set Packing problem looks for the sub-collection
of S of maximum cardinality such that all sets in that sub-collection are pairwise-disjoint. Such sub-
collection is called a packing of S. The pair S and U can be treated as an hypergraph, where the vertices
are the members of U and the hyper-edges are the members of S. Thus a packing of an hypergraph asks
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for a subset of disjoint-edges of maximum cardinality. When every element of S has at most r elements,
the problem is denoted as the r-Set Packing problem.

Given the closeness between the r-Set Packing and the H-Packing problems, we also formulate gen-
eralizations for the r-Set Packing problem that consider overlap. More precisely, the r-Set Packing with
t-Overlap problem seeks for the sub-collection of S of maximum cardinality such that each pair of sets
overlaps in at most t elements. In contrast, in the r-Set Packing with t-Membership problem, each mem-
ber of U is contained in at most t sets of the sub-collection. These generalizations are born from purely
theoretical motivation but we believe that are interesting on their own.

1.3 Thesis Overview

As we shall show in Chapter 3, some of our packing problems that allow overlap are NP-complete. This
implies that unless P=NP, there is no algorithm that can provide a solution for our problems in polynomial
time. There exists several alternatives to deal with NP-complete problems: approximation algorithms [6,
81], average-case analysis [82], randomized algorithms [115], and heuristics methods [109].

Parameterized complexity (or multivariate complexity) introduced by Downey and Fellows [44, 43]
(about 25 years ago) is an exciting approach to cope with NP-complete problems. The underlying idea is
to isolate some aspects or parts of the input (known as the parameter) of a problem and find a solution in
time exponential depending only on the parameter and polynomial with respect to the input. Contrary to
other approaches to deal with NP-complete problems, parameterized complexity could give more insight
about which aspect of the problem make it tractable or intractable. Thus, the main goal of this thesis is
the study of the parameterized complexity of packing problems allowing overlap.

The first aspect of the input of the packing problems that we could consider as the parameter is the size
of the solution. That is, instead of finding all communities in the network, we are interested on determining
only k. In this way, k will be our parameter, and our problem becomes a parameterized problem. After
that we endeavor to determine whether our parameterized problems admit or not algorithms that run
in f(k)nO(1) (where f is a computable function, possible exponential, and n is the size of the network).
Ideally, one hopes that these algorithm would be of practical use for small values of k.

The remainder of this thesis is organized as follows. In Chapter 2, we outline the basic notation and
terminology, and the formal definitions of our parameterized problems. That chapter also includes a list
on related problems to our packing problems with overlap. In Chapter 3, we show the computational com-
plexity of our problems. After that we divide our thesis in two main objectives: reduce our parameterized
problems to problem kernels (i.e. reduced instances with size bounded by O(f(k)) and determine algo-
rithms that solve our problems in O(f(k)nO(1)) time. Even though finding a kernel for our problems would
imply immediate FPT-algorithms (by running a brute force on the kernel), we would like to determine
faster FPT-algorithms for our problems. Achieving any of these goals would imply that our parameter-
ized problems are fixed-parameter tractable. We dedicate Chapters 4-7 and Appendix A to the first goal,
while we explore the second one in Chapter 8. Finally in Chapter 9, we generalize our packing problems
even more. We believe that this generalization captures many more realistic scenarios. We show that our
generalization remains fixed-parameter tractable when subject to some natural conditions. Appendix B is
a compendium of all the parameterized problems considered in this thesis.
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Chapter 2

Preliminaries

2.1 Notation and Terminology

In the following section, we introduce the notation and terminology adopted in this thesis. Recall that we
study problems that deal with graphs or sets. Thus, it may be the case that some terms apply for both
types of problems. Let us start with the terminology related to graphs. The reader is referred to the book
of Diestel [38] for a complete review of graph theory concepts.

Graphs are undirected and simple unless specified otherwise. For a graph G, V (G) and E(G) denote its
sets of vertices and edges, respectively. We use the letter n to denote the size of V (G). The neighborhood of
a vertex v is denoted by NG(v) = {u | (u, v) ∈ E(G)}. In the same way, for a set of vertices S ⊆ V (G), we
define NG(S) = {v | (u, v) ∈ E(G), u ∈ S; v /∈ S}. The degree of a vertex v is |NG(v)| and will be denoted
as degG(v). The distance between two vertices u and v in G, denoted as distG(u, v), is the length of a
shortest path from u to v in G. We drop the index G whenever it is clear from the context. A subgraph of
G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). The induced subgraph of G by a set S ⊆ V (G)
is denoted by G[S]; G[S] has vertex set S and edge set {(u, v) ∈ E(G[S]) | u, v ∈ S, (u, v) ∈ E(G)}.

We adopt the following notation for some graph classes that are used in this document. A path on
s vertices and s − 1 edges is written as Ps. We denote a star on s vertices and s − 1 edges as Ss. A
clique or complete graph on s vertices is denoted as Ks. A cycle on s vertices and s edges is denoted as
Cs. A bipartite graph is a graph G whose set of vertices V (G) can be partitioned into two disjoint sets,
V (G) = A ∪ B, such that any edge of G has an endpoint in A and the other in B. A complete bipartite
graph or a bipartite clique, written Kp,q where p = |A| and q = |B|, is a bipartite graph in which every
two vertices from different partitions are adjacent. A graph is chordal if it does not contain a cycle on n
vertices as an induced subgraph for n > 3. A cograph is a graph which does not contain an induced path
of three edges. Thus, in a connected cograph the greatest distance between any pair of vertices is at most
two; that is, the diameter of a connected cograph is at most two. A graph is planar if it can be drawn in
the plane in such a way that no edges cross each other.

Given a graph G, let b : V (G) → N a degree constraint for every vertex. A subset M ⊆ E(G) is
called a b-matching of G, if for all v ∈ V (G) the number of edges in M incident to v is at most b(v). The
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Cardinality b-Matching problem refers to the problem of finding a b-matching of G of maximum cardinality
and can be solved in polynomial time [84]. A b-matching of maximum cardinality is called a maximum
cardinality b-matching. Observe that for b(v) = 1 for all v ∈ V (G), we are back to the classical maximum
matching problem. A vertex v is s-matched if the number of edges of M incident to v is s, for 1 ≤ s ≤ b(v).
Otherwise, v is unmatched. An M -alternating path in G is a path in G which starts with an unmatched
vertex and then contains alternately edges from E(G)\M and M . That is, a path p = v1v2 . . . vp, where v1
is an unmatched vertex, v2 . . . vp−1 are s-matched vertices, and vp could be s-matched or unmatched. An
M -alternating path is an M -augmenting path if it contains at least one s-matched vertex v with s < b(v)
in the path v2 . . . vp or vp is unmatched. The following lemma is a generalization of the well-known fact
that a maximum matching of a graph G does not contain an augmenting path.

Lemma 1. [67] Any maximum cardinality b-matching M of a graph G does not contain an M -augmenting
path.

A set of vertices V ′ ⊆ V (G) or edges E′ ⊆ E(G) is contained in a subgraph H, if V ′ ⊆ V (H) or
E′ ⊆ E(H), respectively. On the other hand, V (E′) denotes the set of vertices corresponding to the
end-points of all the edges in E′, i.e., V (E′) = {u, v | (u, v) ∈ E′}. For a collection of subgraphs Q, |Q| is

the number of subgraphs in Q while V (Q) =
⋃|Q|
i=1 V (Qi) where Qi ∈ Q.

Two subgraphs Hi and Hj are vertex-disjoint if they do not share vertices, i.e., V (Hi) ∩ V (Hj) = ∅.
Otherwise, we say that Hi and Hj overlap in |V (Hi) ∩ V (Hj)| vertices. In addition, G[V (Hi) ∩ V (Hj)] is
the overlap region between Hi and Hj . Similarly, Hi and Hj are edge-disjoint if they do not share edges,
i.e., E(Hi) ∩ E(Hj) = ∅. We also use the term overlap for the edge-version, i.e., Hi and Hj overlap in
|E(Hi) ∩ E(Hj)| edges.

All our graph problems deal with a family of graphs H where each H ∈ H is an arbitrary graph. Let
r(H) = max{|V (H)| : H ∈ H} denote the order of the biggest graph in H. Observe that in order to have
this as a reasonable notion, we always (implicitly) require H to be a finite set. We simply write r instead of
r(H) if H is clear from the context. Similarly, m(H) = max{|E(H)| : H ∈ H}, and we write m whenever
it is clear from the context. When the family of graphs H is composed of only one graph H, we replace H
by H in the notation that involves H.

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there exists a bijection f : V → V ′ such
that (u, v) ∈ E if and only if (f(u), f(v)) ∈ E′. A subgraph of G that is isomorphic to some H ∈ H is

called an H-subgraph. We denote as HG the set of all H-subgraphs in G, in this way, |HG| = O(nr
2

).

A packing of a graph G is a set of vertex-disjoint subgraphs of G each one isomorphic to a graph in
H. An edge-packing of G is a set of edge-disjoint subgraphs each one isomorphic to a graph in H. In
this thesis, we will consider problems that modify this notion of packing by allowing overlap between the
subgraphs.

Let V be a collection of sets of vertices each of which forms a subgraph (not necessarily induced)
isomorphic to some H ∈ H. That is, for each V ∈ V, there is an H ′ ⊆ G[V ] that is an H-subgraph, (here
⊆ also refers to the subgraph relation). Hence, for each V ∈ V, |V | ≤ r, and |V| = O(nr). Also, let E be a
collection of sets of edges each of which induces a subgraph isomorphic to some H ∈ H. That is, for each
E ∈ E , there is an H ⊆ G[V (E)] that is an H-subgraph. V (E) denotes the set of vertices corresponding
to the end-points of the edges E. For each E ∈ E , |E| ≤ m, and |E| = O(nm). Notice that there could be
two H-subgraphs H1, H2 in HG with the same element V ∈ V but different set of edges E1, E2 ∈ E . In
this way, V (E1) = V (E2) but E1 6= E2.
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We will now provide the notation and terminology involving sets. The universe is U = {u1, . . . , un},
and we denote the size of the universe by n. Let S = {S1, . . . , Sl} be a collection of sets drawn from U .
We usually denote as u, S, s an element of U , a set of S, and a subset of U , respectively. For S ′ ⊆ S,
val(S ′) denotes the union of all elements in S ′. For P ⊂ U , P is contained in S ∈ S, if P ⊆ S. For a
subset s ⊂ U , S(u) collects all the sets in S that contain s.

Two sets Si and Sj are element-disjoint if they do not share elements, i.e., Si ∩ Sj = ∅. Two sets
S,S′∈ S overlap in |S ∩ S′| elements and they conflict if |S ∩ S′| ≥ t + 1. For any two sets S, S′ ∈ S,
|S ∩ S′| is the overlap size while S ∩ S′ is the overlap region.

A packing of U is a collection of element-disjoint sets of S. In this work, we will consider a modification
to this definition by allowing overlap in the sets of a packing.

2.2 Basics on Classical and Parameterized Complexity

We will provide in this section some basic notions on classical computational complexity. The reader is
referred to Garey and Johnson [65] and Papadimitriou [121] for excellent sources about this topic.

In this thesis, we assume a generic one-processor random access machine (RAM) as our underlying
model of computation. In the RAM model, instructions (arithmetic, memory access, control, among
others) are executed one after another and each one takes a unit time.

Informally, the running time of an algorithm on a particular input is the number of steps executed.
The time complexity of an algorithm A is the function t : N → N, where t(n) is the maximum number of
steps that A uses on any input of length n. Thus, the running time of A is t(n).

A problem or a language is a set L of strings of length at most n over a finite alphabet Σ (L ⊆ Σn). A
language is decided by an algorithm A, if A can determine whether the string s is in L or not, for every
string s ∈ Σn.

For a given function g(n), we denote g(n) = O(f(n)) if there exists constants c0 and n0 such that
g(n) ≤ c0f(n) for all n ≥ n0. For a given a function g(n, k) we write g(n, k) = O∗(f(k)) if there exists k0,
c, and n0 such that g(n, k) ≤ f(k)nc for all k ≥ k0 and n ≥ n0.

The time complexity class P contains the problems that are solvable in polynomial-time. More specif-
ically, they are problems that can be solved in time O(nc) for some constant c, n is the input size of the
problem. On the other hand, the class NP consists of those problems that are “verifiable” in polynomial
time. That is, given a “certificate” of a solution, there exists an algorithm that can verify in polynomial
time whether the certificate is correct or not.

A language L is NP-complete, if it satisfies the following conditions: 1. L is in NP and 2. Every
language L′ in NP is polynomial time reducible to L. If a language L satisfies property 2 (but not
necessarily property 1), L is NP-hard. A language is in co-NP if and only if its complement is in NP.

In Chapter 1, we motivate the use parameterized complexity to cope with the intractability of our
packing problems with overlap. We give next some general notions of this approach as introduced by
Downey and Fellows [44]. We refer to the reader to [44, 117, 43, 33] for comprehensive reviews.

Definition 1. A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a finite alphabet. The
second component is called the parameter.
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Intuitively, a parameterized problem is a decision problem where some aspect of its input constitutes a
parameter. That is, the input to a parameterized problem is a pair (x, k) ∈ Σ∗×N where x is the instance
of the problem and k is the parameter (we assume here that the parameter is an integer).

Definition 2. A parameterized problem L ⊆ Σ∗ × N is fixed-parameter tractable (or belongs to the class
FPT), if there is an algorithm A, a polynomial p, and a computable function f such that A decides for any
input (x, k) ∈ Σ∗×N whether or not (x, k) ∈ L in at most f(k)p(|x|) time, where |x| denotes the length of
the input x. The algorithm A is called a fixed-parameter algorithm or simply an FPT-algorithm.

A parameterized problem is reduced to a kernel, if any instance can be reduced to a smaller instance
such that: the reduction is in polynomial time, the size of the new instance is bounded by a function
depending only on an input parameter, and the smaller instance has a solution if and only if the original
instance has one. Formally,

Definition 3. A kernelization or a kernelization algorithm for a parameterized problem L is a polynomial
time transformation that maps an instance (x, k) to an instance (x′, k′) (the kernel) such that:

(i) (x, k) ∈ L if and only if (x′, k′) ∈ L,

(ii) k′ ≤ k,

(iii) |x′| ≤ f(k) for some arbitrary computable function f on non-negative integers.

We say that L has kernel size f(k). The size of the kernel could be exponential or worse. When f is
bounded by a polynomial in k, L has a polynomial kernel. Bodlaender et al. [16] introduce the notion of
polynomial parameter transformations to show that some parameterized problems do not admit polynomial
kernels unless NP⊆coNP/poly.

Definition 4. Let L and Q be parameterized problems. We say that L is polynomial time and parameter
reducible to Q, if there exists a polynomial time computable function f and a polynomial p that for all
x ∈ {0, 1}∗ and k ∈ N, if f(x, k) = (x′, k′), then the following hold: (i) (x, k) ∈ L if and only if (x′, k′) ∈ Q,
and (ii) k′ ≤ p(k).

We say that f is a polynomial parametric transformation from L to Q.

Every problem that is in FPT has a kernelization algorithm [117, 44], and every problem that is reduced
to a kernel is in FPT. This last follows because after reducing a problem to a kernel, we can run a brute-
force algorithm on the kernel. Since the kernel has size bounded by a parameter, then the brute-force
algorithm (running on the kernel) is an FPT algorithm.

Unfortunately, not every parameterized problem is fixed-parameter tractable. W [1] is the lowest class of
parameterized intractability. The fundamental conjecture that FPT 6= W [1] is analogous to the conjecture
that P 6= NP . In this way, a problem that is in W [1] does not allow for a fixed-parameter algorithm unless
FPT = W [1]. This problem is called fixed-parameter intractable.

The running time of a fixed-parameter algorithm is polynomial in the input size n but possibly ex-
ponential or worse in the parameter k. Therefore, one expects for small values of k that f(k) leads to a
fixed-parameter algorithm of practical use.
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2.3 Our Parameterized Problems

We consider packing problems that allow overlap in a solution in two different ways. In the family of
t-Membership problems, the overlap condition bounds the number of times an object is contained in a
group of a solution. On the other hand, in the family of t-Overlap problems, that condition bounds the
number of objects that a pair of groups of a solution shares. Depending on the type of problem (packing
sets or packing graphs) an object is an element, a vertex or an edge, and a group is a set or a subgraph.

We next introduce the formal definitions of the parameterized versions of the t-Membership and t-
Overlap problems considered in this work. Overloading the terminology, we will use the same problem
name for the parameterized decision versions of our problems as their maximization versions introduced
in Chapter 1. Let k be the parameter size of the solution and r, m and t be fixed constants in all the
following definitions.

2.3.1 Pairwise Overlap Problems

Our t-Overlap problems are defined next. In these definitions, r ≥ 1 and t ≥ 0 are constants.

The r-Set Packing with t-Overlap problem
Instance: A collection S of distinct sets, each of size at most r, drawn from a universe U
of size n, and a non-negative integer k.
Parameter : k
Question: Does S contain a (k, r, t)-set packing, i.e., a collection of at least k sets K =
{S1, . . . , Sk} where |Si ∩ Sj | ≤ t, for any pair Si, Sj with i 6= j?

The H-Packing with t-Overlap problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, r, t)-H-packing, i.e., a set of at least k subgraphs K =
{H1, . . . ,Hk} where each Hi is isomorphic to some graph from H, V (Hi) 6= V (Hj), and
|V (Hi) ∩ V (Hj)| ≤ t for any pair Hi, Hj with i 6= j?

The Induced-H-Packing with t-Overlap problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, r, t)-induced -H-packing, i.e., a set of at least k in-
duced subgraphs K = {H1, . . . ,Hk} where each Hi is isomorphic to some graph from
H, V (Hi) 6= V (Hj), and |V (Hi) ∩ V (Hj)| ≤ t for any pair Hi, Hj with i 6= j?
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The H-Packing with t-Edge-Overlap problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k,m, t)-edge-H-packing, i.e., a set of at least k subgraphs
K = {H1, . . . ,Hk} where each Hi is isomorphic to a graph H ∈ H, E(Hi) 6= E(Hj), and
|E(Hi) ∩ E(Hj)| ≤ t for any pair Hi, Hj with i 6= j?

2.3.2 Membership Problems

We next introduce the family of t-Membership problems. For these problems, r ≥ 1 and t ≥ 1 are
constants.

The r-Set Packing with t-Membership problem
Input : A collection S of distinct sets, each of size at most r, drawn from a universe U of
size n, and a non-negative integer k.
Parameter : k
Question: Does S contain a (k, r, t)-set membership, i.e., at least k sets K = {S1, . . . , Sk}
where each element of U is in at most t sets of K?

The H-Packing with t-Membership problem.
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, r, t)-H-membership, i.e., a set of at least k subgraphs
K = {H1, . . . ,Hk} where each Hi is isomorphic to some graph H ∈ H, V (Hi) 6= V (Hj)
for i 6= j, and every vertex in V (G) is contained in at most t subgraphs of K?

The Induced-H-Packing with t-Membership problem.
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, r, t)-induced -H-membership, i.e., a set of at least k in-
duced subgraphs K = {H1, . . . ,Hk} where each Hi is isomorphic to some graph H ∈ H,
V (Hi) 6= V (Hj) for i 6= j, and every vertex in V (G) is contained in at most t subgraphs
of K?

The H-Packing with t-Edge Membership problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k,m, t)-edge-H-membership, i.e., a set of at least k
subgraphs K = {H1, . . . ,Hk} where each Hi is isomorphic to some graph H ∈ H,
E(Hi) 6= E(Hj) for i 6= j, and every edge in E(G) belongs to at most t subgraphs
of K?
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An instance of the set packing problems with membership and overlap will be denoted as (S,U , k)
while an instance for the graph packing problems will consists of (G, k).

Sometimes the size k will be dropped from the notation (k, r, t)-set membership, (k, r, t)-H-membership,
(k, r, t)-set packing and (k, r, t)-H-packing and be simply denoted as (r, t)-set membership, (r, t)-H-member-
ship, (r, t)-set packing and (r, t)-H-packing, respectively.

An (r, t)-H-membership P of G is maximal if every H-subgraph of G that is not in P has at least one
vertex v contained in t H-subgraphs of P . Similarly, an (r, t)-set packing M of S ′ ⊆ S is maximal if any
set of S ′ that is not already inM conflicts with some set inM. That is, for each set S ∈ S ′ where S /∈M,
|S ∩ S′| ≥ t+ 1 for some S′ ∈M.

The parameterized versions of theH-Packing and r-Set Packing problems (when they are parameterized
by size of the solution) are included in Appendix B. Notice that when t = 1 and t = 0 for the t-Membership
and t-Overlap problems, respectively, we are back to the classical r-Set Packing, H-Packing and Edge-H-
Packing problems.

2.4 Overview of Related Results

We have introduced theoretical formalizations for the problem of discovering communities in networks.
These formalizations are gathered in the graph packing problems that allow overlap: namely, the H-
Packing with t-Overlap and t-Membership problems. We have also proposed similar formulations for
packing hypergraphs allowing overlap, i.e., the r-Set Packing with t-Overlap and t-Membership.

To the best of our knowledge, our formalizations are newly introduced to the literature. Thus, we will
provide a short list of results on the problems that are closest to ours: the H-Packing and r-Set Packing
problems. Our emphasis will be on classical complexity and parameterized complexity. We also point out
other problems that could be related to our packing problems with overlap as well.

2.4.1 Results on the H-Packing Problem

In this section we first discuss the results related to the computational complexity of the H-Packing
problem. After that, we list some of the results related to the parameterized complexity of this problem.

Hell and Kirkpatrick [88] proved that the H-Packing problem is NP-complete, if H has a component
with at least three vertices. This result implies that the only possible polynomial time solvable case of the
H-Packing problem is when H is an edge, unless P = NP. In this case, the K2-Packing problem is better
known as the maximum matching problem [32, 48, 49].

Dyer and Frieze [47] showed that the H-Packing remains NP-complete even when G is a planar graph
and H is an arbitrary connected graph on at least three vertices. This complexity result holds when G is
planar bipartite and H is a connected graph, a tree, or a path on at least three vertices [47]. In addition,
Berman et al. [12] showed that this problem is still NP-complete if both G and H are planar graphs.
Caprara and Rizzi [18] focused on the particular case of H = K3. The authors shows that the K3-Packing
problem is NP-hard for planar graphs if the maximum degree of the input graph G is at least 4. Otherwise,
if G has maximum degree at most 3, the problem is solvable in polynomial time.
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Due to the intractability of the H-packing problem, an alternative way to study it is to consider a
specific graph class for the graph G. Masuyama and Ibaraki [105] presented a linear-time algorithm for
the H-packing problem when G is a tree and H is a path of length k. Lingas [100] has shown that the
H-Packing can be solved in O(|V (G)|5/2) when G is a tree of arbitrary size and thus H is a tree as well.
Kovacs and Lingas [94] present an O((|V (G)||V (H)|)2) algorithm for the H-packing problem when both G
and H are biconnected outerplanar graphs. Biconnected outerplanar graphs are partial 2-trees; Dessmark
et al. [37] generalize the previous result for partial k-trees. They present an O(|V (G)|k+1|V (H)|+|V (H)|k)
algorithm to solve the H-packing problem when the G is a partial k-tree and H is a k-connected partial
k-tree.

We now list the works for the H-Packing problem that have considered more than one graph in the
family H. In general, H-Packing is polynomial-time solvable, if every component of every graph in H has
at most two vertices. When H contains only complete graphs, then H-Packing problem is NP-complete,
if all H ∈ H have at least three vertices [88, 78]. However, if H = {K2,K3} the H-packing problem is
solvable in polynomial [78].

For a family of complete bipartite graphs, the H-Packing problem is polynomially solvable only if H
is composed of the family of stars {S1, S2, . . . }. For any other family of complete bipartite graphs, the
H-packing problem is NP-complete or harder [77, 79].

In the case that H is the family of cycles, the H-packing problem is NP-complete unless H is composed
of all cycles, i.e., H = {C3, C4, . . . } [49, 80], all cycles except C3, i.e., H = C4, C5, ... [80], or all cycles
except C4, i.e., H = {C3, C5, C6 . . . } [4].

A graph H is hypomatchable if H has no perfect matching but H\v has a perfect matching for all v ∈ H
[78]. A hypomatchable graph on n vertices is denoted by Fn. In the case in which H = {K2, F1, . . . , Fk},
the H-Packing problem is polynomially solvable [120].

A k-piece is a connected graph with maximum degree k [75]. When H is the family of all k-pieces, the
H-packing problem can be solved efficiently [72].

On the Parameterized Complexity

The H-Packing problem has been extensively studied in the area of parameterized complexity, mainly
when the family of graphs H contains a prescribed graph H. Unless specified otherwise, in all the results
we list next, the input parameter k is the size of the solution. Let us start the discussion with results that
focus on prescribed graphs H.

Fellows et al. [54] give an O(22k log k+1.86kn2) algorithm for the K3-packing problem. This algorithm
combines a search tree with a greedy algorithm. The authors also reduce the K3-Packing problem to an
O(k3) kernel by using a rule based on crown decompositions [28]. This kernel result was later on improved
to O(k2) by H. Moser [114].

Prieto and Sloper [123] give an O(k2) kernel when H is a star with s leaves (H = Ss+1). Basically,
the kernelization algorithm consists of obtaining a maximal collection of disjoint Ss+1 and reducing the
vertices that are not in that collection with reduction rules based on crown decompositions. In the special
case of s = 2, the authors obtain a kernel with 15k vertices and an O(25.301kk2.5 + n3) algorithm. The
FPT-algorithm is based on running a brute-force algorithm on the kernel but instead of searching for all
possible selections of k S3’s, the authors search only for the centers of the stars. The kernel size of the
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S3-Packing (or equivalently P3-Packing) was improved to 7k by Wang et al. [134]. The improvement comes
from analyzing in more detail the vertices which are not in the maximal collection. Again the vertices
which are not in the maximal collection are reduced using crown decompositions-based reduction rules.

Fernau and Raible [58] consider the P3-Packing problem as well. In this work, the authors give an
O∗(2.4823k) algorithm for this problem by using a WIN-WIN approach. The basic idea is to construct a
solution of size j by using some vertices of a solution of size j − 1. In addition, the algorithm interleaves
kernelization with the search of that solution.

Chen et al. [24] transform kernelization results for packing problem to their dual covering problems
(not defined here). With that dual notion and with general crown decompositions, they obtain a kernel
reduction for the Tr-Packing problem, where Tr is a tree with r edges. For the particular case of r = 2
(i.e., the P3-Packing problem) the authors obtain a kernel with 6k vertices. This result improves the 7k
kernel obtained by Wang et al. [134].

We now switch our attention to results concerning an arbitrary graph H. The first FPT-algorithm for
the H-Packing problem was achieved by Fellows et al. [54]. This algorithm generalizes the search tree algo-
rithm for the K3-Packing problem (obtained in the same article) and runs in O(2k|H| log k+2k|H| log |H|nH).
Subsequently by using color-coding and dynamic programming, Fellows et al. [53] dramatically improved
this running time to O∗(210rk). Later on, Kneis et al. [90] introduced a new technique called divide and
color which improves the running time to O∗(24rk).

Regarding kernelization, the H-Packing problem was first reduced to an O(rrkr) kernel by Fellows et
al. [54]. Even though reduction rules based on crown decompositions have been very successful at obtaining
kernels for packing problems for small Hs, it seems not to be the case for arbitrary graphs H. Fellows
et al. [54] use a different technique which basically consists on bounding the number of subgraphs that
contain a specific set of vertices. This technique is called sunflower kernelization [35].

Moser [114] achieved the current smallest kernel for the H-Packing problem. He reduces this problem
to an O(rrkr−1) kernel. This kernelization algorithm is similar to the one in [54] in the sense that the
input instance is reduced by bounding the number of subgraphs in G that contain a specific set of vertices.
However, there is one additional step in this algorithm which allows to reduce the exponent from r to
r − 1. Roughly speaking, this extra step consists on computing a maximal collection of subgraphs that
overlaps in at most r − 1 vertices and reducing the vertices that are not in that maximal collection using
a maximum matching reduction (which resembles reduction rules based on crown decompositions).

There has recently been a growing interest on proving lower-bounds on the kernel sizes of parameterized
problems [23, 15, 95, 36, 55, 17]. Concerning packing problems, Dell and Marx [35] have shown that the
Kr-Packing problem does not admit a problem kernel with O(kr−1−ε) vertices for any ε > 0 under certain
complexity assumption (unless coNP ⊆ NP/poly). This leads to the question whether the current O(kr−1)
kernel for the H-Packing problem is a tight bound for an arbitrary graph H or not, which remains open.

Regarding family of graph classes H, Jansen and Marx [85] give a characterization of the family H
such that the H-Packing problem admits a polynomial kernel when parameterized by k|V (H)| where H
is in H. The authors show that if a hereditary class H has the property that every component of every
graph in H either has bounded size or is a bipartite graph with one of the sides having bounded size, then
the H-Packing problem admits a polynomial kernel, and has no polynomial kernel otherwise, unless the
polynomial hierarchy collapses. Furthermore, if H does not have this property, then H-Packing is either
WK[1]-hard, W [1]-hard, or Long Path-hard, giving evidence that it does not admit polynomial Turing
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kernels either. Bodlaender et al. [17] have obtained lower bounds for the problem of finding disjoint cycles
and paths.

2.4.2 Results on the Edge-H-Packing Problem

We now consider the Edge-H-Packing problem. Once again we focus on the classical complexity of this
problem, and after that we move to its parameterized complexity. Unfortunately, the Edge-H-Packing
problem has not been studied as extensively as its vertex-version.

As with the vertex-version, the Edge-H-Packing problem is NP-complete for an arbitrary connected
graph H that has at least three edges [30, 39]. When H has at most two edges, the Edge-H-Packing
problem is solved in polynomial time [105, 131].

This problem is still NP-complete when G is an arbitrary connected graph or a planar graph and H is
a star [47], a path [47], a tree [30], a cycle [83], and an acyclic graph [30, 39, 74] on at least three edges.

Heath and Vergara [73] obtain several interesting results for this problem. They show that the problem
is polynomial solvable if G is a tree, and in linear time if H is a star or a path. If G is an outerplanar
graph and H is either a cycle or a star with s leaves, the problem can be solved in linear time.

The Edge-K3-Packing problem is solvable in polynomial time if the maximum degree of G is at most
4, and if G has maximum degree at least 5 then is NP-hard for planar graphs [18].

Unfortunately, the landscape of the complexity for this problem when the family of graphs H has more
than one graph seems unexplored. Let us now discuss the results concerning the parameterized complexity
of this problem.

On the Parameterized Complexity

Mathieson et al. reduce the Edge-K3-Packing problem to a kernel bounded by 4k. This appears to be the
only result considering prescribed graphs H for the edge-version of the packing problem.

Fellows et al. [54] obtain a kernelization algorithm for the Edge-H-Packing problem, for an arbitrary
graph H on r edges. This algorithm works in the same way as with the vertex-version of the problem and
achieves an O(rrkr) kernel. In addition, the authors show an FPT-algorithm based on color-coding and
dynamic programming with O∗(210rk) running time. Currently, this problem can be solved in O∗(24rk) [90].

2.4.3 Results on the r-Set Packing Problem

In this section, we present a survey on the results to the r-Set Packing problem. Some of these algorithms
solve the more general weighted version of the r-Set Packing problem which considers that every set in S
has associated a weight (a real number) and the question is whether S admits or not a (k, r, 0)-set packing
of maximum weight.

The r-Set Packing problem was shown to be NP-complete, for r ≥ 3, among the famous Karp’s 21
NP-complete problems [87]. The known parameterized algorithms for the r-Set Packing have used either
the technique of greedy localization [86], the technique of color-coding [3] plus dynamic programming [25,
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53, 92], color-coding plus the divide-and-conquer method [25, 90], the narrow sieves technique [13, 14], and
the combinatorial representative sets technique [60]. Being the last three, the ones that led to the current
fastest algorithms for the r-Set Packing and other combinatorial problems.

The history of the FPT-algorithms for the r-Set Packing problem for the particular case of r = 3
seems to start with [86]. Jia et al. [86] give an O((5.7k)kn) for the 3-Set Packing problem using a greedy
localization algorithm. The fastest algorithms for the parameterized versions of the 3-Set Packing problems
(and other graph problems as well) have been obtained using color-coding, which was introduced by Alon
et al. [3]. The basic idea of this technique is to randomly color the elements and expect that the sets on
a packing contains elements with different colors. Usually, the running time of algorithms obtained via
color-coding are of the form O∗(ck) for some constant c. Note the big improvement on FPT-algorithms
with running time O∗(kk). However, this constant c can be very large. De-randomizing these algorithms
results on algorithms with running time of the same form but with even larger constants [90].

Koutis [92] proposed a randomized algorithm for the 3-Set Packing problem that takes time O∗(10.883k)
and a deterministic algorithm that runs in O∗(32003k). Kneis et al. [90] improve this running time with a
deterministic algorithm of time O∗(163k) using randomized divide and conquer (in combination with color-
coding). Using divide and conquer as well, Chen et al. [25] provide a randomized algorithm that solves
the 3-Set Packing problem in O∗(2.523k) whose deterministic algorithm is of time complexity O∗(12.83k).
Liu et al. [101] gave a deterministic algorithm of time O∗(4.6133k) based on greedy localization and
color coding. Wang and Feng [133] further improve this running time. They provide a randomized and
deterministic algorithm both with O∗(3.523k). The current best algorithm for the 3-Set Packing problem
runs in O∗(8.097k) and it was obtained by Zehavi [141].

We now list the results on the general case of the r-Set Packing problem, for r ≥ 3. Chen et al. [21]
provided an O∗((rk)O(rk)) deterministic algorithm for this problem. Later on, Downey, Fellows, and
Koblitz [41] presented an O∗((rk)O(rk)) deterministic algorithm for the weigthed r-Set Packing problem.
Subsequently, Fellows et al. [53] obtained an O∗(2O(rk)) deterministic algorithm for the weighted version
as well. Koutis [92] provided both deterministic and randomized algorithm for the r-Set Packing problems
with running times O∗(2O(rk)) and O∗(10.874rk), respectively. Subsequently, Chen et al. [27] presented
an O∗(5.44rk) deterministic algorithm for the r-Set Packing problem. Chen et al. [22] give deterministic
and randomized algorithms for the weighted r-Set Packing problem with running times O∗(4rk+o(rk)) and
O∗(4(r−1)k+o(rk)), respectively. Chen et al., [20] designed a deterministic algorithm based on universal sets
with improved running times of O∗(4(r−0.5)k+o(rk)) for the weighted r-Set Packing. Koutis [93] obtained
a randomized algorithm for the r-Set Packing problem which runs in O∗(2rk). Using representative sets,
Zehavi [140] provided a deterministic algorithm for the weighted r-Set Packing problem whose running
time is O∗((0.563 · 2.851r)k). Later on, Goyal et al., [69] designed an improved deterministic algorithm for
this problem combining representative sets and dynamic programming. This improved algorithm runs in
time O∗(2.851(r−0.5501)k). Table 2.1 summarizes these results.

On the other hand, kernelization algorithms for the r-Set Packing problem have been obtained in [53,
1, 140]. Fellows et al. [53] reduce this problem to a kernel with both O(rrkr) elements and sets in the
reduced universe and collection of sets. The underlying idea of this reduction is to bound the number of
sets in S that contain a specific subset of elements of U . Further kernel size improvement to O(errkr)
(on the number of sets) was achieved by Zehavi [140]. Dell and Marx [35] showed that the r-Set Packing
does not admit a problem kernel with O(kr−ε) sets for any ε > 0 unless coNP⊆NP/poly. Interestingly, the
universe can be further reduced as Abu-Khzam [1] gives a kernelization algorithm that returns a kernel
with O(rrkr−1) elements in the universe.
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Reference Problem Algorithm Running Time

Chen et al. [21] r-Set Packing Deterministic O∗((rk)O(rk))
Downey et al. [41] Weighted-r-Set Packing Deterministic O∗((rk)O(rk))
Fellows et al. [53] Weighted-r-Set Packing Deterministic O∗(2O(rk))
Koutis [92] r-Set Packing Deterministic O∗(2O(rk))
Koutis [92] r-Set Packing Randomized O∗(10.874rk)
Chen et al. [27] r-Set Packing Deterministic O∗(5.44rk)
Chen et al. [22] Weighted-r-Set Packing Deterministic O∗(4rk+o(rk))
Chen et al. [22] Weighted-r-Set Packing Randomized O∗(4(r−1)k+o(rk))
Chen et al. [20] Weighted-r-Set Packing Deterministic O∗(4(r−0.5)k+o(rk))
Koutis [93] r-Set Packing Randomized O∗(2rk)
Zehavi [140] Weighted-r-Set Packing Deterministic O∗((0.563 · 2.851r)k)
Goyal et al. [69] Weighted-r-Set Packing Deterministic O∗(2.851(r−0.5501)k)

Table 2.1: Algorithms for the r-Set Packing problem and its weighted version

Results on the r-Set Packing with t-Membership Problem

Recently, the r-Set packing with t-Membership problem received attention by Gabizon et al. [64]. Using

representative sets, the authors obtain a deterministic algorithm that runs in O(2O(rk log t
t )|S|nO(1)). Given

that representative sets are useful to guarantee disjoint sets, the authors extend the concept of representa-
tive sets to multisets. A multiset is a set where an element could occur more than once. The idea behind
the generalization of representative sets to consider multisets is as follows. If P is a family of multisets,
with all sets having the same size k (counting duplicates), then a subfamily P ′ ⊆ P k-represents P, if for
every multiset A of size r, whenever there exists a P ∈ P such that no element appears more than t times
in P +A, then there also exists a set P ′ ∈ P ′ such that no element appears more than t times in P ′ +A.
The authors show that every family P of multisets has a relatively small k-representative family P ′ and
provide an efficient algorithm to compute such family.

The connection between the r-Set Packing with t-Membership problem and this generalized notion of
representative sets is as follows. Basically, a (k, r, t)-set membership K = {S1, S2, . . . , Sk} is viewed as
a multiset P = S1 + S2 + · · · + Sk. This multiset has size at most kṙ and every element in U appears
at most t times in P . The family P is therefore the collection of all (k, r, t)-set membership of S. The
algorithm designed by Gabizon et al. [64] solves the more general weighted version of the r-Set packing
with t-Membership problem.

Observe that this result could imply that the r-Set Packing with t-Overlap is more difficult to solve
than the r-Set Packing with t-Membership problem. For the t-Overlap version, every element of U could
appear at most k times in a solution (a multiset). However, not every multiset that contains an element
at most k times will be a solution for the r-Set Packing with t-Overlap problem.

2.4.4 Other Related Problems

In this section, we briefly mention other graph problems that have some relationship to our packing with
overlap problems. The cluster editing problem consists of modifying a graph G by adding or deleting edges
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such that the modified graph is composed of a vertex-disjoint union of cliques. Some works have considered
overlap in the cluster editing problem [34, 52]. Fellows et al. [52] allow each vertex of the modified graph
to be contained in at most t maximal cliques. This version is related to the H-packing with t-Membership,
when H is the family of cliques. The graph clustering problem is also related to our problems. However,
most of the approaches to graph clustering seek disjoint clusters [50].

The problem of finding one community of size at least r in a given network is also related to our packing
problems with overlap. The most studied community models are cliques and some relaxations of cliques.
Parameterized complexity results for this problem can be found in [71, 91, 128]. Overlap has not yet been
considered under this setting.

As indicated in Chapter 1, the H-Packing with t-Overlap and t-Membership attempt to formalize the
community discovering problem. Thus, we refer to the reader to the following comprehensive surveys [61,
137, 122, 116] for approaches to the latter problem.

2.5 Conclusions

In this chapter, we introduced the notation and terminology that will be used during this thesis as well
as some basic concepts on parameterized complexity. We also introduced the formal definitions of our
parameterized problems. Finally, we investigated the existing literature on the problems that theoretically
are most closely related to our problems: the H-Packing (in all its forms) and the r-Set Packing problems.
These problems have a long history of results from different methodologies; we focused here only on
classical computational complexity and parameterized complexity results. Interestingly enough, overlap
has not been considered for those problems in all those years of study (as far as we know). In the following
chapters, we aim to start building the landscape of results for our packing problems that allow overlaps.
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Chapter 3

On the Complexity of the Packing
Problems with Overlap

We have proposed the H-Packing with t-Overlap and t-Membership problems as abstractions for the
community discovering problem. Also, we learned that these problems generalize the well-studied H-
packing problem. Generally speaking, all these problems are in NP, and some of them are NP-complete.
This follows since every instance of the H-Packing problem, which is NP-complete [88], is mapped to an
instance of these problems by setting t = 0 and t = 1, respectively.

However strictly speaking, we have introduced whole families of problems. Each H and each t specify
a particular H-Packing with t-Overlap (respectively t-Membership problem). Notice that the constant r
is a property of H. Thus, in this chapter we would like to investigate the computational complexity of our
problems for other values of t besides zero and one.

The content of this chapter is as follows. In Section 3.1, we focus on the complexity of the t-Membership
problems. In particular, we show that the H-Packing with t-Membership problem is NP-Complete for all
values of t ≥ 1 when H = {H} and H is an arbitrary connected graph with at least three vertices, but
polynomial-time solvable for smaller graphs. On the other hand, in Section 3.2 we prove that for any t ≥ 0,
there always exists a connected graph H such that the H-Packing problem with t-Overlap is NP-Complete.

3.1 Complexity of the Packing Problems with Membership

Let us present first one concrete H-Packing with t-Membership problem that is hard for all possible values
of t.

Theorem 1. For all t ≥ 1, the P3-Packing with t-Membership problem is NP-complete.

Proof. P3-Packing with t-Membership in NP is easy to see for any fixed t. Moreover, the assertion is
well-known for t = 1.
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We are now showing a reduction from P3-Packing with t-Membership to P3-Packing with (t + 1)-
Membership, which proves the claim by induction.

Let (G, k) be an instance of the P3-Packing with t-Membership problem, where G = (V,E), with
V = {v0, . . . , vn−1}. Without loss of generality, assume that n is divisible by t+ 1; otherwise, simply add
some isolated vertices to obtain an equivalent instance. Let U = {u0, . . . , u(2n)/(t+1)−1} be a set of new
vertices, i.e., V ∩ U = ∅. Create a graph G′ = (V ′, E′) as follows:

• V ′ = V ∪ U ;

• E′ = E ∪ {vi+ju2i/(t+1), u2i/(t+1)u2i/(t+1)+1 | 0 ≤ i < n, i (mod t+ 1) ≡ 0, 0 ≤ j ≤ t}.

(See Figure 3.1)

We now prove the following claim: G has a (3, t)-P3-membership of size at least k if and only if G′ has
a (3, t+ 1)-P3-membership of size at least n+ k, where n = |V |.

If P is a (3, t)-P3-membership for G, then P ′ = P ∪X is a (3, t+ 1)-P3-membership for G′, where

X = {vi+ju2i/(t+1)u2i/(t+1)+1 | 0 ≤ i < n, i (mod t+ 1) ≡ 0, 0 ≤ j ≤ t}

Clearly, |P ′| = |P |+ |X| = |P |+ n.

Conversely, let P ′ be a (3, t + 1)-P3-membership for G′ = (V ′, E′). Let us denote by ocP ′ : V ′ →
{0, . . . , t+ 1} the occupancy of v, meaning that

ocP ′(v) = {p ∈ P ′ | v occurs on path p}.

Clearly, ocP ′(u2i/(t+1)) ≥ ocP ′(u2i/(t+1)+1) for all 0 ≤ i < n, i (mod t+ 1) ≡ 0, 0 ≤ j ≤ t. If, for some i,
ocP ′(u2i/(t+1)) > ocP ′(u2i/(t+1)+1), then there must be some p ∈ P ′ that looks like p = vi+ju2i/(t+1)vi+`
or p = vi+jvi+`u2i/(t+1) or p = vi+`vi+ju2i/(t+1) with j < `, or like p = vi′+j′vi+`u2i/(t+1) for some i′, j′

such that i′ 6= i.

In either case, replace p by vi+`u2i/(t+1)u2i/(t+1)+1. Doing this consecutively wherever possible, we end
up with a P ′ whose occupancy function satisfies ocP ′(u2i/(t+1)) = ocP ′(u2i/(t+1)+1) for all i; obviously this
new (3, t+ 1)-P3-membership is not smaller than the original one.

Now, P ′ contains only two types of paths: those (collected in PG) completely consisting of vertices
from G, and those (collected in PX) containing exactly one vertex from G (and two from U). We will
maintain this invariant in the following modifications. Also, we will maintain that |P ′| ≥ n + k and that
ocP ′(u2i/(t+1)) = ocP ′(u2i/(t+1)+1) for all i. We are now describing a loop in which we gradually modify
P ′.

(i) It might be that P ′ is not maximal at this stage, meaning that more P3’s can be added to P ′ without
destroying the property that P ′ forms a (3, t+ 1)-P3-membership. So, we first greedily add paths to P ′ to
ensure maximality. For simplicity, we keep the names PX and PG for the possibly new sets.

Consider some vertex v with ocPG
(v) < t+ 1. As P ′ is maximal, ocPX

(v) = 1. But, if ocPG
(v) = t+ 1,

then ocPX
(v) = 0, as P ′ is a (3, t+ 1)-P3-membership.

If there is no v ∈ V with ocPX
(v) = 0, then we quit this loop. Otherwise, there is some v ∈ V with

ocPX
(v) = 0. By maximality of P ′, this means that ocPG

(v) = t+ 1. Pick some pv ∈ PG that contains v.
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Assume that v = vi+j for some i, j with i (mod t+ 1) ≡ 0 and 0 ≤ j ≤ t. Delete pv from P ′ (and
hence from PG) and replace it by vi+ju2i/(t+1)u2i/(t+1)+1. As (previously) ocPX

(v) = 0, the replacement
was not contained in P ′ before. This new (3, t + 1)-P3-membership of G′, called again P ′ for the sake of
simplicity, is hence not smaller than the previous one, and we can recurse, re-starting at (i); the new P ′

decomposes again into PG and into PX .

Finally, we arrive at a (3, t+ 1)-P3-membership P ′ of G′ such that for each vertex v ∈ V , ocPX
(v) > 0,

i.e., ocPX
(v) = 1. As clearly t + 1 ≥ ocP ′(v) = ocPX

(v) + ocPG
(v), this implies that PG is a (3, t)-P3-

membership of G.

(See Figure 3.2)

Hence, P ′ decomposes into a (3, t)-P3-membership PG of G and a set of paths PX containing exactly
one vertex from G. If |P ′| ≥ n+ k, then |PG| = |P ′| − |PX | ≥ n+ k − |PX | ≥ k as required.

G

U

v0
v1

u0 u1

...
vi+j

u2i/(t+1)

u2i/(t+1)+1

...
vn-1

U2(n-1)/(t+1)

U2(n-1)/(t+1)+1

G’

Figure 3.1: An illustration of the construction of G′ from G and U in proof of Theorem 1. In this example
t = 1. Edges of G were omitted for clarity.

We can construct a similar reduction for the H-Packing with t-Membership problem for each H con-
taining at least three vertices based on results of Kirkpatrick and Hell [88].

Theorem 2. Let H be a connected graph with at least three vertices. For all t ≥ 1, the H-Packing with
t-Membership problem is NP-complete.

Proof. (Sketch) We add to G a collection U of n
t+1 vertex-disjoint H∗s where H∗ = H[V (H)\u] for some

vertex u ∈ H. For example, if H is a K5, H∗ is a K4, or if H is a S5 (star of five vertices), H∗ will be
either a S4 or an independent set of 4 vertices. After that we “attach” each H∗ to t + 1 vertices in G to
form t + 1 Hs in G′. As with the P3’s construction, those t + 1 vertices would be connected only to one
H∗. In this way, we can form n H’s of G′ (collected in X) where each vertex in each H∗ is contained in
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Figure 3.2: A (3, t + 1)-P3-membership P ′ of G′ (for t = 1) in proof of Theorem 1. Paths in PX and
PG are indicated in black and bold black, respectively. Edges of G′ are indicated with dashed gray
lines. In this example, there are two vertices vi+j and vi′+j with ocPX

(vi+j) = 0 and ocPX
(vi′+j) = 0.

Arbitrarily, the paths pi+j and p
i′+j

are removed from P ′ and replaced by vi+ju2i/(t+1)u2i/(t+1)+1 and
vi′+ju2i′/(t+1)u2i′/(t+1)+1, respectively (see (b)). Observe that PG is now a (3, t)-P3-membership of G.

t + 1 H’s of X and each vertex of G is contained in only one H of X. Thus, a (k, r, t)-H-membership P
of G can be altered into an (n + k, r, t + 1)-H-membership P ′ of G by only adding to P the collection
X. Conversely, let P ′ be a (r, t+ 1)-H-membership for G′ = (V ′, E′) of size at least n+ k. We gradually
modify P ′ in two separate steps, in both of them we always preserve its size and the property that is an
(r, t + 1)-H-membership for G′. First, we can always alter P ′ by replacing some H’s to end up with P ′

containing only two types of H’s: those completely consisting of vertices from G (PG), and those containing
exactly one vertex from G and one H∗ from U (PX). After that, we can gradually alter P ′ once more to
force that every vertex in G is contained in exactly one H of PX . This would imply that PG = P ′\PX
would be an (r, t)-H-membership G of size |PG| = |P ′| − |PX | ≥ n+ k − |PX | ≥ k.

In particular, this applies to packing complete graphs, with K3 = C3 being the simplest example. Since
in this case, the vertex-induced subgraph version coincides with the subgraph version, we can conclude:

Corollary 1. For each r ≥ 3, there exists a connected graph H on r vertices such that, for all t ≥ 1, the
Induced-H-Packing with t-Membership problem is NP-complete.

As also the r-Set Packing problem is known to be NP-complete for any r ≥ 3, we can adapt the
construction of Theorem 1 to obtain the following result:
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Theorem 3. For all t ≥ 1 and r ≥ 3, the r-Set Packing with t-Membership problem is NP-complete.

3.1.1 A Polynomial Solvable Case for the Vertex Membership Problem

On the positive side, we next show that the P2-Packing with t-Membership problem can be solved in
polynomial time.

A (k, 2, t)-P2-membership P of a graph G is a subset of at least k edges of E(G) such that every vertex
of G is contained in at most t edges of P . Let us denote as G∗ the subgraph of G induced by P , i.e.,
G∗ = (VG∗ , P ) where VG∗ = V (P ) (the end-points of the edges in P ).

Lemma 2. The graph G∗ has maximum degree t.

Proof. Assume otherwise that there is a vertex v ∈ VG∗ with degG∗(v) > t. This implies that there are
more than t edges of G∗ incident to v. Since E(G∗) = P , this is equivalent to say that v is contained in
more than t edges of P , a contradiction since P is a (k, t)-P2-Membership.

Let b : V (G)→ N be a degree constraint for every vertex. The problem of finding a subgraph G∗ of G
such that each vertex v ∈ V (G∗) has degree at most b(v) in G∗, i.e., degG∗(v) ≤ b(v) and the number of
edges in G∗ is maximized is known as the degree-constrained subgraph problem [129]. Let us refer to G∗ as
a degree-constrained subgraph. Y. Shiloach [129] constructed a graph G′ from G as follows.

1. For every vertex v ∈ V (G) add degG(v) vertices in G′ (called copies of v)

2. An edge (u, v) in G will be replaced in G′ by an edge composed of a copy of u and a copy of v. Each
copy participates in only one edge. That is, the edge (u, v) ∈ E(G) is represented by an edge (ui, vj)
where ui is a copy of u and vj is a copy of vj for some 1 ≤ i ≤ degG(u) and 1 ≤ j ≤ degG(j).

3. Add t vertices in G′ for each vertex v in G. These t vertices are completely connected to the degG(v)
copies of v. We will identify these vertices as v̄1 . . . v̄t, and we will call them the t-vertices of v.

Figure 3.3 illustrates an example of this construction.

Theorem 4. G has a degree-constrained subgraph with k edges if and only if G′ has a maximum matching
of size at least |E(G)|+ k [129].

By Lemma 2, we can find a (k, 2, t)-P2-membership P of G, by solving the degree-constrained subgraph
problem with b(v) = t, for all v ∈ V (G). The maximum matching problem can be solved in general graphs
in O(

√
|V ||E|) running time by running the Micali-Vazirani algorithm [108].

In our case, we need to determine |V (G′)| and |E(G′)|, where G′ is the graph constructed from G.
From the construction of G′, we know that the number of vertices in G′ is given by:

• For every vertex v ∈ V (G), we added degG(v) vertices in G′ (called copies of v). This implies that
there are

∑
v∈V (G) degG(v)=2|E(G)| copies.
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Figure 3.3: An illustration of the construction of G′ from G as in [129]. In this example t = 2.

• In addition, we added t vertices in G′ for each vertex v in G (called the t-vertices). This implies that
there are t|V (G)| t-vertices.

In total, we have |V (G′)| = 2|E(G)|+ t|V (G)|.

Similarly the number of edges in G′ corresponds to:

• Each edge (u, v) ∈ E(G) is represented by an edge (ui, vj) where ui is a copy of u and vj is a copy of
vj for some 1 ≤ i ≤ degG(u) and 1 ≤ j ≤ degG(j). This implies that there are |E(G)| of these edges
in G′

• The t-vertices are completely connected to the degG(v) copies of v. This implies that there are∑
v∈V (G) tdegG(v)= 2t|E(G)| of these edges.

In total, we have |E(G′)| = 2t|E(G)|+ t|E(G)|=3t|E(G)|.

Thus, the maximum matching can be solved in O(
√

2|E(G)|+ t|V (G)|3t|E(G)|) by running Micali and
Vazirani’s algorithm [108]. Hence, we can state:

Corollary 2. Let t ≥ 1. P2-Packing with t-Membership can be solved in time that is polynomial both in
the size of the input graph G and in t.

We can summarize Theorem 2 and Corollary 2 by stating the following dichotomy result that is anal-
ogous to the classical one due to Kirkpatrick and Hell [88].

Theorem 5. (Dichotomy Theorem) Let t ≥ 1. Assuming that P is not equal to NP, then the H-Packing
with t-Membership problem can be solved in polynomial time if and only if |V (H)| ≤ 2.
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3.1.2 Complexity of the Edge Membership

We now turn to the edge version of the H-Packing with t-Membership problem. Notice that it is known
that for each connected graph H on at least three edges, the problem of finding an Edge-H-Packing of size
k in a graph G is NP-complete, as finally shown by Dor and Tarsi [39].

We only present one concrete hardness result.

Theorem 6. For any t ≥ 1, the C3-Packing with t-Edge Membership problem is NP-complete.

Proof. Membership in NP is obvious. For the hardness, we proceed again by induction. For t = 1, the
result was shown by Holyer [83].

Assume that it is known that the C3-Packing with t-Edge Membership problem is NP-hard for some
concrete t ≥ 1. We are going to show then that the C3-Packing with (t+ 1)-Edge Membership problem is
NP-hard.

Let G = (V,E) and k represent an instance of the C3-Packing with t-Edge Membership problem. We
are going to construct an instance (G′, k′) of the C3-Packing with (t + 1)-Edge Membership problem as
follows:

• G′ = (V ′, E′), where V ′ = V ∪ E and

E′ = E ∪ {ve : v ∈ V, e ∈ E, v ∈ e} ,

• k′ = k + |E|.

Namely, if P is a (k, 3, t)-edge-C3-membership of G, we can get a (k′, 3, t+ 1)-edge-C3-membership of
G′ by adding all triangles of the form {uv, u, v} to P , where u, v ∈ V and uv ∈ E′.

Conversely, let P ′ be a (k′, 3, t+ 1)-edge-C3-membership of G′. Observe that (i) the edges (u, uv) ∈ E′
with u, v ∈ V and uv ∈ E can only be made use of in the triangle {uv, u, v}. Moreover, any (k′, t+1)-edge-
C3-membership P ′ that does not use this triangle could be changed in a (3, t+1)-edge-C3-membership with
the same number of triangles (or more) by adding this triangle, possibly at the expense of deleting another
triangle using the edge uv. Hence, we can assume that all |E| triangles of the form {uv, u, v} are in the
(k′, 3, t+ 1)-edge-C3-membership of G′ that we consider. Every edge of G is used exactly once in this way.
Thanks to observation (i), the remaining k′ − |E| = k triangles in P ′ form a (k, t)-edge-C3-membership of
G.

3.2 Complexity of the Packing Problems with Pairwise Overlap

For the packing problems with pairwise overlap, the complexity landscape is known even less. For instance,
we do not know of any concrete graph H such that the corresponding H-Packing with t-Overlap problem is
NP-complete for all t ≥ 0. However, the next theorem explains at least that there are NP-hard H-Packing
with t-Overlap problems for each value t ≥ 0.
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Theorem 7. For any t ≥ 0, there exists a connected graph Ht such that the Ht-Packing with t-Overlap
problem is NP-complete.

Proof. (Sketch) According to Caprara and Rizzi [18], the problem of packing at least k triangles with zero
vertex overlap in a graph of maximum degree four is NP-complete. We reduce from this problem and add,
to each vertex v of the triangle packing instance graph G, a K1,5, call it Sv that is connected to v by one
edge to its center c′. This gives the new graph G′. Likewise, the graph H is a triangle, where we add
three K1,5’s. Clearly, any triangle packing of G translates into an H-packing of G′ of the same size, and
vice versa. However, as the only vertices in G′ that are of degree six are the centers v′ in the Sv that
are connected to v via a bridge, these must host the degree six vertices of H. Hence, there is no way of
exploiting possible overlaps, as long as t ≤ 6. For bigger t, we can change the construction by adding
bigger stars K1,t−1 to each vertex. This finally yields the claim.

3.3 Conclusions

We begin in this chapter the study of the complexity of the packing problems allowing overlaps. For the
H-Packing with t-Membership, we concluded that this problem is NP-complete when H is a connected
graph with |V (H)| ≥ 3. An analogous result is stated for r-Set Packing with t-Membership when r ≥ 3.
For the packing problems with overlap, we showed that there is always at least one graph H for which
the H-Packing with t-Overlap problem is NP-complete. Since polynomial time algorithms for the general
cases seem unlikely, we will explore other approaches to provide a solution for our problems.
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Part II

Kernelization Algorithms
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Chapter 4

A Case Study: Crown
Decompositions to Obtain Kernels
for Packing Cliques with Pairwise
Overlap

We concluded in the previous chapter that several of our packing problems allowing overlaps are NP-
complete. Our direction is therefore to study these problems from a parameterized point of view. One of
our goals is to obtain kernels, i.e., reduced instances whose size is bounded by an input parameter (we use
as the parameter the size of the solution).

A crown decomposition is a technique that at a high level partitions the vertices of a graph into three
sets each one subject to specific conditions [28]. Reduction rules based on crown decompositions have
been designed to obtain kernels for several packing problems. For example: packing triangles [106, 54],
packing paths with three vertices [123, 134] and packing trees with r edges [24]. Therefore, it is natural
to wonder if crown decompositions can also help to obtain kernels for generalized packing problems that
allow overlap. We will investigate that question in this chapter.

This chapter is organized as follows. In Section 4.1, we introduce a generalized crown decomposition
called the clique-crown decomposition. Based on this decomposition in Section 4.2, we design a reduction
rule for the specific case of the H-Packing with t-Overlap problem, when H = {Kr}. Using that reduction
rule, we reduce this problem to a kernel when t = r−2 in Section 4.3. Finally, we briefly discuss in Section
4.4, the limitations to obtain kernels for this problem for any t ≥ 0.

4.1 The Clique-Crown Decomposition

In this section, we introduce a graph decomposition called the clique-crown decomposition which is a
generalization of the crown decomposition technique. This technique was introduced by Chor et al. [28],
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and it has been adapted to obtain kernels for graph packing problems [54, 106, 123, 134, 24].

Definition 5. A crown decomposition (H,C,R) in a graph G is a partitioning of V (G) into three sets H,
C, and R that have the following properties:

1. C = Cm ∪ Cu (the crown) is an independent set in G.

2. H (the head) is a separator in G such that there are no edges in G between vertices belonging to C
and vertices belonging to R.

3. R is the rest of the graph, i.e., R = V (G)\(C ∪H).

4. There is a perfect matching between Cm and H.

Generally, vertices in Cm and in H are part of a desired solution while vertices in Cu can be removed
from G.

A crown decomposition can be computed in polynomial time for a graph G given certain conditions.

Lemma 3. [28] If a graph G = (V,E) has an independent set of vertices I ⊆ V (G) such that |I| ≥
|N(I)|, then G has a crown decomposition, where C ⊆ I and H ⊆ N(I), that can be found in time
O(|V (G)|+ |E(G)|), given I.

In our clique-crown decomposition, we have cliques in both the head H and the crown C. We say that
a clique A is completed with a clique B, if D = G[V (A) ∪ V (B)] is a clique and |V (D)| = r. In this way,
we require that each clique in H be completed by at least one clique in C.

Definition 6. A clique-crown decomposition (H,C,R) is a partition of G that has the following properties:

1. C = Cm ∪ Cu (the crown) is a set of cliques in G where each clique has size at most r − (t + 1).
Cliques in C are denoted with letters α, β, . . . .

2. H (the head) is a set of cliques in G where each clique has size at least t + 1 and at most r − 1.
Cliques in H are denoted with letters A,B, . . . . The head satisfies the following conditions.

i. Each A ∈ H is completed by at least one clique in C. Furthermore, no subgraph A′ of A is
completed by a clique in C.

ii. Each pair of cliques A and B in H overlaps in at most t vertices.

iii. Each A ∈ H is completed by a clique in R, defined below. In addition, the size of any subgraph
A′ of A that is completed by a clique in R is at most t.

3. R is the rest of the graph, i.e., R = G[V (G)\(V (C) ∪ V (H))].

4. The set of vertices of the cliques in H, V (H), is a separator such that there are no edges in G from
C to R.

5. There exists an injective function f mapping each clique A ∈ H to a distinct clique α ∈ Cm such
that α completes A. In this way, the subgraph G[V (A) ∪ V (α)] (denoted as A · α) is a Kr that we
call a mapped Kr. We impose the condition that any pair of the mapped Krs overlaps in at most t
vertices.
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The values r ≥ 1 and t ≥ 0 in our clique-crown decomposition are considered fixed-constants.

Figure 4.1 shows a clique-crown decomposition of a graph G with r = 4 and t = 1. Cliques that belong
to the head H are G[{3, 4}], G[{8, 9, 10}], and G[{11, 12}]. These cliques are highlighted with thicker lines.
Cliques in the crown C are G[{1, 2}], G[{5, 6}], G[{7}] and G[{13, 14}]. The mapped Krs in this example
are G[{1, 2, 3, 4}], G[{7, 8, 9, 10}], and G[{11,12, 13,14}]. Note that the clique G[{5, 6}] is in Cu.
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Figure 4.1: Example of a clique-crown decomposition with r = 4 and t = 1.

4.1.1 A Method for Computing Clique-Crown Decompositions

We next present a method to find a clique-crown decomposition in a graph G given two sets of cliques of
G: O and Cliques(O). These sets of cliques follow the next conditions.

Definition 7. A pseudo-crown O and a super-head Cliques(O) are sets of cliques of G that satisfy the
following properties:

1. Each clique in O has size at most r − (t+ 1), and the cliques in O are pairwise vertex-disjoint.

2. Any pair of cliques in Cliques(O) overlaps in at most t vertices.

3. Every clique A ∈ Cliques(O) should be completed by at least one clique in O.

4. No subgraph A′ of A is completed by a clique in O, and the size of any subgraph A′ of A that is
completed by a clique in G[V (G)\(V (O)∪V (Cliques(O)))] is at most t. Observe that the size of A is
at least t+ 1 and at most r − 1.

The following method is a generalization of the method used to compute a crown-decomposition for
the Edge-K3-Packing problem [123].
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Lemma 4. Any graph G with sets of cliques O and Cliques(O) which follow properties of Definition 7 and
|O| ≥ |Cliques(O)| has a clique-crown decomposition (H,C,R) where O ⊆ C and H ⊆ Cliques(O), that can
be found in O(|V (G)|+ |E(G)|) time, given O and Cliques(O).

Proof. First, we construct a graph G′ from G as follows. We initialize V (G′) = V (G) and E(G′) = E(G).
We contract in G′ each clique α ∈ O into a single vertex vα, and we denote the set of contracted cliques
as Ocont. After that for each clique A ∈ Cliques(O), we add a vertex vA to V (G′), i.e., a representative
vertex ; we denote as Rep the set of all representative vertices. We say that vα “completes” vA if the clique
α completes the clique A. For every vertex vα ∈ Ocont that completes vA, add (vα, vA) to E(G′). After
that, add to E(G′) an edge from vA to each vertex of A. Finally, remove from E(G′) the edges from vα to
A.

We next show that G′ has a crown decomposition (H ′, C ′, R′). In G′, the set of contracted cliques Ocont
is an independent set. By the construction of G′, we know that N(Ocont) is the set of representative vertices
Rep. Since we introduced a representative vertex per clique in Cliques(O), then |N(Ocont)| = |Cliques(O)|.
Thus, since |O| ≥ |Cliques(O)|, then |Ocont| ≥ |N(Ocont)| in G′. By Lemma 3, G′ admits a crown
decomposition (H ′, C ′, R′) that is computed in polynomial time, where C ′ ⊆ Ocont and H ′ ⊆ N(Ocont) =
Rep.

Now, we use the crown decomposition (H ′, C ′, R′) of G′ to construct the clique-crown decomposition
(H,C,R) of G where H ⊆ Cliques(O).

1. For each vertex vα ∈ C ′ ⊆ Ocont, add the clique α to C. The size of each clique in C is at most
r − (t+ 1). This follows because α ∈ O and each clique in O has size at most r − (t+ 1).

2. For each vertex vA ∈ H ′, where H ′ ⊆ Rep, we assign to H the clique that this vertex represents, i.e.,
A. Since H ⊆ Cliques(O), then each clique in H has size at least t+ 1 and at most r − 1. Likewise,
properties i-iii from Definition 6 follow.

3. R = G[V (G)\(V (C) ∪ V (H))].

4. The set of vertices of the cliques in H, V (H), is a separator. This follows since cliques in C complete
only cliques on H; thus, vertices in V (C) are only adjacent to vertices in V (H).

5. We make the perfect matching between C ′ and H ′ to correspond to the injective function f in the
following way. For any matched edge (vα, vA) complete A with α. For any pair of mapped Krs
A · α and B · β completed in this way, |V (A · α) ∩ V (B · β)| ≤ t. This follows because α and β are
vertex-disjoint, and |V (A) ∩ V (B)| ≤ t by assumption in the set Cliques(O).

Thus, if |O| ≥ |Cliques(O)|, then G admits a clique-crown decomposition.

Clearly, the main difficulty of applying this method is to obtain a pseudo-crown O and a super-head
Cliques(O) (Definition 7).
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4.2 The Clique-Crown Reduction Rule for the Kr-Packing with
t-Overlap Problem

In this section, we present the clique-crown reduction rule for the Kr-Packing with t-Overlap problem
which is based on our clique-crown decomposition. Let us first recapitulate the definition of this problem.
Recall that r is considered a fixed-constant.

Kr-Packing with t-Overlap problem
Instance: A graph G and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, r, t)-Kr-packing i.e., a set of at least k cliques each one with r
vertices K = {S1, . . . , Sk} where |V (Si) ∩ V (Sj)| ≤ t, for any pair Si, Sj with i 6= j?

To design the clique-crown reduction rule, we use an annotated version of the Kr-Packing with t-
Overlap problem. In this annotated version, any Kr in the solution overlaps in at most t vertices with any
clique from a set F given as part of the input. Again, let t be fixed in the following definition.

Definition 8. Annotated Kr-Packing with t-Overlap problem

Instance: A graph G, a set of cliques F from G each one has size at least t + 1 and at most r − 1 and
every pair of cliques in F overlaps in at most t vertices, and a non-negative integer k.

Parameter: k − |F|

Question: Does G contain an annotated (k − |F|, r, t)-Kr-packing, i.e, a set of at least k − |F| Krs
K = {S1, S2, ..., Sk} where |V (Si)∩ V (Sj)| ≤ t, for any pair Si, Sj (i 6= j), and |V (S)∩ V (C)| ≤ t for any
S ∈ K and C ∈ F?

We now introduce our clique-crown reduction rule.

Reduction Rule 1. The Clique-Crown Reduction. If G admits a clique-crown decomposition (H,C,R),
then reduce G as G′ = G[V (G)\V (C)] and k = k − |H|. Make H be the set of cliques F of the annotated
Kr-Packing with t-Overlap problem.

The goal of the clique-crown reduction is to make the mapped Krs part of the solution and remove
unnecessary vertices from G. As part of the correctness of Rule 1, we prove first that the vertices in
V (Cu)\V (Cm) are not included in any Kr of the solution.

Lemma 5. G has a (k, r, t)-Kr-packing if and only if (G\(V (Cu)\V (Cm)) has a (k, r, t)-Kr-packing.

Proof. Cliques in Cu only complete cliques from the set H; otherwise V (H) would not be a separator.
However, every clique in H is mapped to a clique in Cm by the injective function. On the other hand,
by Definition 6, cliques in H cannot be partitioned in more cliques than |H| that could be completed by
cliques in Cu.

We use the next observation for the proof of correctness of the following lemmas.

33



Observation 1. Any clique A′ of A ∈ H, where |V (A′)| ≥ t + 1, is an induced subgraph of at most one
Kr of any solution, since the Kr-Packing with t-Overlap problem allows overlap at most t.

Lemma 6. If G admits a clique-crown decomposition (H,C,R), then the set of mapped Krs is an (|H|, r, t)-
Kr-packing in G.

Proof. Follows from Definition 6.

The input graph G′ for the annotated Kr-packing with t-Overlap problem is obtained by removing
C from G. Since a clique A ∈ H has size at least t + 1, it can be in at most one Kr of any solution
(Observation 1). Hence, we make the set H to be the set of cliques F in the annotated Kr-packing
with t-Overlap problem. In the example of Figure 4.1, F would be equal to G[{3, 4}], G[{8, 9, 10}] and
G[{11, 12}].

The correctness of our clique-crown reduction rule is finally shown in the next lemma.

Lemma 7. Let G′ = G[V (G)\V (Cm∪Cu)]. G has a (k, r, t)-Kr-packing if and only if G′ has an annotated
(k − |H|, r, t)-Kr-packing.

Proof. Assume by contradiction that G admits a clique-crown decomposition (H,C,R) and has a (k, r, t)-
Kr-packing, but (G′, H, k−|H|) does not have an annotated solution. By Lemma 5, vertices in V (Cu)\V (Cm)
are redundant. That is, they do not belong to any Kr in the solution. By Observation 1, every A ∈ H
is in at most one Kr in the solution. Therefore, we cannot form more than |H| Krs by completing each
clique of H with cliques in R rather than with cliques in Cm. The only case that we could have more than
|H| Krs is if there is a clique A ∈ H that has at least two cliques A′,A′′ each of size at least t+ 1 that are
completed by some clique in R. However, that is not possible by Definition 6.

Assume now that (G′, H, k − |H|) has an annotated (k − |H|, r, t)-Kr-packing, but G does not have
a (k, r, t)-Kr-packing. This would imply that the sets H and C form more than |H| Krs which is a
contradiction by Lemma 6.

To conclude this section, we show how a solution of the original instance can be obtained using an
annotated solution of the reduced graph G′.

Claim 1. Let K′ be an annotated (k − |H|, r, t)-Kr-packing of G′ and H be the set of mapped Krs in G
found with the clique-crown decomposition. The set K′ ∪H is a (k, r, t)-Kr-packing of G.

Proof. Since G′ = G[V (G)\V (C)], K′ is a (k − |H|, r, t)-Kr-packing of G as well. By Lemma 6, the set H
is an (|H|, r, t)-Kr-packing in G. Since H becomes the set of cliques F in the annotated instance, then no
Kr of K′ overlaps in more than t vertices with any Kr of H. Therefore, K′ ∪H is a (k, r, t)-Kr-packing in
G.

In Figure 4.2, the set of mapped cliques of Figure 4.1 are highlighted with thicker lines. An annotated
solution for the reduced graph is indicated with dashed lines. We can see how the set of mapped cliques
and the annotated solution form a (5, 4, 1)-K4-packing (k = 5, r = 4, and t = 1).
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Figure 4.2: An annotated solution for an instance of the K4-Packing with 1-Overlap problem is indicated
with dashed lines (k = 5, r = 4, and t = 1).

4.3 An Application of Clique-Crown Decompositions: A Kernel
for the Kr-Packing with (r − 2)-Overlap Problem

Using the clique-crown reduction rule, we introduce an algorithm to obtain a kernel for the Kr-Packing
with (r− 2)-Overlap problem. That is, when every pair of Krs in the solution can overlap in at most r− 2
vertices.

The steps of our kernelization algorithm are outlined in Algorithm 1. We start by reducing our graph
G with the following reduction rule.

Reduction Rule 2. Delete any vertex v and any edge e that are not included in a Kr of G.

After that, we compute a maximal solution M for the Kr-packing with (r − 2)-Overlap problem. If
the size of M is at least k, then the algorithm stops. Otherwise, we will reduce the graph G using our
clique-crown reduction rule.

Recall from Lemma 4 that to compute a clique-crown decomposition of G, we need two sets of cliques: a
pseudo-crown O and a super-head Cliques(O) (Definition 7). Next, we show that such sets O and Cliques(O)
are composed of vertices that are outside and inside, respectively, of the maximal solution. Specifically,
those sets are computed as in Line 7.

We next introduce a series of lemmas that characterize the sets O and Cliques(O) defined in Algorithm
1.

Claim 2. O = V (G)\V (M) is an independent set.

Proof. Assume by contradiction that there exists an edge (u, v) in G[O]. After applying Reduction Rule
2, each edge in the reduced graph is included in at least one Kr; thus, (u, v) belongs to at least one clique
S′. S′ is not in M; otherwise u, v would not be in O. S′ is not in O; otherwise as S′ would be disjoint
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Algorithm 1 Kernelization Algorithm by Clique-Crown - Kr-Packing with (r − 2)-Overlap

1: Input: A graph G = (V,E) and a non-negative integer k.
2: Reduce G by Reduction Rule 2.
3: Greedily, find a maximal (r, r − 2)-Kr-packing M in G.
4: if |M| ≥ k then
5: M is a (k, r, r − 2)-packing and stop
6: else
7: Let O be V (G)\V (M) and Cliques(O) be the set of cliques in M completed by vertices in O.
8: if |O| ≥ |Cliques(O)| then
9: Apply the clique-crown reduction rule in G (Reduction Rule 1).

10: end if
11: end if

fromM, and hence, S′ could be added toM, contradicting the maximality ofM. Thus, S′ should overlap
with at least one clique S ∈M, for S 6= S′.

Since u, v are both in O, the overlap with S is at most r − 2, i.e., |V (S) ∩ V (S′)| = r − 2, but in this
case, S′ could be added to M contradicting the maximality of M.

Claim 3. Each clique T (on r − 1 vertices) completed by any u ∈ O is contained in a clique S ∈M.

Proof. We first show V (T ) ∩ V (O) = ∅. Assume for contradiction that there is a vertex v ∈ V (T )
contained in O. However, since T · u forms a Kr this would imply that there is an edge (u, v) in O which
is a contradiction since O is an independent set. Thus, V (T ) ⊂ V (M).

We claim that |V (T ) ∩ V (S)| = r − 1 for some S ∈ M, i.e., V (T ) ⊂ V (S). Suppose otherwise that
|V (T ) ∩ V (S)| < r − 1, for any S ∈ M. Since u ∈ O, this would imply that |V (T · u) ∩ V (S)| ≤ r − 2
for every S ∈M, and T · u could be added to M as the Kr-Packing with (r − 2)-Overlap problem allows
overlap at most r − 2, contradicting the assumption of maximality of M.

Claim 4. Each clique A ∈ Cliques(O) is completed by at least one clique in O and no subgraph A′ of A is
completed by a clique in O. In addition, the size of any subgraph A′ of A completed by a clique in G[V (G)\
(V (O) ∪ V (Cliques(O)))] is at most t. Furthermore, any pair of cliques in Cliques(O) overlaps in at most
t vertices.

Proof. Assume by contradiction that there is a clique A′ ⊂ A of size s < r − 1 completed by a clique in
G[V (O)]. This would imply that there is a Kr−s in G[V (O)], a contradiction since O is an independent
set (Claim 2).

The second and third parts of the claim follows because the size of each clique in Cliques(O) is t+1 = r−1
(Claim 3) and therefore the size of the largest subgraph of A is at most r − 2 = t.

We can see that by Claims 1 and 4, the sets O and Cliques(O) meet the properties of Definition 7.
Thus, the method described in proof of Lemma 4 can be used to compute a clique-crown decomposition
in G. Next, we prove that the size of the reduced instance is bounded by a function of the parameter k.

Claim 5. The set of vertices O completes at most rk − r cliques.
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Proof. By Claim 3, vertices in O only complete Kr−1’s contained in cliques inM. There are r Kr−1’s in a
Kr and at most k− 1 Krs in M; thus, there are at most rk− r Kr−1’s that can be completed by vertices
in O.

Claim 6. |O| < rk − r

Proof. In Algorithm 1, if |O| ≥ |Cliques(O)|, O is reduced by the clique-crown reduction rule (Rule 1).
Since |Cliques(O)| < rk − r, then |O| < rk − r, after applying that rule.

Lemma 8. If |V (G)| > 2(rk − r), then Algorithm 1 will either find a (k, r, r − 2)-Kr-packing, or it will
reduce G.

Proof. Assume by contradiction that |V (G)| > 2(rk − r), but the algorithm neither finds a (k, r, r − 2)-
Kr-packing nor reduces the graph G. Any vertex v ∈ V (G) that was not reduced by Rule 2 is in V (M),
or it is in O = V (G)\V (M); thus, |V (G)| = |V (M)|+ |O|.

The size ofM is at most k−1; thus, |V (M)| is at most rk− r, and by Claim 6 we know that an upper
bound for |O| is rk − r.

In this way, the size of the instance is at most 2(rk − r) which contradicts the assumption that
|V (G)| > 2(rk − r).

Theorem 8. The Kr-packing with (r− 2)-Overlap problem admits a 2(rk− r) kernel which can be found
in O(nr) time, where r is a fixed-constant.

Proof. By Lemma 8, the reduced instance has size at most 2(rk − r). Rule 2 is computed in time O(nr),
which is also the same time to compute the maximal solution M and Cliques(O). Lemma 4 shows that
the clique-crown decomposition is computed in polynomial time given the set of cliques O and Cliques(O).
The set O corresponds to the independent set V (G)\V (M) (Claim 2), and the set Cliques(O) is the set of
Kr−1’s completed by vertices in O. By Claim 3, all these Kr−1’s are contained in the Krs ofM. Moreover,
in Rule 2, we already compute all Kr−1’s that a vertex completes. Thus, the time to obtain Cliques(O) is
O(nr).

Computing a solution for the Kr-Packing with (r − 2)-Overlap problem

We have obtained a 2(rk− r) kernel for the Kr-Packing with (r− 2)-Overlap problem. We can now apply
a brute-force algorithm on the kernel to find a solution. First, remember that the instance was reduced
by the clique-crown reduction rule (Rule 1) and the cliques in the head H becomes the set of cliques F in
the annotated version. Therefore, we are now looking for an annotated solution in the reduced instance
G′ (Definition 8).

The brute-force algorithm first finds all Krs W in the reduced instance G′ and after that evaluates if
each possible selection of k − |H| Krs from W is an annotated solution in G′.

By Claim 1, we can obtain a (k, r, r − 2)-packing in the original instance combining an annotated
solution in G′ with the set of mapped Krs. The time of this brute-force algorithm is O((2rk − 2r)rk) and
the Kr-Packing with (r − 2)-Overlap problem can be decided in time O((2rk − 2r)rk + nr).

Corollary 3. The Kr-Packing with (r − 2)-Overlap problem can be solved in O((2rk − 2r)rk + nr) time.
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4.4 Obtaining Kernels Beyond Overlap of size r − 2

In this section, we will briefly discuss the difficulties that we face on reducing the Kr-Packing with t-Overlap
problem to a kernel for any overlap value t ≥ 0 using the clique-crown reduction rule.

Observe first that we showed the correctness of our clique-crown reduction rule for any instance of
the Kr-Packing with t-Overlap problem, that is, our rule is general enough to handle any value of t ≥ 0.
However, the main problem is how to actually compute such decomposition for a graph G for any t ≥ 0.
In our method to compute the clique-crown (Lemma 4), the set of cliques O ⊇ C should be composed of
vertex-disjoint cliques. However, that is not a necessary condition of C in Definition 6. If we remove such
condition, then a perfect matching in the computation of the clique-crown in Lemma 4 will not correspond
to the injective function required by the clique-crown (Definition 6).

Let us assume that we are able to generalize our Lemma 4 to state that there exists an Algorithm
CliqueCrownCompute that can compute a clique-crown decomposition of G given two sets of cliques
of G: O ⊇ C and Cliques(O) ⊇ H, if |O| ≥ |Cliques(O)|. For this generalized lemma, O and Cliques(O)
do not need to follow properties of Definition 7 but rather only the properties of the crown and the head
(Definition 6), respectively.

Assuming the Algorithm CliqueCrownCompute exists and with some modifications, we could obtain
a kernel problem for the Kr-Packing with t-Overlap problem in similar way as in Section 4.3. However,
we still do not know how to obtain such algorithm.

4.5 Conclusions

In this chapter, we proposed the clique-crown decomposition technique which is based on the crown
decomposition [28]. Using our clique-crown decomposition, we designed a reduction rule for the Kr-
Packing with t-Overlap problem. We also gave an actual kernel for the Kr-Packing with (r − 2)-Overlap
problem using that reduction rule. Unfortunately, it is unclear how to overcome the difficulties of extending
this kernel for values of t others than r − 2. This is perhaps because crown decompositions rules alone
may not be viable alternatives to achieve this goal.

Despite of this, crown decompositions still play a key role in our kernelization results. In specific, our
second step in the kernelization algorithms for our H-Packing with t-Overlap and t-Membership problems
in Chapter 7 consists of reduction rules inspired by crown decompositions.
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Chapter 5

From Packing Graphs to Packing
Sets: A Kernelization Framework

Previously, we introduced kernelization with a specific case of the H-Packing with t-Overlap problem. By
using a generalization of the crown-decomposition [28], we obtained a linear kernel when the family H
consists of a single clique of size r (H = {Kr}) and t = r− 2. However, we also concluded in that chapter
that we need to explore different approaches to kernelization as crown-decompositions by themselves may
not be the path to follow to obtain a kernel for the general case.

In this chapter, we introduce a general framework that will allow us to obtain kernelization results for
the H-Packing with t-Overlap and t-Membership problems, for an arbitrary family H of graphs and any
non-negative integer value of t. Our framework consists of simply transforming an instance of H-Packing
with t-Membership and t-Overlap to an instance of r-Set Packing with t-Membership and t-Overlap,
respectively. After this by reducing to a kernel the constructed instances of the set packing problems, we
can achieve a reduction to a kernel for the original graph packing problems. The existence of kernelization
algorithms for the r-Set Packing with t-Membership and t-Overlap problems is fundamental to these
frameworks.

We clarify that in this chapter we are not obtaining kernel sizes per se, but only giving a systematic
procedure that will allow us to obtain such kernel sizes in subsequent chapters. The framework described
here will be employed in two different chapters in this thesis. Specifically, in Chapter 6, we achieve
a kernelization algorithm for both the r-Set Packing with t-Membership and t-Overlap via polynomial
parametric transformations [16]. In addition in Chapter 7, we improve the kernel sizes for these problems
using classical reduction algorithms [44, 117]. Thus with these frameworks, we will obtain immediate
kernel results for the graph versions. Furthermore in Chapter 8, we develop FPT-algorithms for the r-Set
Packing with t-Membership and t-Overlap problems which will result in fixed-parameter algorithms for
the graph versions as well.

This chapter is organized as follows. In Section 5.1, we give our framework for the H-Packing with
t-Membership and t-Edge Membership problems, while in Section 5.2, we focus on the H-Packing with
t-Overlap and t-Edge Overlap problems.
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5.1 Kernelization Frameworks for Packing Graphs with Mem-
bership

Let us start the description of our kernelization frameworks for the H-packing with t-Membership and
t-Edge Membership problems. Recall that r, t ≥ 1 are fixed-constants.

5.1.1 From Packing Graphs with Vertex-Membership to Packing Sets with
Membership

In the H-Packing with t-Membership, the goal is to seek for a collection of at least k H-subgraphs of an
input graph G such that every vertex of G belongs to at most t subgraphs of that collection. In addition,
for every pair of H-subgraphs Hi, Hj , V (Hi) 6= V (Hj).

The next theorem shows that the H-Packing with t-Membership is W [1]-Complete when parameterized
by k and r. Therefore, we need to consider r as a fixed-constant.

Theorem 9. The H-Packing with t-Membership is W [1]-Complete when parameterized by k and r.

Proof. The problem of finding a clique of size r in a graph G (i.e., the Clique problem) is W[1]-Complete
when parameterized by r. There exists a very simple parameterized reduction from Clique to the H-
Packing with t-Membership problem. The input graph G and r remains the same. By making k = 1
and H equivalent to the family of cliques, we know that G has a clique of size r if and only if G has a
(k, r, t)-H-Membership.

Before giving our transformation to the r-Set Packing with t-Membership, we will preprocess the input
instance. Note that there could exist in G more than one H-subgraph with the same set of vertices (but
different set of edges). However by the explicit condition that all H-subgraphs in a (k, r, t)-set membership
should have different set of vertices, only one of those H-subgraphs can be in the solution.

Lemma 9. Let Hi and Hj be a pair of H-subgraphs in G such that V (Hi) = V (Hj) but E(Hi) 6= E(Hj).
Any (k, r, t)-H-membership of G that contains Hi does not contain Hj (and vice versa). Furthermore, we
can replace Hi by Hj in such membership.

Proof. Follows because for every pair of H-subgraphs Hi, Hj in a (k, r, t)-H-Membership V (Hi) 6= V (Hj),
and every vertex of G is contained in at most t H-subgraphs of a (k, r, t)-H-Membership.

Recall that HG denotes the set of all H-subgraphs in G (see Chapter 2); thus, |HG| = O(|H|nr(H)2).
We can find a (k, r, t)-H-membership from G by selecting k H-subgraphs from HG such that every vertex
of V (G) is contained in at most t of those subgraphs. By Lemma 9, we can apply the next reduction rule
to HG.

Reduction Rule 3. For any pair of H-subgraphs Hi, Hj in HG such that V (Hi) = V (Hj) (but E(Hi) 6=
E(Hj)), we arbitrary select one and remove the other from HG.
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It is important to clarify that we only apply Reduction Rule 3 to HG for the vertex and induced version
of the H-Packing with t-Membership problem. Thus, after applying this rule, |HG| = O(|H|nr(H)). Now,
we proceed to construct an instance for the r-Set Packing with t-Membership as follows.

Transformation 1. Input: G, H; Output: U , S, and r

Let r = r(H).

The universe U equals V (G).

There is a set S in S for each H-subgraph H in HG and S = V (H).

In this way, |U| = O(n) and |S| = |HG|. After applying Rule 3, |HG| = O(|H|nr(H)). Thus, |S| =
O(|H|nr). Each set in S has size at most r = r(H).

Lemma 10. Transformation 1 runs in O(nr) time, where r = r(H).

Lemma 11. G has a (k, r, t)-H-membership if and only if S has a (k, r, t)-set membership.

Proof. We build a (k, r, t)-set membership KS from a (k, r, t)-H-membership K. For each H-subgraph Hi

in K, we add a set Si = V (Hi) to KS . By construction, Si ∈ S. Given that every vertex of V (G) is
contained in at most t H-subgraphs of K, each element of U will be contained in at most t sets of KS .

Given a (k, r, t)-set membership KS , we build a (k, r, t)-H-membership K of G. For each set Si in KS ,
we add an H-subgraph Hi ⊆ G[Si]. By construction, Hi is an H-subgraph of G. Each vertex of G will be
contained in at most t H-subgraphs of K; otherwise there would be at least one element of U contained in
more than t sets of KS .

Let us suppose that there exists a kernelization algorithm KernelAlg-M for the r-Set Packing
with t-Membership. That is, KernelAlg-M receives as input an instance of the r-Set Packing with
t-Membership (U , S and k) and outputs in polynomial time a reduced universe U ′ and a reduced collection
S ′ with |U ′| = O(g(k)) and |S ′| = O(h(k)), for some computable functions g and h. In this way, we run
KernelAlg-M on the constructed instance of the r-Set Packing with t-Membership. After that we use
the reduced universe U ′ to obtain a reduced graph G′ for the original graph packing problem as follows.

Transformation 2. Input: G, U ′; Output: G′

Return G′ = G[U ′].

Lemma 12. G′ has a (k, r, t)-H-membership if and only if S ′ has a (k, r, t)-set membership.

By Transformation 2, |V (G′)| = |U ′|. Since KernelAlg-M is a kernelization algorithm for the r-
Set Packing with t-Membership problem, and |U ′| = O(g(k)) (for some computable function g), we can
conclude.

Lemma 13. The H-Packing with t-Membership problem can be reduced to a problem kernel with |U ′|
vertices.

The induced version of this problem seeks for at least k induced H-subgraphs in G where each vertex
in V (G) is contained in at most t of these H-subgraphs. To achieve a problem kernel, we redefine S in
Transformation 1, adding a set S = V (H) per each induced H-subgraph H of G.
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5.1.2 From Packing Graphs with Edge-Membership to Packing Sets with
Membership

Similarly to the vertex-membership version, we will reduce theH-Packing with t-Edge Membership problem
to the r-Set Packing with t-Membership problem. Recall that in the H-Packing with t-Edge Membership,
we seek a collection of at least k H-subgraphs of an input graph G such that every edge of G belongs to
at most t subgraphs of the collection, and E(Hi) 6= E(Hj) for any pair of subgraphs Hi, Hj .

For the edge-membership version, we assume that each H ∈ H has no isolated vertices. Otherwise, we
can replace each H ∈ H that has a set HI of isolated vertices with a graph H ′ = H[V (H)\HI ]. Let H′
denotes the family of subgraphs with these modified graphs. Furthermore, let I denotes the set of isolated
vertices contained in G.

Lemma 14. G has a (k, r, t)-edge-H-membership if and only if G\I has a (k, r, t)-edge-H′-membership.

Henceforth, for the remainder of this subsection we assume that each H ∈ H and hence G as well do
not contain isolated vertices. We create next an instance of the r-Set Packing with t-Membership problem
using an instance of the H-Packing with t-Edge Membership problem.

Transformation 3. Input: G, H; Output: U , S and r.

Let r = m(H).

The universe U equals to E(G).

There is a set S in S for each H-subgraph H in HG, and S = E(H).

Recall that HG is not reduced by Rule 3 for this version of the problem. In this way, |U| = O(n2) and
|S| = |HG| = O(|H|nm(H)). Each set in S has size at most r, where r = m(H).

Lemma 15. Transformation 3 runs in O(nr) time, where r = m(H).

Lemma 16. G has a (k, r, t)-edge-H-membership if and only if S has a (k, r, t)-set membership.

Proof. We build a (k, r, t)-set membership KS from a (k, r, t)-edge-H-membership K of G. For each H-
subgraph Hi in K, we add a set Si = E(Hi) to KS . Since every edge of E(G) is contained in at most t
H-subgraphs of K, every element of U will be contained in at most t H-subgraphs of KS .

Given a (k, r, t)-set membership KS , we build a (k, r, t)-edge-H-membership K of G. For each set Si
in KS , we add an H-subgraph Hi with set of vertices V (Si) and set of edges Si. Each edge of G will be
contained in at most t H-subgraphs of K. Otherwise, KS would not be a (k, r, t)-set membership.

Once again, we suppose the existence of an algorithm KernelAlg-M that reduces the r-Set Packing
with t-Membership problem to a kernel. Let U ′ and S ′ be the reduced universe and collection of sets,
respectively, obtained with Algorithm KernelAlg-M. The reduced graph G′ for the original instance of
the H-Packing with t-Edge Membership problem is obtained with the following transformation.

Transformation 4. Input: G, U ′; Output: G′

Return G′ = G[V (U ′)].
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Lemma 17. G′ has a (k, r, t)-edge-H-membership if and only if S ′ has a (k, r, t)-set membership.

Given that G does not contain isolated vertices (Lemma 14) and by Transformation 4, |V (G′)| ≤ 2|U ′|.
Hence, we can state.

Lemma 18. The H-Packing with t-Edge Membership problem can be reduced to a problem kernel with
2|U ′| vertices.

5.2 Kernelization Frameworks for Packing Graphs with Pairwise
Overlap

We now switch our attention to the H-Packing with t-Overlap and t-Edge Overlap problems. Again for
these problems, r > 0 and 0 ≤ t ≤ r − 1 are fixed-constants.

5.2.1 From Packing Graphs with Vertex-Overlap to Packing Sets with Pair-
wise Overlap

In the H-Packing with t-Overlap problem, the goal is to find a collection of at least k H-subgraphs of
G such that every pair of those H-subgraphs overlaps in at most t vertices. Additionally, for every pair
of subgraphs Hi, Hj , V (Hi) 6= V (Hj). Here, we transform an instance of the H-Packing with t-Overlap
problem to an instance of the r-Set Packing with t-Overlap problem. Before giving such transformation,
we would like to show why we assume that r is considered a fixed-constant. In a similar way as with the
t-Membership variant (Theorem 9), we can reduce the Clique problem to the H-Packing with t-Overlap
problem.

Theorem 10. The H-Packing with t-Overlap is W [1]-Complete when parameterized by k and r.

We assume that each H ∈ H is an arbitrary graph with at least t + 1 vertices. Otherwise, we just
add the set of H-subgraphs each with at most t vertices straight to a (k, r, t)-H-Packing and decrease the
parameter k by the size of that set.

Once again note that there could exist in G more than one H-subgraph with the same set of vertices
(but different set of edges). However, by the explicit condition that all H-subgraphs in a (k, r, t)-H-Packing
should have different set of vertices we claim that only one of those H-subgraphs can be in a solution.

Lemma 19. Let Hi and Hj be a pair of H-subgraphs in G such that V (Hi) = V (Hj) but E(Hi) 6= E(Hj).
Any (k, r, t)-H-packing of G that contains Hi does not contain Hj (and vice versa). Furthermore, we can
replace Hi by Hj in such packing.

Proof. Let Hi, Hj be a pair of H-subgraphs with V (Hi) = V (Hj) and E(Hi) 6= E(Hj). Either Hi or
Hj are in the solution. This follows because for every pair of H-subgraphs Hi, Hj in a (k, r, t)-H-packing
V (Hi) 6= V (Hj). Now suppose that Hi is in a (k, r, t)-H-packing K and that we cannot replace Hi by
Hj in such packing. This would only be possible if Hj overlaps in more than t vertices with some H ′ in
(K\Hi). A contradiction since V (Hi) = V (Hj).
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We can find a (k, r, t)-H-packing from G by selecting k H-subgraphs from HG (the collection of all
H-subgraphs of G) that pairwise overlap in at most t vertices. By Lemma 19, we apply Reduction Rule 3
to HG. In this way, |HG| = O(|H|nr(H)).

Next, we create an instance of the r-Set Packing with t-Overlap problem as in Transformation 1. In
this way, |U| = O(n) and |S| = |HG| = O(|H|nr). Each set in S has size at most r.

Lemma 20. G has a (k, r, t)-H-packing if and only if S has a (k, r, t)-set packing.

Proof. We build a (k, r, t)-set packing KS from a (k, r, t)-H-packing K. For each H-subgraph Hi in K, we
add a set Si = V (Hi) to KS . By construction, Si ∈ S. Given that every pair Hi, Hj overlaps in at most t
vertices, every pair of sets in KS overlaps in at most t elements.

Given a (k, r, t)-set packing KS , we build a (k, r, t)-H-packing K of G. For each set Si in KS we add an
H-subgraph Hi ⊆ G[Si]. By construction, Hi is an H-subgraph of G. Any pair of H-subgraphs in K will
overlap in at most t vertices; otherwise there would be at least one pair of sets in KS sharing more than t
elements.

Let us suppose that KernelAlg-O is a kernelization algorithm for the r-Set Packing with t-Overlap
problem. We obtain a reduced universe U ′ and a reduced collection of sets S ′ for the constructed instance
of the r-Set Packing with t-Overlap with Algorithm KernelAlg-O. After that, the reduced graph G′ for
the original graph problem is obtained as in Transformation 2.

Lemma 21. G′ has a (k, r, t)-H-packing if and only if S ′ has a (k, r, t)-set packing.

Therefore, we can state.

Lemma 22. The H-Packing with t-Overlap problem can be reduced to a problem kernel with |V (G′)| = |U ′|
vertices.

The induced version seeks for at least k induced H-subgraphs in G that pairwise overlap in at most t
vertices. To achieve a problem kernel, we redefine S of Transformation 1 by adding a set S = V (H) per
each induced H-subgraph H of G.

5.2.2 From Packing Graphs with Edge-Overlap to Packing Sets with Pairwise
Overlap

In the H-Packing with t-Edge Overlap problem, we search for a collection of at least k H-subgraphs such
that every pair of them overlaps in at most t edges. For the edge version of this problem, we assume that
each H ∈ H has no isolated vertices. Otherwise, we can replace each H ∈ H that has a set HI of isolated
vertices with a graph H ′ = H\HI . Let H′ denote the family of subgraphs with these modified graphs.
Furthermore, let I denote the set of isolated vertices contained in G.

Lemma 23. G has a (k, r, t)-edge-H-overlap if and only if G\I has a (k, r, t)-edge-H′-overlap.

Henceforth, for the remainder of this section we assume that each H ∈ H and hence G as well do not
contain isolated vertices. Next, we create an instance of the r-Set Packing with t-Overlap problem with
Transformation 3. In this way, |U| = O(n2) and |S| = |HG| = O(|H|nm(H)). Each set in S has size O(r),
where r = m(H).
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Lemma 24. G has a (k, r, t)-edge-H-packing if and only if S has a (k, r, t)-set packing.

Proof. We build a (k, r, t)-set packing KS of S from a (k, r, t)-edge-H-packing K of G. For eachH-subgraph
Hi in K, we add a set Si = E(Hi) to KS . By our construction, Si exists in S. Given that every pair
Hi, Hj overlaps in at most t edges, every pair of sets in KS overlaps in at most t elements.

Given a (k, r, t)-set packing KS we build a (k, r, t)-edge-H-packing K of G. For each set Si in KS we
add an H-subgraph Hi with set of vertices V (Si) and the set of edges Si. Any pair of H-subgraphs in K
will overlap in at most t edges; otherwise there would be two sets in KS sharing more than t elements.

Once again we obtain a reduced universe U ′ and a reduced collection S ′ for the constructed instance
of the r-Set Packing with t-Overlap using the kernelization algorithm KernelAlg-O. After that, the
reduced graph for the original instance is obtained with Transformation 4. Given that G does not contain
isolated vertices (Lemma 23), |V (G′)| ≤ 2|U ′|. Thus,

Lemma 25. The H-Packing with t-Edge Overlap problem can be reduced to a problem kernel with |V (G′)| ≤
2|U ′| vertices.

We summarize the frameworks employed in the previous sections in Algorithm 2. This algorithm besides
receiving as input G, H and k, it also has four additional parameters: “Problem π”, [Transformation],
[KernelAlg], and [Reinterpretation]. The last three parameters are placeholders for specific routines that
vary according to the type of problem that we are reducing. Notice that the parameter k stays the same,
as it is not changed in any of our transformations.

Algorithm 2 Kernelization Framework - H-Packing with t-Membership/t-Overlap

Input: G, H, k, “Problem π”, [Transformation], [KernelAlg], and [Reinterpretation].
Output: G′

1: Construct an instance of [Problem π] (a universe U and a collection S) by running
[Transformation(G,H)]

2: Obtain U ′ and S ′ by running [KernelAlg(U ,S,k)] (i.e., a kernelization algorithm of [Problem π])
3: Reinterpret G′ by running [Reinterpretation(G,U ′)]
4: Return G′

5.3 Conclusions

We introduced in this chapter a systematic framework to obtain kernelization algorithms for graph packing
with pairwise overlap and membership problems. In short, this framework consists of transforming H-
Packing with t-Membership and t-Overlap instances to instances of r-Set Packing with t-Membership and
t-Overlap, respectively. Algorithm 2 formalizes such approach.

An essential assumption in these frameworks is the existence of kernelization algorithms for the r-
Set Packing with t-Membership and t-Overlap problems. In Chapters 6 and 7, we develop two different
kernelization algorithms for these latter problems. We will obtain in those chapters immediate kernelization
results for our graph packing problems using the kernelization frameworks introduced here.
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Chapter 6

Using Polynomial Parametric
Transformations Towards
Kernelization

In the previous chapter, we described a systematic framework to obtain kernelization results for the H-
Packing with t-Membership and t-Overlap problems. In a nutshell, that framework consists on transforming
these graph packing problems to the r-Set Packing with t-Membership and t-Overlap, respectively. After
we only need to focus on obtaining kernelization algorithms for the set packing problems, as per the
frameworks these algorithms will imply kernelization results for the graph packing versions as well.

In this chapter, we obtain kernelization algorithms for both the r-Set Packing with t-Membership
and t-Overlap. Instead of using standard reduction rules [44, 117, 33] for this goal, we will employ
polynomial parametric transformations (PPTs). Informally, a PPT from a parameterized problem P to
a parameterized problem Q is a polynomial time computable function f that transforms any instance
of P to an instance of Q subject to the following crucial properties: the instance of P has a solution if
and only if the transformed instance of Q has a solution, and the size of the parameter of P grows at
most polynomially in the transformed instance. A formal definition of PPT is included in Chapter 2.
Even though these transformations have been used mainly for showing the existence of kernelization lower
bounds [16], we believe that this is a powerful technique to obtain kernelization algorithms as well. In
contrast to classical reductions for example, we obtained those algorithms in a much faster way.

Our kernelization algorithms for the r-Set Packing with t-Membership and t-Overlap are sketched in
three steps. First, we develop PPTs to transform an instance of set packing problems that allows overlap
(either membership or pairwise) to an instance of the classical set packing problem (i.e., packing disjoint
sets). More precisely, we will transform the r-Set Packing with t-Membership and t-Overlap to the r′-Set
Packing problem for some r′ > r. Second, we run a kernelization algorithm for the r′-Set Packing problem
in the transformed instances. Finally, we re-interpret the kernel result of the r′-Set Packing problem into
kernels of the original r-Set Packing with t-Membership and t-Overlap problems (see Figure 6.1).

By employing the kernelization framework described in the previous chapter, we use our newly obtained
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kernelization algorithms for the r-Set Packing with t-Membership and t-Overlap to obtain kernelization
results for the H-packing with t-Overlap and t-Membership problems.

This chapter is organized as follows. Section 6.1 provides our results for all our membership problems.
In Section 6.1.1, we give a PPT from the r-Set Packing with t-Membership problem to the (r + 1)-Set
Packing problem. This leads into an O((r + 1)rkr) kernel for the first problem. We also discuss how to
reduced the weighted version of the r-Set Packing with t-Membership to a kernel using a similar approach
as the unweighted version. In Section 6.1.2, we obtain an O((r + 1)rkr) kernel, where r = r(H), for
H-Packing with t-Membership via the kernelization framework of Section 5.1.1. Also in this section, we
introduce the ISV variant of that problem and obtain an O((r + 1)rkr) kernel as well, but via PPTs,
as we will discuss, it is not possible to do it within the framework of Section 5.1.1. Similarly in Section
6.1.3, we obtain an O((r + 1)rkr) kernel, where r = m(H), for H-Packing with t-Edge Membership via
the kernelization framework of Section 5.1.2. We also consider the NISV variant of the Edge Membership
problem and obtain an O((r+ 1)rkr) kernel as well (r = m(H)) with a PPT to (r+ 1)-Set Packing instead
of the framework of Section 5.1.2.

In Section 6.2.1, we focus our attention in the pairwise overlap problems. We provide a PPT from r-Set
Packing with t-Overlap to the (

(
r
t+1

)
+ 1)-Set Packing problem which allows us to obtain an O((rt+1 +

1)r
t+1

kr
t+1

) kernel for the first problem. We also consider the weighted variant of the r-Set Packing with
t-Overlap problem. By employing this PPT and by the framework of Section 5.2.1, we obtain a kernel
with O((rt+1 +1)r

t+1

kr
t+1

) vertices, where r = r(H) for the H-Packing with t-Overlap problem. In similar

way an O((rt+1 + 1)r
t+1

kr
t+1

) kernel, where r = m(H), is obtained for the edge-overlap version in Section
6.2.3. Finally in that section, we also consider the NISV variant of the H-Packing with t-Edge Overlap
problem and obtain the same kernel size as for the original version but using a polynomial parametric
transformation instead. Table 6.1 summarizes the results obtained in this chapter.

r’−Set Packing (r’>r)

O(nc)

Instance (J,k)

I’
J’

I’
J’

Transformation
Algorithm

O(nc)

Instance (I,k)

Transformation
Algorithm

O(nc)

Kernel (I’,k)

O(n)

f(k)

Kernelization
Algorithm

Kernel (J’,k)

r−Set Packing with t−Membership

r−Set Packing with t−Membership r’−Set Packing (r’>r)

Figure 6.1: Schematic of the Kernelization Algorithm by Polynomial Parametric Transformation for the
r-Set Packing with t-Membership problem
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Problem Kernel Size Section
r-Set Packing with t-Membership O((r + 1)rkr) elements 6.1.1
H-Packing with t-Membership O((r(H) + 1)r(H)kr(H)) vertices 6.1.2
H-Packing with t-Membership (ISV) O((r(H) + 1)r(H)kr(H)) vertices 6.1.2
H-Packing with t-Edge Membership O((m(H) + 1)m(H)km(H)) vertices 6.1.3
H-Packing with t-Edge Membership (NISV) O((m(H) + 1)m(H)km(H)) vertices 6.1.3

r-Set Packing with t-Overlap O((rt+1 + 1)r
t+1

kr
t+1

) elements 6.2.1

H-Packing with t-Overlap O((r(H)t+1 + 1)r(H)t+1

kr(H)t+1

) vertices 6.2.2

H-Packing with t-Edge Overlap O((m(H)t+1 + 1)m(H)t+1

km(H)t+1

) vertices 6.2.3

H-Packing with t-Edge Overlap (NISV) O((m(H)t+1 + 1)m(H)t+1

km(H)t+1

) vertices 6.2.3

Table 6.1: Summary of results presented in Chapter 6

6.1 PPTs for Packing Problems with Membership

In this section, we introduce a polynomial parametric transformation from the r-Set Packing with t-
Membership problem to the (r+ 1)-Set Packing problem. We obtain a kernel result for the r-Set Packing
with t-Membership problem by running a kernelization algorithm on the constructed instance of the (r+1)-
Set Packing problem. This compression result can be turned into a proper kernel result by re-interpreting
the (r + 1)-Set Packing kernel within the original problem.

To obtain kernel results for the H-Packing with t-Membership and t-Edge Membership problems, we
transform each of these problems to an instance of the r-Set Packing with t-Membership problem as
explained in Section 5.1. Recall that r, t ≥ 1 are fixed constants.

6.1.1 From Packing Sets with Membership to Packing Disjoint Sets

Let us begin with the r-Set Packing with t-Membership problem. The objective of this problem is to
obtain at least k distinct sets from a collection of sets S drawn from a universe U such that every element
of U is contained in at most t of these sets, if one exists.

Recall that the (r + 1)-Set Packing problem searches for at least k pairwise disjoint sets from a given
collection of sets. We create an instance for this problem (a universe UT and a collection ST ) using an
instance of the r-Set Packing with t-Membership problem as follows. Notice that size of a set in S is at
most r while the size of a set in ST is at most r + 1.

Transformation 5. Input: S, U ; Output: ST , UT

The universe UT equals (U × {1, . . . , t}) ∪ S.

The collection ST contains all subsets of UT each with at most r + 1 elements of the following form:
{{(u1, j1),. . . ,(ui, ji),. . . ,(ur′ , jr′), S} | S ∈ S, S = {u1, . . . , ur′}, for each 1 ≤ ji ≤ t and 1 ≤ i ≤ r′, where
r′ ≤ r}.

Intuitively, since each element in U can be in at most t sets of a (k, r, t)-set membership, we duplicate
each element t times. This would imply that there are tr sets in ST representing the same set S ∈ S. All
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of those sets have a common element which is precisely the set of elements in S, i.e., some S ∈ S ⊂ UT .
This is why the upper bound on the number of elements per set in ST increases by one with respect to
the sets in S.

Example 1. For an instance of the r-Set Packing with t-Membership with universe U = {a, b, c, d, e, f, g, h},
S ={ {a, b, c, d}, {b, c, e, f}, {b, c, g, h} }, k = 2 and t = 2, the constructed instance of the (4 + 1)-Set Pack-
ing is as follows.

UT = {(a, 1), (b, 1), (c, 1), (d, 1), (e, 1), (f, 1), (g, 1), (h, 1),

(a, 2), (b, 2), (c, 2), (d, 2), (e, 2), (f, 2), (g, 2), (h, 2)}
∪ S.

Some sets of the collection ST are {(a, 1), (b, 1), (c, 1), (d, 1), {a, b, c, d}}, {(a, 1), (b, 1), (c, 1), (d, 2),
{a, b, c, d}}, {(a, 2), (b, 2), (c, 2), (d, 2), {a, b, c, d}}, {(b, 1), (c, 2), (e, 1), (f, 2), {b, c, e, f}}, {(b, 1), (c, 1),
(g, 2), (h, 2), {b, c, g, h}}.

A (2, 4 + 1, 0)-set packing is

{(a, 1), (b, 1), (c, 1), (d, 1), {a, b, c, d}},
{(b, 2), (c, 2), (e, 1), (f, 1), {b, c, e, f}}.

This corresponds to the (2, 4, 2)-set membership {{a, b, c, d}, {b, c, e, f}}.

The size of UT is bounded by |U| · t+ |S| < tn+ rnr = O(nr). Each set in ST has size at most r + 1.
For each S ∈ S, we can form at most tr sets with the tr ordered pairs from the elements in S. In this way,
for each S ∈ S there are tr sets in ST , and |ST | = tr|S| = O(trnr). This leads us to the following result.

Lemma 26. Transformation 5 can be computed in O(trnr) time.

Note that the parameter k stays the same in this transformation, and t only influences the running
time of the whole construction, as the (r + 1)-Set Packing instance will grow if t gets bigger.

Lemma 27. S has a (k, r, t)-set membership if and only if ST has a (k, r+1, 0)-set packing (i.e., k disjoint
sets).

Proof. We build a (k, r+ 1, 0)-set packing KS from a (k, r, t)-set membership K. For each Sj ∈ K, we add
a set STj to ST with |Sj |+ 1 ≤ r+ 1 elements. By construction, STj has one element from S and at most r

ordered pairs. As Sj ∈ S ⊂ UT , we can choose STj ∩S = {Sj}. For each element ui ∈ Sj (1 ≤ i ≤ |Sj | ≤ r),
we add an ordered pair (ui, l + 1) to Sj where l corresponds to the number of sets in {S1, . . . , Sj−1} ⊂ K
that contain ui. Since each element of U is a member of at most t sets of K (otherwise K would not be a
solution), l is at most t − 1 and (ui, l + 1) always exists in UT . Thus, STi ∈ ST . It remains to show that
the sets in KS are pairwise disjoint. By construction, none of the sets in KS will share the element S. In
addition, no pair STi , S

T
j shares an ordered pair (u, l) for some u ∈ U and 1 ≤ l ≤ t. Namely, if STi and

STj share a pair (u, l), this would imply that there are two sets Si, Sj ∈ K that share the same element u.
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Without lost of generality, assume that Si appears before Sj in K. If (u, l) is contained in both STi and
STj , then u is a member of l− 1 sets from both {. . . , Si, . . . } and {. . . , Si, . . . , Sj}. This is a contradiction,
since both Si and Sj contain u.

We construct a (k, r, t)-set membership K using a (k, r + 1, 0)-set packing KS . Each set STi ∈ KS has
an element S ∈ S. Let us denote that element as Si. For each set STi ∈ KS , we add Si to K. Since the
sets in KS are pairwise disjoint, Si 6= Sj . Now, we need to show that each element of U is a member of
at most t sets in K. Assume otherwise for the sake of contradiction. If two sets in K share an element u,
then there are two sets in KS each one with a pair (u, i) and (u, j), respectively. Since the sets in KS are
disjoint, i 6= j. If an element u ∈ U is a member of more than t sets in K, then there are at least t + 1
ordered pairs (u, 1), . . . , (u, t+ 1) contained in t+ 1 different sets in KS . However, by the construction of
UT , there are at most t ordered pairs that contain u.

Up to this point we have introduced a polynomial parametric transformation from the r-Set Packing
with t-Membership to the (r + 1)-Set Packing. Next, we run the currently best kernelization algorithm
for the (r+ 1)-Set Packing problem [1] on the constructed instance. This algorithm would leave us with a

new universe U ′T with at most 2r!((r + 1)k − 1)r elements, as well with a collection S ′T of subsets. The
next property is borrowed from [1].

Lemma 28. ST has a (k, r + 1, 0)-set packing if and only if S ′T has a (k′, r + 1, 0)-set packing, where
k′ ≤ k.

Next, we construct the reduced universe U ′ and S ′ for our original membership problem using U ′T and
S ′T as follows.

Transformation 6. Input: S ′T , U ′T ; Output: S ′, U ′

The reduced universe U ′ equals to the union of elements u for each (u, i) ∈ U ′T .

The reduced collection S ′ contains a set which corresponds to the element S in each set in S ′T .

U ′ and S ′ together with k, give the reduced r-Set Packing with t-Membership instance we are looking
for. By construction, U ′ will have at most 2r!((r + 1)k − 1)r elements. This reduction property allows us
to state:

Theorem 11. The r-Set Packing with t-Membership has a problem kernel with O((r + 1)rkr) elements
from the given universe.

By Transformations 5 and 6, each set in S ′ must be contained in the collection S ∈ U ′T . Since
|U ′T | = O((r + 1)rkr), we can conclude:

Theorem 12. The r-Set Packing with t-Membership has a problem kernel with O((r + 1)rkr) sets.

Our kernelization algorithm is summarized in Algorithm 3.
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Algorithm 3 Kernelization Algorithm by PPT - r-Set Packing with t-Membership

Input: U and S
Output: Reduced U ′ and S ′

1: Construct a universe UT and collection ST using Transformation 5.
2: Run the (r + 1)-Set Packing kernelization algorithm [1] on UT and ST .
3: Using Transformation 6, re-interpret the kernel S ′T , U ′T as reduced S ′, U ′, respectively.
4: Return U ′, S ′.

Packing Weighted Sets with Membership using PPTs

Next, we briefly discuss how to employ our PPT approach to reduce the weighted version of the r-Set
Packing with t-Membership problem to a kernel. Let us start first by defining this variant. In the weighted
r-Set packing with t-Membership problem, every set in S has associated a weight (a real number), and the
goal is to find a (k, r, t)-set membership of maximum weight.

To reduce the weighted variant, we construct again an instance of the r-Set Packing using Transforma-
tion 5. Recall that there will be tr sets in ST (the constructed collection of sets) representing the same set
S ∈ S. Thus, we assign the weight of S to each of these tr sets. By using similar arguments as in Lemma
27, we can show that the instance (U ,S, k) has a (k, r, t)-set membership of maximum weight if and only if
the constructed instance (UT ,ST , k) has a (k, r+ 1, 0)-set packing of maximum weight. After that, we will
run the kernelization algorithm of Zehavi [140] for the weighted version of the r-Set Packing problem in
our constructed instance. Subsequently, we re-intepret back the kernel returned by Algorithm [140] as in
Transformation 6. Given that Algorithm [140] returns a reduced kernel of size O(er

′
r′kr

′
) where r′ = r+1

(on the number of sets), we can hence conclude:

Theorem 13. The weighted r-Set Packing with t-Membership has a problem kernel with O(er+1(r+1)kr+1)
sets.

6.1.2 A Kernel Reduction for theH-Packing with t-Membership and t-Member-
ship (ISV) Problems

Recall that the H-Packing with t-Membership problem seeks for at least k H-subgraphs where each vertex
of G belongs to at most t of them. In addition, V (Hi) 6= V (Hj) for every pair Hi, Hj of those H-subgraphs.

To reduce this problem to a kernel, we will use the framework explained in Section 5.1.1. In that
framework, we show how to reduce H-Packing with t-Membership to a kernel problem by transforming it
to an instance of the r-Set Packing with t-Membership, assuming the existence of a kernelization algorithm
KernelAlg-M for the latter problem. In this chapter, KernelAlg-M will correspond to Algorithm 3.

Let us first recapitulate our kernelization framework. We first transform an instance of the H-Packing
with t-Membership problem to an instance of the r-Set Packing with t-Membership (Transformation 1).
That is, we construct a universe U and a collection S. The parameter k remains the same, and r = r(H).
Recall that r(H) is the order of the largest graph in the family of graphs H.

After that we reduced to a kernel this constructed instance for the r-Set packing with t-Membership
problem with Algorithm 3, i.e., we obtain a reduced universe U ′ and a reduced collection S ′. Finally, we
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re-interpret the reduced universe U ′ as a reduced instance of the original H-Packing with t-Membership
problem, i.e. a reduced graph G′ (Transformation 2).

According to Transformation 2, G′ = G[U ′], and by Algorithm 3 |U ′| = O((r + 1)rkr). Lemma 13
allows us to conclude:

Theorem 14. H-Packing with t-Membership has a problem kernel with O((r + 1)rkr) vertices, where
r = r(H).

Also in Section 5.1.1, we describe how to reduce the induced version of theH-Packing with t-Membership
to a problem kernel in a similar way as the non-induced version. Thus, we obtain the next result.

Theorem 15. Induced-H-Packing with t-Membership has a problem kernel with O((r + 1)rkr) vertices,
where r = r(H).

The kernelization algorithm for the H-Packing with t-Membership that we described above corresponds
to Algorithm 2 with input G, H, k, r-Set Packing with t-Membership, Transformation 1, Algorithm 3, and
Transformation 2.

In Appendix A.1.1, we include a polynomial parametric transformation from the H-Packing with t-
Membership problem to the (r + 1)-Set Packing problem, where r = r(H) (instead to the r-Set Packing
with t-Membership problem). That transformation leads to the same kernel size as in Theorem 14.

The H-Packing with t-Membership (ISV) Problem

Recall that one condition of the H-Packing with t-Membership problem is that every pair Hi, Hj of H-
subgraphs in the solution should have different set of vertices, i.e., V (Hi) 6= V (Hj). In this section, we
discuss a more flexible definition of the H-Packing with t-Membership problem that allows H-subgraphs
in a (k, r, t)-H-membership with identical sets of vertices but requires different sets of edges. We indicate
this variant by adding ISV (identical set of vertices) to the problem name.

The H-Packing with t-Membership (ISV) problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, r, t)-H-membership (ISV), i.e., a set of at least k subgraphs K =
{H1, . . . ,Hk} where each Hi is isomorphic to some graph H ∈ H, E(Hi) 6= E(Hj), and every
vertex in V (G) is contained in at most t subgraphs of K?

Note that every solution for the original problem is a solution for the ISV variant, but the converse is
not necessarily true.

Example 2. Consider the input graph of Figure 6.2 and suppose that H = {C4,K4}, k = 2, and t = 2.
A (k, r, t)-H-membership (ISV) is

{H1 =({b, c, f, e}, {bc, cf, ef, be}),
H2 =({b, c, f, e}, {bc, cf, ef, be, bf, ce})}.

However, this is not a (k, r, t)-H-membership.
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Notice that we cannot transform the ISV variant to the r-Set Packing with t-Membership (as we did
with the original version) because Lemma 9 and Lemma 11 do not hold for the ISV version. Therefore, to
achieve a kernelization algorithm for the H-Packing with t-Membership (ISV), we introduce a polynomial
parametric transformation from the H-Packing with t-Membership problem (ISV) to an instance of the
(r + 1)-Set Packing problem (packing disjoint sets) directly.

a b

d c

g

h

e

f

ab

ad

gh hc

gb

dc

bc

bf

ce

cf

be

ef

Figure 6.2: An input graph G for the H-Packing with t-Membership problem.

Recall from Chapter 2 that HG is the set of all H-subgraphs in G, and E defines a collection of sets of
edges each of which induces a subgraph isomorphic to some H ∈ H. We clarify that for this transformation,
we do not apply Reduction Rule 3 to HG. Next, we create an instance for the (r+ 1)-Set Packing problem
(a universe U and a collection S) as follows.

Transformation 7. Input: G, H; Output: U , S, and r.

Let r = r(H).

The universe U equals (V (G)× {1, . . . , t}) ∪ E.

The collection S contains all subsets of U each with at most r + 1 elements

{{(v1, j1), . . . , (vi, ji), . . . , (vr′ , jr′), E} | E ∈ E ,
V (E) = {v1, . . . , vr′}, for each 1 ≤ ji ≤ t and 1 ≤ i ≤ r′, where r′ ≤ r}

Intuitively, each set in S would represent an H-subgraph in G. Since each vertex in V (G) can be in at
most t H-subgraphs, we replicate each vertex t times. To allow H-subgraphs with the same set of vertices,
we add the element E to the sets. In this way, H-subgraphs with identical set of vertices will have a
different element E.

Example 3. Let us consider the graph of Figure 6.2. H = {C4,K4}, t = 3, and k = 3.
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E ={{ab, ad, bc, dc}, {bg, bc, gh, hc}, {be, ef, cf, bc},
{be, ce, cf, bf}, {be, bc, ef, cf, bf, ce}}

and

U = {(a, 1), (b, 1), (c, 1), (d, 1), (e, 1), (f, 1), (g, 1), (h, 1),

(a, 2), (b, 2), (c, 2), (d, 2), (e, 2), (f, 2), (g, 2), (h, 2)}
∪ E .

Some sets of the collection S are

{(a, 1), (b, 1), (c, 1), (d, 1), {ab, ad, bc, bd}},
{(a, 1), (b, 1), (c, 1), (d, 2), {ab, ad, bc, bd}},
{(b, 1), (c, 1), (e, 1), (f, 1), {be, ef, cf, bc}},
{(b, 2), (c, 2), (e, 2), (f, 2), {be, ce, cf, bf}},
{(b, 3), (c, 3), (e, 3), (f, 3), {be, bc, ef, cf, bf, ce}}.

A (3, 4 + 1, 0)-set packing is

{{(b, 1), (c, 1), (e, 1), (f, 1), {be, ef, cf, bc}},
{(b, 2), (c, 2), (a, 1), (d, 1), {ab, ad, bc, bd}}, and

{(b, 3), (c, 3), (g, 3), (h, 3), {be, bc, ef, cf, bf, ce}}}.

This corresponds to the (3, 4, 3)-H-membership (ISV)

{H1 = ({b, c, e, f}, {be, ef, cf, bc}),
H2 = ({a, b, c, d}, {ab, ad, bc, bd}), and

H3 = ({b, c, e, f}, {be, bc, ef, cf, bf, ce})}.

The size of U is upper-bounded by |U| = |V (G)| × t + |E| ≤ tn + nm(H) = O(nr
2

). Each set in S has
size at most r + 1 (where r = r(H)) and |S| ≤ tr|H|nm(H). Thus,

Lemma 29. Transformation 7 runs in O(tr|H|nm(H)) time

Lemma 30. G has a (k, r, t)-H-membership (ISV) if and only if S has a (k, r + 1, 0)-set packing.
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Proof. We build a (k, r + 1, 0)-set packing KS from a (k, r, t)-H-membership (ISV) K. For each Hj ∈ K,
we add a set Sj with |V (Hj)| + 1 ≤ r + 1 elements as follows. The element E in Sj corresponds to
the set of edges E(Hj) = {e1, . . . , e|E|}. Note that E(Hj) ∈ E ⊆ U . For each vertex vi ∈ V (Hj)
(1 ≤ i ≤ |V (Hj)| ≤ r), we add an ordered pair (vi, l + 1) to Sj , where l corresponds to the number of
H-subgraphs in {H1, . . . ,Hj−1} ⊆ K that vi is contained in. Since each vertex is contained in at most t
H-subgraphs, 0 ≤ l ≤ t − 1 and (vi, l + 1) always exists in U . By construction of S, Sj ∈ S. It remains
to show that the sets in KS are pairwise disjoint. Since E(Hi) 6= E(Hj) for each pair Hi, Hj ∈ K, none
of the sets in KS will share the same element E. In addition, no pair Si, Sj shares an ordered pair (v, l)
for some v ∈ V (G) and 1 ≤ l ≤ t. If Si and Sj share a pair (v, l) this would imply that there are two
H-subgraphs Hi and Hj that share the same vertex v. Without lost of generality, assume that Hi appears
before Hj in K. If (v, l) is contained in both Si and Sj , then v is a member of l − 1 H-subgraphs from
both {. . . , Hi, . . . } and {. . . , Hi, . . . ,Hj}, a contradiction, since both Hi and Hj contain v.

We construct a (k, r, t)-H-membership (ISV) K using a (k, r + 1, 0)-set packing KS . Each set Si ∈ KS
has an element ESi ∈ E which corresponds to a set of edges in E(G) that forms a subgraph isomorphic
to H ∈ H in G. In addition, we take the vertex vl that appears in each (vl, j) ∈ Si (for 1 ≤ l ≤ r and
j ∈ [1...t]) and we add it to a set VSi

. In this way, for each set Si ∈ KS , we add to K an H-subgraph HSi

with a set of vertices VSi
and a set of edges ESi

, i.e., HSi
= (VSi

, ESi
). Since the sets in KS are pairwise

disjoint, E(HSi
) 6= E(HSj

). Now, we need to show that each vertex of V (G) is a member of at most t
H-subgraphs in K. Assume otherwise by contradiction. If two H-subgraphs in K share a vertex v, then
there are two sets in KS where each one has a pair (v, i) and (v, j), respectively. Since the sets in KS
are disjoint then i 6= j. If a vertex v ∈ V (G) is a member of more than t H-subgraphs in K then there
are at least t + 1 ordered pairs (v, 1), . . . , (v, t + 1) contained in t + 1 different sets in KS . However, by
construction of U , there are at most t ordered pairs that contain v.

Given a reduced universe U ′ ⊆ U , we construct a graph G′ as follows.

Transformation 8. Input: G, U ′; Output: G′

We take each vertex v that appears in each (v, i) ∈ U ′ and the vertices in each E ∈ E ′ and consider the
graph G′ that is induced by all these in G.

Lemma 31. G′ has a (k, r, t)-H-membership (ISV) if and only if S ′ has a (k, r + 1, 0)-set packing.

Our kernelization algorithm forH-Packing with t-Membership (ISV) problem corresponds to Algorithm
2 with input: G, H, k, (r + 1)-Set Packing, Transformation 7, kernelization algorithm [1], and Transfor-
mation 8. Given that the universe U ′ returned by Algorithm [1] has at most 2r!((r + 1)k − 1)r elements,
then by construction, G′ has at most O((r + 1)rkr) vertices.

Theorem 16. The H-Packing with t-Membership problem (ISV) has a kernel with O((r+ 1)rkr) vertices,
where r = r(H).

6.1.3 A Kernel Reduction for the H-Packing with t-Edge Membership and
t-Edge Membership (NISV) Problems

In the H-Packing with t-Edge Membership problem, we seek for a collection of least k H-subgraphs where
each edge of G belongs to at most t H-subgraphs of that collection. Similarly as with the H-Packing
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with t-Membership problem (i.e., the vertex version), we will use the kernelization framework described in
Section 5.1.2.

Using an instance of the H-Packing with t-Edge Membership problem, we construct an instance of the
r-Set Packing with t-Membership: a universe U and a collection S (Transformation 3). The parameter k
remains the same and r = m(H). Recall thatm(H) is the size of the largest subgraph in the family of graphs
H. After that we reduced to a kernel this constructed instance for the r-Set packing with t-Membership
problem with Algorithm 3, i.e., we obtain reduced universe U ′ and collection S ′. Finally, we re-interpret
the reduced universe U ′ as a reduced instance of the original H-Packing with t-Edge Membership problem,
i.e. a reduced graph G′ (Transformation 4).

By Transformation 4, G′ = G[V (U ′)] and |V (G′)| ≤ 2|U ′| (G does not contain isolated vertices by
Lemma 14).

By Lemma 18, we can state.

Theorem 17. The H-Packing with t-Edge Membership problem has a kernel with O((r + 1)rkr) vertices
where r = m(H).

Our kernelization algorithm for the H-Packing with t-Edge Membership problem corresponds to Al-
gorithm 2 with input G, H, k, r-Set Packing with t-Membership, Transformation 3, Algorithm 3, and
Transformation 4.

For completeness, we include a polynomial parametric transformation from the H-Packing with t-Edge
Membership problem to the (r + 1)-Set Packing, where r = m(H) (instead to the r-Set Packing with
t-Membership) in Appendix A.1.2. That transformation leads to the same kernel size as in Theorem 17.

The H-Packing with t-Edge Membership (NISV) Problem

We present a stricter definition of the H-Packing with t-Edge Membership problem to avoid H-subgraphs
in a (k,m, t)-edge-H-membership with identical sets of vertices. This is equivalent to adding the condition
V (Hi) 6= V (Hj) to the H-Packing with t-Edge Membership problem definition. We will indicate this
variant by adding NISV (non identical set of vertices) to the problem name.

The H-Packing with t-Edge Membership (NISV) problem
Input : A graph G, and a positive integer k.
Parameter : k
Question: Does G contain a (k, r, t)-edge-H-membership, i.e., a set of at least k subgraphs K =
{H1, . . . ,Hk} where each Hi is isomorphic to some graph H ∈ H, V (Hi) 6= V (Hj), and every edge
in E(G) belongs to at most t subgraphs of K?

Note that every solution for the NISV variant is a solution for the original problem, but the converse
is not necessarily true.

Example 4. Let us consider the graph of Figure 6.2 with H = {C4}, t = 2, and k = 2. A (2, 4, 2)-edge-
H-membership (NISV) corresponds to
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H1 = ({a, b, c, d}{ab, ad, bc, dc}), H2 = ({b, e, c, f}{bc, be, ef, cf}).

This is also a (2, 4, 2)-edge-H-membership.

On the other hand, H1 = ({b, e, c, f}{be, ef, cf, bc}), H2 = ({b, e, c, f}{be, ce, cf, bf}) is a (2, 4, 2)-edge-
H-membership but is not a (2, 4, 2)-edge-H-membership (NISV).

We cannot use the same kernelization approach for the NISV variant as we did with the original H-
Packing with t-Edge Membership problem. That is, transforming the NISV variant to an instance of the
r-Set Packing with t-Membership problem. This follows because not every (k, r, t)-set membership can be
transformed into a (k, r, t)-H-membership (NISV), and Lemma 16 would not hold.

Therefore, we introduce a polynomial parametric transformation that reduces the H-Packing with
t-Edge Membership problem (NISV) directly to (r + 1)-Set Packing (packing disjoint sets).

As defined in Chapter 2, V is a collection of sets of vertices each of which forms a subgraph (not
necessarily induced) isomorphic to some H ∈ H, and E is a collection of sets of edges each of which induces
a subgraph isomorphic to some H ∈ H.

Transformation 9. Input: G, H; Output: U , S, and r.

Let r = m(H).

The universe U equals (E(G)× {1, . . . , t}) ∪ V.

The collection S contains all subsets of U each with at most r + 1 elements:

{{(e1, j1), . . . , (em′ , jm′), V (E)} | E ∈ E ,
E = {e1, . . . em′} for each 1 ≤ ji ≤ t and 1 ≤ i ≤ m′, where m′ ≤ m(H)}.

The intuition behind our transformation is that each set in S would represent an H-subgraph in G.
Since each edge in E(G) can be in at most t H-subgraphs, we replicate each edge t times. This would
imply that there are tr sets in S representing the same H-subgraph H of G. All of those sets have a
common element which is precisely the set of vertices in V (H), i.e., some V ∈ V ⊂ U . This will avoid to
choosing sets that correspond to H-subgraphs with identical set of vertices.

Example 5. For the graph of Figure 6.2, H = {C4}, k = 3, and t = 2.

V = {{a, b, c, d}, {b, c, e, d, f}, {b, c, g, h}}
U = {(ab, 1), (ad, 1), (dc, 1), (bc, 1), (be, 1), (ef, 1), (cf, 1), (bf, 1), (ec, 1), (gb, 1),

(dc, 1), (hc, 1), (ab, 2), (ad, 2), (dc, 2), (bc, 2), (be, 2), (ef, 2), (cf, 2), (bf, 2),

(ec, 2), (gb, 2), (dc, 2), (hc, 2)}
∪ V .

Some sets of the collection S are
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{(ad, 1), (ab, 1), (bc, 1), (dc, 1), {a, b, c, d}},
{(bc, 1), (cf, 1), (ef, 1), (be, 1), {b, c, e, f}},
{(bf, 1), (cf, 1), (ec, 1), (be, 1), {b, c, e, f}},
{(bc, 1), (bf, 1), (ef, 1), (ec, 1), {b, c, e, f}},
{(gh, 1), (dc, 1), (bc, 1), (hc, 1), {b, c, g, h}}.

A (3, 4 + 1, 0)-set packing is

{{(ab, 1), (ad, 1), (dc, 1), (bc, 1), {a, b, c, d}},
{(be, 1), (bf, 1), (cf, 1), (ec, 1), {b, c, e, f}} and

{(bc, 2), (gb, 1), (hc, 1), (gh, 1), {b, c, g, h}}}.

This corresponds to the following (3, 4, 2)-edge-H-membership (NISV)

{H1 = ({a, b, c, d}, {ab, ad, dc, bc}),
H2 = ({b, c, e, f}, {be, bf, cf, ec}) and

H3 = ({b, c, g, h}, {bc, gb, gh, hc})}.

Lemma 32. G has a (k, r, t)-edge-H-membership (NISV) if and only if S has a (k, r + 1, 0)-set packing.

Proof. We build a (k, r + 1, 0)-set packing KS from a (k, r, t)-edge-H-membership (NISV) K. For each
Hj ∈ K, we add a set Sj with |E(Hj)|+1 ≤ r+1 elements as follows. The element V in Sj corresponds to the
set of vertices V (Hj). Note that V (Hj) ∈ V ⊆ U . For each edge ei ∈ E(Hj) (1 ≤ i ≤ |E(Hj)| ≤ m), we add
an ordered pair (ei, l+ 1) to Sj where l corresponds to the number of H-subgraphs in {H1, . . . ,Hj−1} ⊂ K
that ei belongs to. Since each edge is a member of at most t H-subgraphs, 0 ≤ l ≤ t − 1 and (ei, l + 1)
always exists in U . By construction of S, Si ∈ KS ⊆ S. It remains to show that the sets in KS are pairwise
disjoint. Since V (Hi) 6= V (Hj) for each pair Hi, Hj ∈ K, none of the sets in KS will share the same
element V . On the other hand, no pair Si, Sj shares an ordered pair (e, l) for some edge e ∈ E(G) and
some integer 1 ≤ l ≤ t. If Si and Sj share a pair (e, l), this would imply that there are two H-subgraphs
Hi and Hj that share the same edge e. Without lost of generality, assume that Hi appears before Hj in K.
If (e, l) is contained in both Si and Sj , then e is a member of l − 1 H-subgraphs from both {. . . , Hi, . . . }
and {. . . , Hi, . . . ,Hj}. This is a contradiction since both Hi and Hj contain e.

We construct a (k, r, t)-edge-H-membership (NISV) K using a (k, r + 1, 0)-set packing KS . Each set
Si ∈ KS has an element VSi ∈ V which corresponds to a set of vertices in V (G) that forms a subgraph in
G that is isomorphic to some H ∈ H. In addition, we take the edge el that appears in each (el, j) ∈ Si (for
1 ≤ l ≤ m and j ∈ [1...t]) and we add it to a set ESi

. In this way, for each set Si ∈ KS , we add to K an
H-subgraph HSi

with a set of vertices VSi
and a set of edges ESi

, i.e., HSi
= (VSi

, ESi
). Since the sets in

KS are pairwise disjoint, V (HSi
) 6= V (HSj

). Now, we need to show that each edge of E(G) is a member
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of at most t H-subgraphs in K. Assume the contrary for the sake of contradiction. If two H-subgraphs in
K share an edge e, then there are two sets in KS where each one has a pair (e, i) and (e, j), respectively.
Since the sets in KS are disjoint, i 6= j. If an edge e ∈ E(G) is a member of more than t H-subgraphs in
K, then there are at least t + 1 ordered pairs (e, 1), . . . , (e, t + 1) contained in t + 1 different sets in KS .
However, by construction of U , there are at most t ordered pairs that contain e.

The size of the constructed instance is upper-bounded by

|U| = |E(G)| × t+ |V| ≤ tn2 + nr(H) = O(nr(H)) .

Each set in S has size r + 1 (where r = m(H)) and |S| ≤ tr|H|nm(H).

We construct a reduced graph G′ from a reduced universe U ′ ⊆ U as follows.

Transformation 10. Input: G, U ′; Output: G′

We take the end-points of each edge e that appears in each (e, i) ∈ U ′ and the vertices in each V ∈ V ′
and consider the graph G′ that is induced by all these in G.

Lemma 33. G′ has a (k, r, t)-H-membership (NISV) if and only if S ′ has a (k, r + 1, 0)-set packing.

The kernelization algorithm for the H-Packing with t-Edge Membership (NISV) problem corresponds
to Algorithm 2 with input: G, H, k, (r + 1)-Set Packing, Transformation 9, kernelization algorithm [1],
and Transformation 10. The size of U ′ is at most 2r!((r + 1)k − 1)r [1]; hence |V (G′)| = O((r + 1)rkr).
Therefore, we can state:

Theorem 18. The H-Packing with t-Edge Membership (NISV) problem has a kernel with O((r + 1)rkr)
vertices, where r = m(H).

6.2 PPTs for Packing Problems with Pairwise Overlap

In this section, we present kernelization results for the packing problems with pairwise overlap using
similar methodology as with the membership problems. First, we introduce a polynomial parametric
transformation from the r-Set Packing with t-Overlap problem to the (

(
r
t+1

)
+ 1)-Set Packing problem.

After that we reduce to a kernel the constructed instance of the (
(
r
t+1

)
+ 1)-Set Packing problem. Finally,

we re-interpret this kernel into a proper kernel for the original r-Set Packing with t-Overlap problem.

We also obtain kernel results for our packing graphs with pairwise overlap problems. To that end, we
use the framework explained in Chapter 5 that consists on transforming H-Packing with t-Overlap and
t-Edge Overlap problems into an instance of the r-Set packing with t-Overlap problem. Recall that r ≥ 1
and 0 ≤ t ≤ r − 1 are fixed-constants.

6.2.1 From Packing Sets with Pairwise Overlap to Packing Disjoint Sets

In the r-Set packing with t-Overlap problem, we seek for a collection of at least k distinct sets from a
collection S (drawn from U) such that each pair of sets overlaps at most t elements.
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We create an instance of the (
(
r
t+1

)
+ 1)-Set Packing problem, (a universe UT and a collection ST )

using an instance of the r-Set Packing with t-Overlap problem as follows. Notice that the sets in S have
size at most r while sets in ST has size at most

(
r
t+1

)
+ 1.

Transformation 11. Input: S, U ; Output: ST , UT

The universe UT equals S ∪ {I | I ⊂ U , |I| = t+ 1}.

The collection ST contains all subsets of UT with at most (
(
r
t+1

)
+ 1) elements, of the following form:

{S = {u1, . . . , u|S|}, {I1}, . . . , {I( |S|t+1)
} | S ∈ S, and each Ii ⊂ S, where |Ii| = t+ 1}.

Intuitively, each set in S will be represented by a set in ST with the addition of forbidden subsets.
Given that a pair of sets in a (k, r, t)-set packing can overlap in at most t elements, we consider every
subset of t + 1 elements of S as forbidden. This would imply that a pair of sets of S that overlaps in at
most t elements corresponds to a pair of sets in ST that are pairwise-disjoint or without common forbidden
subsets.

Example 6. Let us consider the next instance of the r-Set Packing with t-Overlap.

U = {a, b, c, d, e, f, g, h},
S = {a, b, c, d}, {b, d, e, f}, {a, f, g, h}, {e, f, g},

and k = 2, t = 1, r = 4.

The constructed instance for the (
(
r
t+1

)
+ 1)-Set Packing problem is as follows.

UT ={{a, b, c, d}, {b, d, e, f}, {a, f, g, h}, {e, f, g},
{a, b}, {a, c}, {a, d}, {a, e}, {a, f}, {a, g}, {a, h},
{b, c}, {b, d}, {b, e}, {b, f}, {b, g}, {b, h},
{c, d}, {c, e}, {c, f}, {c, g}, {c, h},
{d, e}, {d, f}, {d, g}, {d, h},
{e, f}, {e, g}, {e, h},
{f, g}, {f, h}}

ST ={{{a, b, c, d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}},
{{b, d, e, f}, {b, d}, {b, e}, {b, f}, {d, e}, {d, f}, {e, f}},
{{a, f, g, h}, {a, f}, {a, g}, {a, h}, {f, g}, {f, h}, {g, h}},
{{e, f, g}, {e, f}, {e, g}, {f, g}}}

A (2, 7, 0)-set packing for the constructed instance is
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{{{a, b, c, d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}
{{a, f, g, h}, {a, f}, {a, g}, {a, h}, {f, g}, {f, h}, {g, h}}}

This corresponds to the (2, 4, 1)-set packing {{a, b, c, d}, {a, f, g, h}}.

The size of UT is bounded by nr +
(
n
t+1

)
= O(nr + nt+1). Each set ST ∈ ST has at most

(
r
t+1

)
+ 1

elements of UT . Observe that there is exactly one set in ST per set in S. Thus, the size of ST is O(nr).
In this way,

Lemma 34. Transformation 11 can be computed in O(nr + nt+1) time.

Lemma 35. S has a (k, r, t)-set packing if and only if ST has a (k,
(
r
t+1

)
+1, 0)-set packing, i.e., k disjoint

sets.

Proof. We build a (k,
(
r
t+1

)
+ 1, 0)-set packing KS from a (k, r, t)-set packing K. For each Sj ∈ K, we add

a set STj to KS . This set STj has at most
(
r
t+1

)
+ 1 elements from UT of the following form. One element

(the element S in Transformation 11) corresponds to the set Sj , and there are
(
r
t+1

)
elements each one

corresponding to a subset of size t + 1 from Sj . By construction of ST , each STj ∈ KS ⊆ ST . It remains
to show that the sets in KS are pairwise disjoint. Since Si 6= Sj for each pair Si, Sj ∈ K, none of the sets
in KS will share the same element S. On the other hand, no pair STi , S

T
j shares an element I. If STi and

STj would share an element I = {u1, . . . , ut+1} for some set of t + 1 elements of U , then there would be
two sets Si and Sj that overlap in at least t+ 1 elements, a contradiction.

We construct a (k, r, t)-set packing K using a (k,
(
r
t+1

)
+ 1, 0)-set packing KS . We simply add to K a

set Si for each set STi ∈ KS . That set Si is initialized with the element S of the set STi . Since the sets in
KS are pairwise-disjoint, Si 6= Sj . Now, we need to show that each pair of sets in K overlaps in at most
t elements. Assume otherwise by contradiction. If a pair of sets in K shares t + 1 elements u1, . . . , ut+1,
then there are two sets STi , S

T
j in KS that have an element I = {u1 . . . ut+1} in common. However, this

would imply that STi and STj are not pairwise-disjoint, a contradiction.

Up to this point, we have provided a polynomial parametric transformation for the r-Set packing with
t-Overlap problem to an instance of the (

(
r
t+1

)
+ 1)-Set Packing problem. Notice that the parameter k is

not altered by our transformation.

We now run the kernelization algorithm [1] for the (
(
r
t+1

)
+ 1)-Set Packing problem on the constructed

instance (UT and ST ). This algorithm returns a reduced universe with at most 2(r′−1)!(r′k−r′)r′−1 where
r′ is an upper-bound on the size of the sets of the input instance of that algorithm. By our Transformation
11, each set in ST has size at most rt+1 + 1. That is, r′ = rt+1 + 1 and Algorithm [1] will leave us with

a reduced universe U ′T with O((rt+1 + 1)k − (rt+1 + 1))r
t+1

elements as well as with a reduced collection

S ′T of sets. The next property follows by [1].

Lemma 36. The collection S drawn from U has a (k, (
(
r
t+1

)
+ 1), 0)-set packing if and only if the set S ′T

drawn from U ′T has a (k′, (
(
r
t+1

)
+ 1), 0)-set packing, where k′ ≤ k.
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Next, we construct the reduced universe U ′ and S ′ for our original r-Set Packing with t-Overlap problem
using U ′T and S ′T as follows.

Transformation 12. Input: S ′T , U ′T ; Output: S ′, U ′

The reduced universe U ′ equals to the union of elements u in each S ∈ U ′T .

The reduced collection S ′ contains a set which corresponds to the element S in each set in S ′T .

U ′ and S ′ together with k, give the reduced r-Set Packing with t-Overlap instance we are looking for.
Since each member of U ′T is a set with at most r elements from U , we can state:

Theorem 19. The r-Set Packing with t-Overlap has a problem kernel with O((rt+1+1)r
t+1

kr
t+1

) elements
from the given universe.

By Transformations 11 and 12, each set in S ′ is contained in the collection S ∈ U ′T . In this way, we
can conclude:

Theorem 20. The r-Set Packing with t-Overlap has a problem kernel with O((rt+1 + 1)r
t+1

kr
t+1

) sets.

Our kernelization algorithm for the r-Set Packing with t-Overlap via PPT is summarized in Algorithm
4.

Algorithm 4 Kernelization Algorithm by PPT - r-Set Packing with t-Overlap

Input: U and S
Output: U ′ ⊆ U and S ′ ⊆ S ′

1: Construct a universe UT and collection ST using Transformation 11.
2: Run the (

(
r
t+1

)
+ 1)-Set Packing kernelization algorithm [1] on UT and ST .

3: Using Transformation 12, re-interpret the kernel U ′T ,S ′T as reduced U ′, S ′, respectively.
4: Return U ′, S ′.

Packing Weighted Sets with Pairwise Overlap using PPTs

We discuss in this section how to reduce to a kernel the weighted version of the r-Set packing with
t-Overlap by using our PPTs. Let us introduce first the definition of the weighted r-Set packing with
t-Overlap problem. In this problem, every set in S has associated a weight (a real number), and the goal
is to find a (k, r, t)-set packing of maximum weight.

We construct an instance of the r-Set Packing problem (packing disjoint sets) using Transformation
11. Given that each set S ∈ S corresponds to a set S′ ∈ ST , we assign the weight of S to S′. After that
in similar way as with the weighted r-Set Packing with t-Membership, we run the kernelization algorithm
of Zehavi [140] (which reduces the weighted version of the r-Set Packing problem) in our constructed
instance. Finally, we re-intepret back the kernel returned by Algorithm [140] as a kernel for the original
weighted r-Set Packing with t-Overlap using Transformation 12. Algorithm [140] returns a reduced kernel
of size O(er

′
r′kr

′
) where r′ = rt+1 + 1 (on the number of sets), we can hence conclude:

Theorem 21. The weighted r-Set Packing with t-Overlap has a problem kernel with O(er
t+1+1(rt+1 +

1)kr
t+1+1) sets.
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6.2.2 A Kernel Reduction for the H-Packing with t-Overlap Problem

In the H-Packing with t-Overlap, we seek for at least k H-subgraphs of G such that each pair of those
subgraphs overlaps in at most t vertices. To achieve a reduction to the kernel for this problem, we will
use the kernelization framework described in Section 5.2.1. In that framework, we show how to reduce the
H-Packing with t-Overlap to a kernel by transforming it to the r-Set Packing with t-Overlap. Also, it is
assumed the existence of a kernelization algorithm KernelAlg-O for the r-Set Packing with t-Overlap.
In this chapter, Algorithm 4 takes the place of KernelAlg-O.

We start by constructing an instance of the r-Set Packing with t-Overlap with the instance of the
H-Packing with t-Overlap with Transformation 1, i.e., a universe U and a collection of sets S. The
parameter k is not altered and r = r(H). After that we reduce to a kernel the constructed instance
of the r-Set Packing with t-Overlap with Algorithm 4. That is, we obtain a reduced universe U ′ and a
reduced collection of sets S ′ as well. Finally, we re-interpret U ′ as a reduced instance of the H-Packing
with t-Overlap (Transformation 2), i.e., a reduced graph G′.

By Transformation 2, G′ = G[U ′], and by Algorithm 4, |U| = O((rt+1 + 1)r
t+1

kr
t+1

). By Lemma 2, we
can hence conclude.

Theorem 22. H-Packing with t-Overlap has a problem kernel with O((rt+1 + 1)r
t+1

kr
t+1

) vertices, where
r = r(H).

The kernelization algorithm for the H-Packing with t-Overlap problem described above corresponds
to Algorithm 2 with input G, H, k, r-Set Packing with t-Overlap, Transformation 1, Algorithm 4, and
Transformation 2.

In similar fashion, we obtain the next result for the induced version of the problem.

Theorem 23. Induced-H-Packing with t-Overlap has a problem kernel with O((rt+1+1)r
t+1

kr
t+1

) vertices,
where r = r(H).

In Appendix A.2.1, we include a polynomial parametric transformation from the H-Packing with t-
Overlap problem to the (

(
r
t+1

)
+ 1)-Set Packing, where r = r(H) (instead of to the r-Set Packing with

t-Overlap). That transformation leads to the same kernel problem size as in Theorem 22.

6.2.3 A Kernel Reduction for the H-Packing with t-Edge Overlap and t-Edge
Overlap (NISV) Problems

The H-Packing with t-Edge Overlap seeks in G for a collection of at least k H-subgraphs where each pair
of them overlaps in at most t edges. We will achieve a kernel reduction for this problem with similar
methodology as for the vertex-version. This methodology is fully detailed in Section 5.2.2.

Using an instance of the H-Packing with t-Edge Overlap, we construct an instance of the r-Set Packing
with t-Overlap with Transformation 3, i.e., a universe U and collection of sets S. The parameter k remains
the same, and r = m(H). We reduce to a kernel the constructed instance of the r-Set Packing with t-
Overlap using Algorithm 4 obtaining in this way a reduced universe U ′ and a reduced collection S ′. Finally
with Transformation 4, we re-interpret this reduced universe as a reduced instance of the H-Packing with
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t-Edge Overlap. That is, a reduced graph G′, where G′ = G[V (U ′)]. Recall that G does not have isolated
vertices (Lemma 23).

By Algorithm 4, |U ′| = O((r(t+1) + 1)r
t+1

kr
t+1

). Lemma 25 allows us to conclude.

Theorem 24. The H-Packing with t-Edge-Overlap has a problem kernel with O((rt+1 + 1)r
t+1

kr
t+1

)
vertices, where r = m(H).

The kernelization algorithm for the H-Packing with t-Edge Overlap problem that we just described
corresponds to Algorithm 2 with input G, H, k, r-Set Packing with t-Overlap, Transformation 3, Algorithm
4, and Transformation 4.

In Appendix A.2.2, we include a polynomial parametric transformation from the H-Packing with t-
Edge Overlap problem to the (

(
r
t+1

)
+ 1)-Set Packing, where r = m(H) (instead of to the r-Set Packing

with t-Overlap). That transformation leads to the same kernel size as in Theorem 24.

The H-Packing with t-Edge Overlap (NISV) Problem

Similarly to the H-Packing with t-Edge Membership problem (NISV), we present a stricter definition of the
H-Packing with t-Edge Overlap problem to avoid H-subgraphs in a (k,m, t)-edge-H-overlap with identical
sets of vertices. This is equivalent to adding the condition V (Hi) 6= V (Hj) to the H-Packing with t-Edge
Overlap problem definition. We indicate this variant by adding NISV (non identical set of vertices) to the
problem name.

The H-Packing with t-Edge Overlap (NISV) problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k,m, t)-edge-H-packing (NISV), i.e., a set of at least k subgraphs
K = {H1, . . . ,Hk} where each Hi is isomorphic to a graph H ∈ H, V (Hi) 6= V (Hj), and |E(Hi)∩
E(Hj)| ≤ t for any pair Hi, Hj with i 6= j?

We cannot transform the NISV variant to an instance of the r-Set Packing with t-Overlap as we did
with the original version of the H-Packing with t-Edge Overlap problem. Lemma 24 does not hold for this
version of the problem. This is because not every solution for the r-Set Packing with t-Overlap problem
can be transformed into a solution of the H-Packing with t-Edge Overlap (NISV) problem.

Therefore, we reduce the H-Packing with t-Edge Overlap (NISV) problem directly to (
(
r
t+1

)
+ 1)-

Set Packing (disjoint sets), instead of reducing to r-Set Packing with t-Overlap. Before introducing our
transformation, the reader is referred to Chapter 2 for a quick reminder of the definitions of V and E .

Transformation 13. Input: G, V, E; Output: U , S, and r

Let r = m(H).

The universe U is defined as V ∪ {I | I ⊂ E(G), |I| = t+ 1}.
The collection S contains all subsets of U with at most (

(
r
t+1

)
+ 1) elements, of the following form:

{V (E), {I1}, . . . , {I( |E|t+1)
} | E ∈ E and each Ii ⊂ E where |Ii| = t+ 1}.
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The idea is that each H-subgraph in G will be represented by a set S in S. Since any pair of H-
subgraphs in a solution cannot overlap in more than t edges, we add all possible subsets of t+ 1 edges to
a set S. This would imply that a pair of H-subgraphs that overlaps in at most t edges corresponds to a
pair of sets in S that are pairwise-disjoint. All H-subgraphs with the same set of vertices will correspond
to sets in S that share the element V (E).

Example 7. Consider the graph of Figure 6.2 with H = {C4}, k = 2, r = 4, and t = 2. The instance of
the (

(
r
t+1

)
+ 1)-Set Packing problem is as follows.

V = {{a, b, c, d}, {b, c, e, f}, {b, c, g, h}}
U = V ∪
{ab, ad, bc}, {ab, ad, dc}, {ab, ad, be}, . . . ,
{gb, gh, hc}

S = {{S1 = {a, b, c, d}, {ab, ad, bc}, {ab, ad, cd}, {ad, bc, cd}, {ab, bc, cd}},
{S2 = {b, c, e, f}, {bc, gh, hc}, {bc, gh, bg}, {gh, hc, bg}, {bc, hc, gc}},
{S3 = {b, c, g, h}, {bc, cf, ef}, {bc, cf, eb}, {cf, ef, eb}, {bc, ef, eb}},
{S4 = {b, c, g, h}, {bc, cf, ef}, {bc, cf, eb}, {cf, ef, eb}, {bc, ef, eb}, . . . , {eb, bf, ce}}}

A (2, 21, 0)-set packing for this instance is {S1, S4}. This corresponds to the (2, 4, 2)-H-packing H1 =
({a, b, c, d}, {ab, ad, bc, dc})) and H2 = ({b, e, c, f}, {be, cf, ef, eb, bf, ce}.

The size of our constructed instance is bounded by |U| ≤ nr +
(
n2

t+1

)
= O(nr +n2(t+1)). Each set S ∈ S

has at most
(
r
t+1

)
+ 1 elements. One of these elements corresponds to a set of S while the other

(
r
t+1

)
elements correspond to subsets of t + 1 elements from U . There is exactly one set per H-subgraph in G.
Since |HG| = O(nm(H)), the size of S is O(nr). Recall that r = m(H).

Lemma 37. Transformation 13 can be computed in O(nr + n2(t+1)) time, where r = m(H).

Lemma 38. G has a (k, r, t)-edge-H-packing if and only if S has (k, (
(
r
t+1

)
+ 1, 0)-set packing (i.e., at

least k disjoint sets).

Proof. We build a (k,
(
r
t+1

)
+ 1, t)-set packing KS from a (k, r, t)-edge-H-packing K. For each Hj ∈ K,

we add a set Sj with
(|E(Hj)|

t+1

)
+ 1 elements as follows. The element V (E) in Sj corresponds to the set of

vertices V (Hj). We add an element to Sj for each subset of t+ 1 edges from E(Hj). Thus, we are adding(|E(Hj)|
t+1

)
sets each of size t + 1 to Sj . By construction of S, each Sj ∈ KS ⊆ S. It remains to show that

the sets in KS are pairwise disjoint. Since V (Hi) 6= V (Hj) for each pair Hi, Hj ∈ K, none of the sets in
KS will share the element V (E). On the other hand, no pair Si, Sj shares a set I with t + 1 elements.
Otherwise, there would be two H-subgraphs Hi and Hj that overlap in at least t+1 edges, a contradiction.
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We construct a (k, r, t)-edge-H-packing K using a (k,
(
r
t+1

)
+ 1, t)-set packing KS . Each set Si ∈ KS

has an element VSi ∈ V which corresponds to a set of vertices in V (G) that forms an H-subgraph HSi .
Furthermore, the union of the elements I in Si, (denoted as ESi

), corresponds to the edges of the H-
subgraph HSi

. In this way, we add to K an H-subgraph HSi
with edges ESi

for each set Si ∈ KS .
Since the sets in KS are pairwise-disjoint, V (HSi

) 6= V (HSj
). Now, we need to show that each pair of

H-subgraphs in K overlaps in at most t edges. Assume otherwise by contradiction. If two H-subgraphs in
K share t+ 1 edges e1, . . . , et+1, then there are two sets Si, Sj in KS that has an element I = {e1 . . . et+1}
in common. However, this would imply that Si and Sj are not pairwise-disjoint, a contradiction.

We could now run a kernelization algorithm for the (
(
r
t+1

)
+1)-Set Packing problem which will leave us

with a reduced universe U ′. We construct a reduced graph G′ from a reduced universe U ′ ⊆ U as follows.

Transformation 14. Input: G, U ′; Output: G′

We take the end-points of each edge e that appears in U ′ and the vertices in each V ∈ V ′ and consider
the graph G′ that is induced by all these in G.

Lemma 39. G′ has a (k, r, t)-H-packing (NISV) if and only if S ′ has a (k, r + 1, 0)-set packing.

The kernelization algorithm for the H-Packing with t-Edge Overlap (NISV) problem corresponds to
Algorithm 2 with input: G, H, k, (r+ 1)-Set Packing, Transformation 13, kernelization algorithm [1], and

Transformation 14. The size of U ′ is O(((rt+1 + 1)k − (rt+1 + 1))r
t+1

) [1]; hence |V (G′)| = O(rr
t+1

kr
t+1

).
Therefore, we can state:

Theorem 25. The H-Packing with t-Edge Overlap (NISV) has a problem kernel with O((rt+1+1)r
t+1

kr
t+1

)
vertices, where r = m(H).

6.3 Conclusions

We introduced in this chapter polynomial parametric transformations from the problem of packing sets
with membership and pairwise overlap to the problem of packing disjoint sets. These transformations
allowed us to obtain polynomial size kernels for our r-Set Packing with t-Membership and t-Overlap
problems and for the H-Packing with t-Membership and t-Overlap problems as well. We also discussed
how to obtain polynomial kernel sizes for the weighted versions of our set packing problems by slightly
changing our PPTs.

In the case of the r-Set Packing with t-Membership problem, our kernel size O((r+ 1)rkr) is very close
to the smallest kernel size for the r-Set Packing problem O(rrkr−1) [1]. Unfortunately, our PPT does not
have the same effect in the kernel size for the r-Set Packing with t-Overlap problem. Only for t = 0, our
O((rt+1 +1)r

t+1

kr
t+1

) kernel is close to the kernel size of the disjoint version. In addition, our kernel grows
as the size of the overlap value t is increased. This does not agree with the intuition that we should have
a smaller kernel when more overlap is allowed in the solution.

Despite that our kernels for the pairwise overlap problems are not as good as the kernels for the mem-
bership problems, all of our kernels are still polynomial size. In addition, our PPTs are relatively simple,
and the analysis of correctness is fairly intuitive once the transformations are understood. Therefore,
we believe that the use of polynomial parametric transformations could consists on an effective and fast
technique to obtain kernelization algorithms for other parameterized problems as well.
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Chapter 7

Improved Kernel Results by Classical
Reduction

As we learned in the previous chapter, kernelization by polynomial parametric transformations may provide
a fast and effective way to obtain kernel results for a parameterized problem. However, we also noticed
that this simplicity comes with a price: the kernel results may not be as a good as the ones of the problem
that we are transforming to. Therefore in this chapter, we attempt to improve our previous kernel results
by tackling the r-Set Packing with t-Overlap and t-Membership problems directly.

The kernelization algorithms for r-Set Packing with t-Overlap and t-Membership that we develop here
are based on the classical approach of reduction [44, 117]. That is, in polynomial time, apply a set of
reduction rules to an input instance in such a way that the reduced instance has a solution if and only
the original instance has one. In addition, the reduced instance has size O(f(k)), for some computable
function f , where k is a parameter. Recall that an instance of our set packing problems is a collection
of sets S, a universe U , and a parameter k. In general, our kernelization algorithms reduce the input
instances of our set packing problems by removing sets of S and elements from U that are not needed to
form a solution. These algorithms are inspired on the ideas of kernelization algorithms for packing disjoint
graphs [53, 114].

The organization of this chapter is as follows. In Section 7.2, we show our kernel results for all the
pairwise overlap problems: r-Set Packing with t-Overlap, H-Packing with t-Overlap, and H-Packing with
t-Edge Overlap. We develop a kernelization algorithm for the r-Set Packing with t-Overlap problem in
Section 7.2.1. This algorithm leaves us with a reduced universe with O(rrkr−t−1) elements. In addition
in Section 7.2.2, we apply the kernelization framework of Chapter 5 altogether with the above algorithm
to obtain O(rrkr−t−1) kernels for the H-Packing with t-Overlap and t-Edge Overlap where r = r(H) and
r = m(H), respectively. Note our kernel size improvement for all our pairwise overlap problems with

respect to the O((rt+1 + 1)r
t+1

kr
t+1

) kernels obtained with PPTs in the previous chapter (again r = r(H)
and r = m(H) for vertex-overlap and edge-overlap, respectively).

Section 7.3 provides our results for our membership problems: r-Set Packing with t-Membership,
H-Packing with t-Membership, and H-Packing with t-Edge Membership. In Section 7.3.1, we obtain a

kernelization algorithm that reduces the r-Set Packing with t-Membership to an O
(
r3
(
r
t

)r−3
kr−1

)
kernel.
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Problem Kernel Size Section
r-Set Packing with t-Overlap O(rrkr−t−1) elements 7.2.1
H-Packing with t-Overlap O(r(H)r(H)kr(H)−t−1) vertices 7.2.2
H-Packing with t-Edge Overlap O(m(H)m(H)km(H)−t−1) vertices 7.2.2

r-Set Packing with t-Membership O
(
r3
(
r
t

)r−3
kr−1

)
elements 7.3.1

H-Packing with t-Membership O
(
r(H)3

( r(H)
t

)r(H)−3
kr(H)−1) vertices 7.3.2

H-Packing with t-Edge Membership O
(
m(H)3

(m(H)
t

)m(H)−3
km(H)−1) vertices 7.3.2

Table 7.1: Summary of results presented in Chapter 7

This algorithm together with the kernelization framework in Section 5.1 let us to obtain O
(
r3
(
r
t

)r−3
kr−1

)
kernels as well for the H-Packing with t-Membership, and H-Packing with t-Edge Membership problems
with r = r(H) and r = m(H), respectively. These kernel results show a more modest but still an
improvement with respect to the O((r + 1)rkr) kernels obtained with PPTs (r = r(H) and r = m(H) for
vertex-membership and edge-membership, respectively). Table 7.1 summarizes the results obtained in this
chapter.

7.1 A Common Ground

The algorithms that we develop in this chapter follow a common framework, but they still have significant
differences that lead to an independent analysis of correctness and kernel sizes. Therefore, before providing
the specifics, we will give a general overview of such a common base.

The input instance for the r-Set Packing with t-Membership and t-Overlap problems consists of a
universe U and a collection of sets S (drawn from U), and a parameter k. The output of the kernelization
algorithms is U ′ ⊆ U and S ⊆ S ′ where |U ′| = O(f(k)), for some computable function f . These algorithms
reduce an instance of these problems to a kernel in two major and independent steps: by removing extra
sets from S and by removing extra elements from U . A set S ∈ S or element u ∈ U is extra, if there is a
solution (for either problem) that does not contain S or u.

Intuitively to determine which sets are extra, we count the number of sets in S that intersect in a
specific subset of elements of U . At most a specific number of those sets (which varies according to the
type of problem) is kept in S to find a solution. The rest of the sets (which is chosen arbitrarily) are extra.
On the other hand, to determine which elements are extra, we need to compute an auxiliary bipartite
graph and perform a reduction rule based on a matching problem, which again will vary according to the
type of problem we are dealing with.

Algorithm 5 depicts the general framework behind Algorithms 6 and 9 which are kernelization algo-
rithms for the r-Set packing with t-Overlap and t-Membership, respectively. First, a maximal collection
of sets R ⊆ S such that every pair of sets overlaps in R in at most r − 2 elements is computed. After
that with the use of a tailored algorithm for either the t-Overlap or t-Membership problem, extra sets are
identified in R. The collections S and R are updated accordingly. Once there are no more extra sets in
S, the second reduction happens in Line 6. An auxiliary bipartite graph B is constructed using U\val(R)
and R. Once again, depending on the type of problem a reduction rule based on a matching problem is
applied to B. In the case of t-Overlap will be a maximum matching while for t-Membership is a cardinality
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t-matching (see Chapter 2). The reduced universe U ′ and S ′ are obtained after the computation of that
rule.

Algorithm 5 Kernelization by Reduction - Framework

Input: An instance U ,S
Output: A reduced instance U ′,S ′

1: repeat
2: Compute a maximal collection of sets R ⊆ S such that every pair of sets in R overlaps in at most

r − 2 elements.
3: Identify extra sets E in R and make R = R\E and S = S\E .
4: until No more extra sets are identified, i.e., E = ∅.
5: Construct an auxiliary bipartite graph B from U\val(R) and R.
6: Remove extra elements in U\val(R) by computing a matching problem-based reduction rule on B.
7: Return U ′ and S ′ as outputted by the matching-based reduction rule.

In the next sections, we will develop the details behind each kernelization algorithm separately.

7.2 Improved Kernel Results for Packing Problems with Pair-
wise Overlap

In this section, we focus on our packing problems with pairwise overlap: r-Set Packing with t-Overlap,
H-Packing with t-Overlap, and H-Packing with t-Edge Overlap. We start in Section 7.2.1 by developing
a kernelization algorithm (Algorithm 6) for the r-Set Packing with t-Overlap problem. This algorithm

permits us to improve the kernel result obtained in Section 6.2.1 from O((rt+1+1)r
t+1

kr
t+1

) to O(rrkr−t−1).
In Section 7.2.2, we will obtain improved kernel results for the H-Packing with t-Overlap and t-Edge
Overlap by applying our kernelization framework from Chapter 5.

7.2.1 A Reduction Algorithm for Packing Sets with Pairwise Overlap

Recall from the definition of the r-Set Packing with t-Overlap problem that the goal of this problem is to
seek a collection of at least k sets from S such that each pair of sets on that collection overlaps in at most
t elements, if one exists.

We assume that each set in S has size at least t+ 1. Otherwise, we can add the sets with size at most
t straight to a (k, r, t)-set packing and decrease the parameter k by the number of those sets. We start
with a simple reduction rule.

Reduction Rule 4. Remove any element of U that is not contained in at least one set of S.

The next theorem shows that the r-Set packing with t-Overlap problem is easy for t ≥ r− 1. Thus, for
the remainder of this section, we will assume that t ≤ r − 2.

Theorem 26. The r-Set Packing with t-Overlap can be solved in polynomial time for t ≥ r − 1.
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Proof. The algorithm consists on simply evaluating the size of S. That is, if |S| ≥ k then S is a (k, r, t)-set
packing; in the other case, S does not have a solution. The correctness follows because every pair of sets
in S overlaps in at most r − 1 elements (even if S′ ⊂ S for some S′, S ∈ S). Recall that the the overlap
restriction asks only for |Si ∩ Sj | ≤ t.

We will divide the task of explaining our kernelization algorithm for the r-Set Packing with t-Overlap
problem in three steps: first, we focus on explaining the algorithm itself; next, we prove that the reduced
instance by our algorithm has a solution if and only if the original instance has one; and finally, we show
that the reduced instance is actually a kernel of the original instance.

The Algorithm

Algorithm 6 reduces an instance of the r-Set Packing with t-Overlap problem to a kernel in two separate
steps. First, the goal is to identify sets of S that may not be needed (extra) to form a (k, r, t)-set packing.
After that, unnecessary elements are removed from U by triggering a reduction.

Let us explain the ideas behind the first step of reduction which occurs in Lines 3-9. In Line 4, we
compute a maximal (r, r− 2)-set packing R of S, i.e., a maximal collection of sets from S such that every
pair of sets in R overlaps in at most r − 2 elements. See Example 8 for an illustration of this maximal
solution.

Example 8. Consider the following instance of the r-Set Packing with t-Overlap problem, where r = 4,
t = 2, and k = 2.

U = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y} and

S = {{a, b, c, e}, {b, c, d, e}, {e, f, g, i}, {a, e, f, i}, {e, g, i, h}, {i, j, n,m},

{i, j,m, k}, {i, j,m, l}, {o, q, n, p}, {q, p, r, s}, {q, p, t, u}, {q, p, u, v}, {q, p, v, w},

{q, p, x, y}}.

Figure 7.1 shows the hypergraph constructed from U and S.

A maximal (r, r − 2)-set packing is

R = {{b, c, d, e}, {e, f, g, i}, {i, j, n,m},
{o, n, p, q}, {q, p, r, s}, {q, p, t, u},
{q, p, v, w}, {q, p, x, y}}.

This maximal set is highlighted with bold lines in Figure 7.1.

Algorithm 7 (applied in Line 6 in Algorithm 6) identifies extra sets in R ⊆ S. We could just use R = S
as input of Algorithm 7, (i.e., a maximal (r, r−1)-set packing instead). However, a smaller set R will lead
to a smaller problem kernel.
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Figure 7.1: The hypergraph constructed with S and U from Example 8

Lines 3-9 in Algorithm 6 basically keep reducing the set R using Algorithm 7 while there are no more
sets from S\(R∪E) to add to R. We need to run Algorithm 7 possibly more than once in order to preserve
the maximality of R. That is, after Line 4, each set in S\(R∪ E) overlaps in r − 1 elements with at least
one set in R. After Line 7, R is reduced by E ′, and E is updated with E ′. Therefore, all sets in S\(R∪E)
that were overlapping in r − 1 elements only with sets in E ′ can now be added to R.

Before explaining the rest of Algorithm 6, we will detail how Algorithm 7 actually finds the extra sets
of R. The basic idea of Algorithm 7 is that if there is more than a specific number of members of S that
pairwise overlap in exactly the same subset of elements P ⊆ U , then some of those members are extra.
This approach has been applied to obtain kernels for the H-Packing problem [53, 114]. To our knowledge,
this is the first generalization for packing problems with arbitrary overlap.

For each set S in R, Algorithm 7 takes every subset of elements P ( S from sizes from ini to t+ 1 in
decreasing order (Lines 3-5). The variable ini is defined as the maximum overlap value between any pair of
sets in R (Line 1). Thus, given the construction of R in Algorithm 6, ini = r−2. Note that |S| > i to run
Lines 5-13 of Algorithm 7; otherwise S will be considered at a later iteration of the for-loop of Line 4. For
every P , we count the number of sets inR that contain P (collected in P, Line 6) and we keep inR a specific
number of them (Line 7). The rest of the sets will be removed (Lines 8-12). The size of P is determined by
the variable i in Line 3, and the threshold f(i) is defined as f(i) = (r−t)(k−1)f(i+1)+1 where f(ini+1)
is initialized to one (Line 2). The function f(i) basically bounds the number of sets in R that contains

a subset P with i elements. Observe that f(i) = (r − t)(k − 1)f(i + 1) + 1 =
∑ini−i+1
j=0 [(r − t)(k − 1)]j .

Algorithm 7 returns E which is the set of extra sets in R (Line 16).

Example 9. Consider iteration i = r− 2, S = {o, n, p, q}, and P = {p, q} in Algorithm 7 for the instance
of Example 8. In this case,

P = {{o, n, p, q}, {q, p, r, s}, {q, p, t, u}, {q, p, v, w}, {q, p, x, y}} .

Since k = 2, for i = r − 2, f(r − 2) = 3. Thus, two sets of P will be removed in Line 9.
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Algorithm 6 Kernelization Algorithm by Reduction - r-Set Packing with t-Overlap

Input: An instance U ,S
Output: A reduced instance U ′,S ′

1: Apply Reduction Rule 4
2: R = ∅, E = ∅
3: repeat
4: Greedily add sets from S\(R ∪ E) to R such that every pair of sets in R overlaps in at most r − 2

elements (i.e., a maximal (r, r − 2)-set packing).
5: if at least one set was added to R then
6: E ′ = Algorithm 7(R)
7: R = R\E ′, E = E ∪ E ′
8: end if
9: until no more sets have been added to R

10: Reduce S = S\E and re-apply Reduction Rule 4
11: Compute a maximal (r, t)-set packing M of R
12: if |M| ≥ k then
13: Let S ′ be any subset of M of size k
14: Return U and S ′
15: end if
16: Let U ′ and S ′ be the reduced universe and collection of sets, respectively, after applying Reduction

Rule 5.
17: Return U ′ and S ′

Algorithm 7 Extra Sets Reduction - r-Set Packing with t-Overlap

Input: A collection R ⊆ S of sets
Output: A collection E ⊆ R of sets

1: ini = max {|Si ∩ Sj | : Si, Sj ∈ R, i 6= j}
2: f(ini+ 1) = 1, E = ∅
3: for i = ini downto t+ 1 do
4: for each S ∈ R such that |S| > i do
5: for each P ( S where |P | = i do
6: P = {S′ ∈ R : S′ ) P}
7: f(i) = (r − t)(k − 1)f(i+ 1) + 1
8: if |P| > f(i) then
9: Choose any P ′ ⊂ P of size f(i)

10: Set E ← E ∪ (P\P ′) (extra sets)
11: R ← R\(P\P ′)
12: end if
13: end for
14: end for
15: end for
16: Return E
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Let us now resume explaining the rest of Algorithm 6. After no more extra sets can be found, we reduce
S by removing E in Line 10 of Algorithm 6. As a consequence, we re-apply Reduction Rule 4. Then, we
compute a maximal (r, t)-set packing in R. As we will see in proof of Lemma 45, this maximal solution
will help us to determine an upper-bound for the number of sets in R. From now on, we assume that the
maximal solution was not a (k, r, t)-set packing and Algorithm 6 continues executing.

We now proceed to explain the second step of reduction of Algorithm 6 which occurs in Line 16. An
element u ∈ U is extra, if there is a (k, r, t)-set packing of S where u /∈ S for each set S ∈ K. We will
identify extra elements in U\val(R), denoted as O henceforth.

To reduce O, we first construct an auxiliary bipartite graph B = (VO, VP , E) as in Algorithm 8. After
that, we compute a maximum matching in B, the unmatched vertices in the partition VO correspond to
extra elements in O and will be removed from U . As a consequence the collection S will be properly
updated. This reduction is detailed in Reduction Rule 5. The output of this rule is a reduced universe U ′
and a reduced collection of sets S ′.

Reduction Rule 5. Construct a bipartite graph B = (VO, VP , E) with Algorithm 8. Compute a maximum
matching M in B. Let V ′O be the set of unmatched vertices of VO and O′ be the elements of O ⊂ U
corresponding to those vertices. Likewise, let S(O′) be the sets in S\R that contain elements of O′.
Reduce to U ′ = U\O′ and S ′ = S\S(O′).

Example 10. For the instance of Example 8, O = {a, h, k, l}, and

S\R = {{b, c, e, a}, {e, i, f, a}, {e, g, i, h}, {i, j,m, k}, {i, j,m, l}} .

According to our construction, there will be one vertex in VP for the subsets {b, c, e}, {e, i, f}, {e, g, i}
and {i, j,m}. Figure 7.2 depicts the bipartite graph constructed as described above. The left column
represents the vertices in VO while the right column represents the vertices in VP . A maximum matching
in this bipartite graph is highlighted with bold lines. Observe that the element k (or alternatively l) will be
removed from U by Reduction Rule 5.

vbce

vefi

veig

vijm

va

vh

vk

vl

Figure 7.2: The bipartite graph constructed with O and S\R from Example 10
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Algorithm 8 Compute Auxiliary Bipartite Graph

Input: U , S, and R
Output: A bipartite graph B = (VO, VP , E)

1: Make O = U\val(R)
2: Add a vertex vo to VO of each element in O
3: For each set S in S\R and each subset P ( S where |P | = r− 1, if there is at least one element o ∈ O

such that {o} ∪ P ∈ S\R, add a vertex vp to VP
4: Add an edge (vo, vp) to E for each pair vo, vp, if {o} ∪ P ∈ S\R
5: Return B

Correctness

We now proceed to show the correctness of Algorithm 6. Recall that this algorithm reduces the instance in
two general steps: by removing extra sets of S and by removing extra elements of U . The first step happens
via executing Algorithm 7 in the loop of Lines 4-9 in Algorithm 6. The correctness of such step will be
proved with Lemmas 40 and 41. The second step occurs via Reduction Rule 5 in Line 16 of Algorithm 6
and its correctness will be proved with Lemma 43.

Let us begin by showing that Algorithm 7 correctly reduces a given maximal set R.

Lemma 40. Let E ⊂ R be the collection of extra sets returned by Algorithm 7. R has a (k, r, t)-set packing
if and only if R\E has a (k, r, t)-set packing.

Proof. Since R\E ⊆ R, we know that if R\E has a (k, r, t)-set packing, then R has one. Let K be a
(k, r, t)-set packing of R. If K is also a (k, r, t)-set packing of R\E , the lemma follows. Otherwise, there
is at least one set Se ∈ K that is extra, (Se ∈ E by Line 10); that is, K ∩ E 6= ∅. We claim that we can
replace each set in K ∩ E (an extra set) by a set in R\E .

For any set Se removed from R (i.e., Se ∈ E), there is at least one subset of elements P ⊂ Se such
that |P| > f(i) (Line 8). Since the variable i determines the size of P and f(i) is an upper bound for the
number of sets containing P , we will prove the lemma by induction on i.

Let i = ini (first iteration of loop of Line 3) and let P be a subset with ini elements such that |P| > f(i),
where P is the set of all sets in R that contain P (Line 6).

Given that |P | = ini ≥ t+1 (Line 2), at most one set in P can be in a (k, r, t)-set packing K. Otherwise,
there would be a pair of sets in K overlapping in more than t elements. Assume that set is Se and is in E
(Lines 9-10).

We claim that we can replace Se in K ∩ E by a set in P ′ (the members of S that contain P that were
kept in R, Line 11).

Claim 7. The k − 1 sets in K\Se conflict with at most (r − t)(k − 1) sets in P ′.

Proof. A set S∗ ∈ K\Se conflicts with a set S′ ∈ P ′, if they overlap in more than t elements, i.e.,
|S∗ ∩ S′| ≥ t+ 1.

Since both S∗ and Se are in K, |Se∩S∗| ≤ t (otherwise K would not be a (k, r, t)-set packing). Moreover,
P ⊂ Se. Thus, |P ∩S∗| = l ≤ t. Therefore, at least t+ 1− l elements from S∗ should be in S′\P to have a
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conflict between S∗ and S′. That is, |(S′\P )∩ S∗| ≥ t+ 1− l. Let us denote as u1 . . . ut+1−l the elements
shared between S′\P and S∗.

Every set in P ′ that contains the subset of elements P ∪ {u1 . . . ut+1−l} will conflict with S∗. The sets
in P ′ pairwise overlap exactly in the set P . Otherwise, there would be a pair of sets in P ⊂ R overlapping
in more than ini elements (|P | = ini), a contradiction to Line 2. This implies that there is at most one
set in P ′ that contains the subset of elements P ∪ {u1 . . . ut+1−l}.

It remains to count the number of disjoint subsets of S∗ with t + 1 − l elements. Notice that only
disjoint sets are relevant for counting as we showed that the sets in P ′ intersect in exactly P . From the
|S∗| − l ≤ r− l elements (l are already in P ) we can have at most r−l

t+1−l disjoint sets of t+ 1− l elements.

Hence, there are at most r−l
t+1−l sets in P ′ that could conflict with S∗. Repeating this argument, the k− 1

sets in K\Se conflict with at most r−l
t+1−l (k − 1) sets in P ′. This expression is maximum and equal to

(r − t)(k − 1) when l = t.

Given that |P ′| = (r − t)(k − 1)f(ini + 1) + 1 (where f(ini + 1) = 1), there is at least one set in P ′
that will not conflict with any set in K\Se and it can replace Se.

Now, we will develop the same argument for i < ini.

Let i < ini and P be a subset of elements of size i such that |P| > f(i). Since |P | ≥ t+ 1 and all sets
in P share at least P , at most one set of P is in a (k, r, t)-set packing. Assume that set is Se and is extra,
i.e., Se ∈ P\P ′.

Claim 8. The k − 1 sets in K\Se conflict with at most (r − t)(k − 1)f(i+ 1) sets in P ′.

Proof. A set S∗ ∈ K\Se conflicts with a set S′ ∈ P ′, if |S∗ ∩ S′| ≥ t + 1. Given that P ⊂ Se and
|Se ∩ S∗| ≤ t, |P ∩ S∗| = l ≤ t. Therefore, at least t + 1 − l elements from S∗ should be in S′\P to have
a conflict between S∗ and S′. That is, |(S′\P ) ∩ S∗| ≥ t+ 1− l. Let us denote as u1 . . . ut+1−l the set of
elements shared between S′\P and S∗.

Notice that all sets in P ′ that contain the subset of elements P ∪ {u1 . . . ut+1−l} will conflict with S∗.
There are f(i + (t + 1 − l)) sets in R that contain a subset of elements of size i + (t + 1 − l). Therefore,
there are at most f(i+ (t+ 1− l)) sets in P ′ that contain the subset P ∪ {u1 . . . ut+1−l} and will conflict
with S∗.

It remains to compute the number of subsets with t + 1 − l elements from S∗. There are at most(
r−l

(t+1)−l
)

ways of selecting t + 1 − l elements from the |S∗ − l| ≤ r − l elements of S∗. Repeating this

argument, we find that the k − 1 sets in K\Se can conflict with at most

(
r − l

t+ 1− l

)
(k − 1)f(i+ (t+ 1− l)) (7.1)

sets of P ′.

The function f(i+ j) is equivalent to
∑ini−(i+j)+1
j=0 [(r − t)(k − 1)]j which is upper-bounded by 2[(r −

t)(k − 1)]ini−i−j+1. This implies that f(i) > f(i + 1) > f(i + 2) > . . . f(i + j). Therefore Expression 7.1
is maximum when l = t and upper-bounded by (r − t)(k − 1)f(i+ 1).
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Since there are (r− t)(k− 1)f(i+ 1) + 1 sets in P ′, there is at least one set in P ′ that will not conflict
with any set in K\Se and it can replace Se.

We prove next that the sets collected in E (Lines 3-9 of Algorithm 6) are extra.

Lemma 41. After running Lines 3-9 of Algorithm 6, S has a (k, r, t)-set packing if and only if S\E has
a (k, r, t)-set packing.

Proof. Since (S\E) ⊆ S, if S\E has a (k, r, t)-set packing, then S has one. Now, assume for contradiction
that S has a (k, r, t)-set packing K but S\E does not have one. This implies that there is an S ∈ K that
is in E . If that set S is in E , then in some iteration of Algorithm 6 (Lines 3-9) S was in R in Line 5 and
after that S was not in R but in E ′. However, by Lemma 40 we know that R has a (k, r, t)-set packing if
and only if R\E ′ has one.

With Lemmas 40 and 41, we have proved the correctness of Algorithm 6 until Line 10. Lines 11-15
consist on computing a maximal (r, t)-set packingM. If the size ofM is at least k, then a subset of size k
ofM is output as S ′ and the algorithm stops. Therefore, it remains to show the correctness of Reduction
Rule 5. Recall that this rule computes a maximum matching in the bipartite graph B = (VO, VP , E). Since
the construction of this graph heavily relies on the set O = U\val(R), we will give a characterization of
this set that will be key to prove the correctness of such rule.

Lemma 42. Let O = U\val(R). (i) Each element in O is contained in at least one set S. (ii) Only sets
in S\R contain elements from O. (iii) No pair of different elements in O is contained in the same set S
for any S ∈ S\R. (iv) Each S ∈ S\R contains one element in O and r − 1 elements of some set in R.

Proof. After re-applying Reduction Rule 4, each element in U is in at least one set S in the reduced
collection S. Since O ⊆ U , (i) follows.

To prove claims (ii) and (iii), assume for the sake of contradiction that there is a pair of elements
ui, uj ∈ O, i 6= j, such that ui, uj ∈ S. The set S is not in R; otherwise, ui, uj would not be in O. In
addition, if S is disjoint from R, then S could be added to R, contradicting its maximality. Therefore,
S ∈ S\R and S overlaps with at least one set S′ in R. Since by assumption, ui, uj are both in S,
|S ∩ S′| ≤ r − 2. However, once again S can be added to R contradicting its maximality. This proves
claims (ii) and (iii).

To prove claim (iv), assume there is a set S ∈ S\R such that ui ∈ S and S overlaps in at most r − 2
elements with each set in R. This once more contradicts the fact that each pair of sets in R overlaps in
at most r − 2 elements.

We show next that Reduction Rule 5 correctly reduces U and S.

Lemma 43. Let S ′, U ′ be the reduced collection of sets and universe, respectively, output by Reduction
Rule 5. S has a (k, r, t)-set packing if and only if S ′ has a (k, r, t)-set packing.

Proof. Since S ′ ⊆ S, if S ′ has a (k, r, t)-set packing, then S has one as well. Suppose that S has a (k, r, t)-
set packing K. If K is not a solution in S ′, then at least one set in K contains an element in O′ (the
unmatched elements).
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We next show that we can transform K into a (k, r, t)-set packing of S ′. Let K′ = {So′1 , . . . , So′l} (l ≤ k)
be the sets of K that contain unmatched elements. By Lemma 42, each So′i ∈ K

′ contains only one element
of O. Let us denote by o′i the element in O′ contained in the set So′i .

We next show that for each o′i, there exists an element in O\O′ that can replace o′i to form a new set.
By our construction of B, there is a vertex vpi ∈ VP representing the subset Pi = So′i\{o

′
i}, and this vertex

vpi is adjacent to vo′i ∈ VO (the representative vertex of o′i). The vertex vpi is matched. That is, there exists
a matched edge (voi , vpi) where voi ∈ V ′O. Otherwise, we could add the edge (vo′i , vpi) to M contradicting
the assumption that M is maximum. By our construction, Soi = {oi}∪Pi is a set in S\R. Thus, for each
o′i there exists an element oi in O\O′ that can replace o′i to form the new set Soi = (So′i\{o

′
i}) ∪ {oi}.

Let us denote as K∗ by these new sets {So1 , . . . , Sol}. We now claim that these sets pairwise overlap
in at most t elements. For the sake of contradiction, suppose that there is a pair Soi , Soj that conflicts,
i.e., |Soi ∩ Soj | ≥ t+ 1. Since Soi = Pi ∪ {oi}, Soj = Pi ∪ {oj} and oi 6= oj , the conflict is only possible if
|Pi ∩Pj | ≥ t+ 1. Each set Soi is replacing a set So′i in K (a (k, r, t)-set packing). Since So′i ∩ Soi = Pi and
So′j ∩ Soj = Pj , |Pi ∩ Pj | ≤ t, as otherwise K would not be a (k, t) set packing.

We next show that we can form a solution of S ′ by altering K. First, we replace K′ by K∗ in K. If each
set in K∗ overlaps in at most t elements with each set in K\K′, then K is a (k, r, t)-set packing and we are
done. Assume that there is a set Soi ∈ K∗ that overlaps in more than t elements with some set in K\K∗
(we already showed that the sets in K∗ pairwise overlap in at most t elements). Since Soi = Pi ∪ {oi},
Pi shares at most t elements with any set in K\Soi . Therefore, if Soi = Pi ∪ {oi} conflicts with some
set S∗ ∈ K\K∗, oi ∈ S∗. Once again by our construction of B, P ∗ = S∗\{oi} is represented by a vertex
vp∗ ∈ VP , and vp∗ is adjacent to voi . We claim that vp∗ is a matched vertex, that is, there exists an edge
(vo∗ , vp∗) ∈ M . Assume for contradiction that vp∗ is unmatched. This would imply that we can increase
the size of the matching M by adding the edges (vo′i , vpi) and (voi , vp∗) and remove the matched edge
(voi , vpi). However, this contradicts the assumption that M is maximum. In this way, we can change S∗

by removing oi and adding o∗, i.e., S∗ becomes (S∗\{oi})∪{o∗}. We can repeat this argument, if the new
S∗ conflicts with another set in K\K∗. Applying the same argument we can iterate replacing sets in K
until we have a (k, r, t)-set packing in S ′.

We are now ready to state the correctness of Algorithm 6.

Theorem 27. Let (S ′,U ′, k) be the reduced instance of the r-Set Packing with t-Overlap returned by
Algorithm 6. The collection S has a (k, r, t)-set packing if and only if S ′ has one.

Kernel Size

We have proved so far the correctness of Algorithm 6. To actually show that the reduced instance returned
by this algorithm is a kernel, we need to show two remaining steps: first that Algorithm 6 runs in polynomial
time in n, and second that the size of the reduced instance is bounded by a computable function f depending
only on the parameter k i.e., f(k) (recall that r and t are fixed-constants).

Lemma 44. Algorithm 6 runs in polynomial time.
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Proof. Reduction Rule 4 can be computed in O(nr) time. An upper bound to compute the set R is O(nr).

Algorithm 7 runs in time O(nr
2

). In addition, a maximum matching can be computed in polynomial
time.

It remains to determine an upper bound for the number of elements in the reduced universe U ′. Given
that U ′ = val(S ′) (Reduction Rule 5), we will use S ′ to upper-bound U ′.

By Line 4 of Algorithm 6, R ⊆ S. Thus, S = (S\R) ∪ R. After Reduction Rule 5, some members in
S\R were removed, and we obtained the reduced collection S ′ = S\S(O′). Thus, S ′ = (S ′\R) ∪R.

Since S ′\R ⊆ S\R, by Lemma 42 we know that each set in S ′\R contains one element in O and r− 1
elements in a set of R. Thus, val(S ′) = O∪ val(R). The elements in O′ were removed from O (Reduction
Rule 5), therefore, val(S ′) = (O\O′) ∪ val(R) = U ′.

We next provide an upper bound for the size of R.

Lemma 45. The size of R is at most 2rr−1kr−t−1 and |val(R)| ≤ 2rrkr−t−1.

Proof. Let M be a maximal (r, t)-set packing of R. Each set S ∈ R is either in M or it overlaps with
at least one set S′ ∈ M in at least t + 1 elements (i.e., |S ∩ S′| ≥ t + 1). Otherwise, M would not be a
maximal (r, t)-set packing.

For each set S ∈ R, each subset of S with t+ 1 elements is contained in at most f(t+ 1) sets in R (a
direct consequence of Lemma 40). Therefore, we can use the subsets of size t+1 contained in the members
of M to upper-bound the number of sets in R.

For each set in M, there are
(
r
t+1

)
subsets of size t+ 1. Thus, |R| ≤ |M|

(
r
t+1

)
f(t+ 1).

If |M| ≥ k, M is a (k, r, t)-set packing of S, and the algorithm outputs a subset of M and stops in

Line 14. Thus, |M| ≤ k − 1. On the other hand, f(t+ 1) =
∑ini−(t+1)+1
j=0 [(r − t)(k − 1)]j < 2((r − t)(k −

1))ini−(t+1)+1.

In this way, |R| ≤ rt+1 k − 1 2((r − t)(k − 1))ini−(t+1)+1. Given that ini = r − 2, |R| ≤ 2rr−1kr−t−1

and |val(R)| ≤ 2rrkr−t−1.

Now, we bound the size of O\O′.

Lemma 46. After applying Reduction Rule 5, there are at most 2rrkr−t−1 elements in O\O′.

Proof. After applying Reduction Rule 5, |V ′O| ≤ |VP |. By our construction of the set VP , there are at most(
r
r−1
)
|R| =r|R| vertices in VP . By Lemma 45, |R| ≤ 2rr−1kr−t−1 and the lemma follows.

Theorem 27, Lemma 44, the 2rrkr−t−1 elements in O\O′ together with the 2rrkr−t−1 elements in R
give the following result.

Theorem 28. The r-Set Packing with t-Overlap has a problem kernel with O(rrkr−t−1) elements from
the given universe.
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The size of the reduced collection S ′ is given by |R| + |S\R|. By our construction of the bipartite
graph B (Algorithm 8) each edge in B corresponds to a set in S. In fact, |S\R| = |E(B)|.

Therefore, |S ′| = |E(B′)| + |R|, where B′ is the reduced graph B after Reduction Rule 5. This rule
removes unmatched vertices but not unmatched edges. Therefore, B′ could be a complete bipartite graph
and |E(B′)| ≤ |V ′O||VP |. After applying Reduction Rule 5, |V ′O| ≤ |VP |, and there are O(rrkr−t−1) vertices

in VP . Thus, |E(B)| = O(rr
2

k(r−t−1)
2

) and |S ′| = |E(B′)| + |R| = O(rr
2

k(r−t−1)
2

) + rr−1kr−t−1 =

O(rr
2

k(r−t−1)
2

)

Theorem 29. Algorithm 6 returns a reduced collection S ′ with O(rr
2

k(r−t−1)
2

) sets.

By running directly Algorithm 7 with input R = S (instead of Algorithm 6), we can improve this result
to O(rrkr−t) (it would follow by Lemma 45 with ini = r−1). Nevertheless, this improvement on S ′ would
imply a slightly bigger reduced universe U ′ with O(rrkr−t) elements.

Improving the Kernel Size for the Weighted r-Set Packing with t-Overlap problem

We discussed in Section 6.2 how to reduce the weighted version of the r-Set Packing with t-Overlap
problem to a kernel. Recall that in the weighted variant, every set in S has a weight (a real number) and
the question is to find a (k, r, t)-set packing of maximum weight.

We believe that we can modify Algorithm 7 to reduce the weighted r-Set Packing with t-Overlap
problem to a kernel. In Line 7 of Algorithm 7, we arbitrarily leve in R f(i) = (r − t)(k − 1)f(i + 1) + 1
sets that contain a subset of size i. Instead of doing that choice arbitrarily, we keep in R the sets with
maximum weight. In this way, the kernelization algorithm for the weighted r-Set Packing with t-Overlap
will correspond to Algorithm 7 with input R = S and Line 7 modified as explained. By omitting technical
details, we can state that:

Theorem 30. The weighted r-Set Packing with t-Overlap can be reduced to a problem kernel with O(rrkr−t)
sets.

This kernel size is an improved kernel with respect to the O(er
t+1+1(rt+1 + 1)kr

t+1+1) kernel obtained
with PPTs in Section 6.2.

7.2.2 Smaller Kernel Sizes for H-Packing with t-Overlap and t-Edge Overlap
Problems

We will now apply our kernelization framework of Chapter 5 to obtain kernel results for our packing graphs
with pairwise overlap problems. By improving our kernel result for the r-Set Packing with t-Overlap
problem, we are automatically improving the kernel results for the graph problems as well.

Vertex Pairwise-Overlap

In the H-Packing with t-Overlap, we seek for at least k H-subgraphs of G such that each pair of those
subgraphs overlaps in at most t vertices. To reduce this problem to a kernel, we will transform it to the r-Set

79



Packing with t-Overlap as in Section 5.2.1. However, to actually obtain a kernel for the graph version, one
must have a kernelization algorithm for the r-Set Packing problem. In the framework described in Chapter
5, we assume that there exists a kernelization algorithm called KernelAlg-O for the r-Set Packing with
t-Overlap. In this chapter, Algorithm 6 takes the place of KernelAlg-O and that is precisely what
allows us to improve the kernel result for our graph packing with t-Overlap problems with respect to the
kernels obtained in Chapter 6.

Briefly summarizing, we construct an instance (a universe U and a collection of sets S) of the r-Set
Packing with t-Overlap with the instance of the H-Packing with t-Overlap as in Transformation 1. The
parameter k is not altered and r = r(H). We obtain a reduced universe U ′ and a reduced collection of
sets S ′ (i.e., a kernel problem) by running Algorithm 6 on U and S. Finally, we re-interpret the reduced
universe U ′ as a reduced graph G′ of the H-Packing with t-Overlap with Transformation 2.

By Transformation 2, G′ = G[U ′], and by Algorithm 6, |U ′| = O(rrkr−t−1). By Lemma 2, we can
hence conclude.

Theorem 31. The H-Packing with t-Overlap has a problem kernel with O(rrkr−t−1) vertices, where
r = r(H).

Our kernelization algorithm for the H-Packing with t-Overlap problem corresponds to Algorithm 2
with input G, H, k, r-Set Packing with t-Overlap, Transformation 1, Algorithm 6, and Transformation 2.

In similar fashion, we obtain the next result for the induced version of the problem.

Theorem 32. Induced-H-Packing with t-Overlap has a problem kernel with O(rrkr−t−1) vertices, where
r = r(H).

Edge Pairwise-Overlap

We introduce the H-Packing with t-Edge Overlap problem to regulate the overlap between the edges of
the H-subgraphs instead of the vertices. Recall that there is an upper bound m(H) on the number of
edges of each graph occurring in H.

By following a similar scheme as in the vertex overlap version, we obtain a kernel problem (a graph
G′) for the H-Packing with t-Edge Overlap with the following kernelization algorithm: Algorithm 2 with
input: G, H, k, r-Set packing with t-Overlap, Transformation 3, Algorithm 4, and Transformation 4.

By Transformation 4, G′ = G[V (U ′)], and by Algorithm 6, |U ′| = O(rrkr−t−1). By Lemma 4, we can
hence conclude.

Theorem 33. The H-Packing with t-Edge-Overlap has a problem kernel with O(rrkr−t−1) vertices, where
r = m(H).

7.3 Improved Kernel Results for Packing Problems with Mem-
bership

We now switch our attention to the packing problems with membership: r-Set Packing with t-Membership,
H-Packing with t-Membership, and H-Packing with t-Edge Membership. In Section 7.3.1, we develop an
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algorithm that reduces the r-Set Packing with t-Membership problem to a kernel. Our algorithm lets us

to improve the kernel result obtained in Section 6.2.1 from O((r+ 1)rkr) to O
(
r3
(
r
t

)r−3
kr−1

)
. In Section

7.3.2, we also obtain improved kernel sizes for the H-Packing with t-Membership and t-Edge Membership
with respect to our kernels obtained via PPTs from Chapter 6.

7.3.1 A Reduction Algorithm for Packing Sets with Membership

We will follow a similar organization as in Section 7.2.1. We give first a general explanation of the
kernelization algorithm for the r-Set Packing with t-Membership. After that, we focus on proving that
this algorithm correctly reduces an instance of this problem, and we finally show that this reduced instance
is a kernel.

The Algorithm

Our kernelization algorithm for the r-Set Packing with t-Membership is depicted in Algorithm 9. This
algorithm follows similar ideas as our kernelization algorithm for the r-Set Packing with t-Overlap problem
(Algorithm 6), but it has important differences that lead to separate analysis of correctness and kernel size
as well.

Similarly as Algorithm 6, Algorithm 9 reduces r-Set Packing with t-Membership to a kernel problem
in two major steps. First, we identify in Lines 3-9 the sets of S that may not be needed (extra) to form a
(k, r, t)-set membership, and second in Line 16, we remove redundant elements of U .

Algorithm 9 starts by cleaning up the instance of the r-Set Packing with t-Membership using Reduction
Rule 4. Next, this algorithm greedily obtains a maximal collection R ⊆ S such that every pair of sets in
R overlaps in at most r− 2 elements. After that, Algorithm 10 is called in Line 6 to determine which sets
of R are extra. Lines 3-9 in Algorithm 9 basically keep reducing R using Algorithm 10 while there are no
more sets from S\(R∪ E) to add to R. We need to repeat these steps to preserve the maximality of R.

Before continuing with the explanation of the rest of Algorithm 9, we will describe how Algorithm 10
finds the extra sets of R. This algorithm counts the number of sets in R that pairwise overlap exactly in
the same subset of elements P ⊂ U and keeps in R a specific number of them. Specifically, for i = ini
to 1 and each set S ∈ R, Algorithm 10 takes every subset of elements P ( S of size i (Lines 3-5). The
number of sets in R that contain P (collected in P, Line 6) is counted, and at most f(i) of them are
kept in R (Line 7-11). The rest of the sets is added to the collection E . The threshold f(i) is defined as
f(i) = r

t (k − 1) f(i+ 1) + t where f(ini+ 1) is initialized to one (Line 2).

The function f(i) basically bounds the number of sets in R that contains a subset P with i elements.

Observe that f(i) = r
t (k − 1) f(i+ 1) + t ≤

∑ini−i+1
j=0 t[( rt )(k − 1)]j . Algorithm 10 returns E which is the

collection of extra sets in R (Line 16).

Recall that the kernelization algorithm for the r-Set Packing with t-Overlap (Algorithm 6) also calls a
routine to identify extra sets from R (Algorithm 7). The difference between Algorithm 10 and Algorithm 7
is that the first one runs from ini = r−2 to 1 while the second one stops at t+1. In addition, in Algorithm
10, f(i) is defined as f(i) = r

t (k − 1) f(i + 1) + t while in Algorithm 7 f(i) = (r − t)(k − 1)f(i + 1) + 1.
We could have written a generic routine for both problems and pass these values as parameters. However,
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Algorithm 9 Kernelization Algorithm by Reduction - r-Set Packing with t-Membership

Input: An instance U ,S
Output: A reduced instance U ′,S ′

1: Apply Reduction Rule 4
2: R = ∅, E = ∅
3: repeat
4: Greedily add sets from S\(R ∪ E) to R such that the sets in R pairwise overlap in at most r − 2

elements.
5: if at least one set was added to R then
6: E ′ = Algorithm 10(R)
7: R = R\E ′, E = E ∪ E ′
8: end if
9: until no more sets have been added to R

10: Reduce S = S\E and re-apply Reduction Rule 4
11: Compute a maximal (r, t)-set membership M of R
12: if |M| ≥ k then
13: Let S ′ be any subset of M of size k
14: Return U and S ′
15: end if
16: Let U ′ and S ′ be the reduced universe and collection of sets, respectively, after applying Reduction

Rule 6.
17: Return U ′ and S ′

Algorithm 10 Extra Sets Reduction - r-Set Packing with t-Membership

Input: A collection R ⊆ S of sets
Output: A collection E ⊆ R of sets

1: ini = max {|Si ∩ Sj | : Si, Sj ∈ R, i 6= j}
2: f(ini+ 1) = 1, E = ∅
3: for i = ini downto 1 do
4: for each S ∈ R such that |S| > i do
5: for each P ( S where |P | = i do
6: P = {S′ ∈ R : S′ ) P}
7: f(i) = r

t (k − 1) f(i+ 1) + t
8: if |P| > f(i) then
9: Choose any P ′ ( P of size f(i)

10: Set E ← E ∪ (P\P ′) (extra sets)
11: R ← R\(P\P ′)
12: end if
13: end for
14: end for
15: end for
16: Return E
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we decided to keep them separate for explanatory purposes and to help the exposition of our analysis of
correctness and kernel sizes.

We now continue explaining the rest of Algorithm 9. After Algorithm 9 finishes executing the repeat-
loop of Lines 3-9, the collection S is updated by removing E in Line 10, and Reduction Rule 4 is re-applied.
After that, Algorithm 9 computes a maximal (r, t)-set membership M ⊆ R. This maximal solution will
help us to determine an upper-bound for the number of sets in R in Lemma 51. If |M| ≥ k, Algorithm 9
outputs a subset of size k from M and stops executing. Let us assume for explanatory purposes that M
was not a (k, r, t)-set membership and Algorithm 9 continues executing.

In our second step of reduction in Algorithm 9, we determine extra elements from U\val(R) that may
not be needed in a (k, r, t)-set membership.

We will identify extra elements in U\val(R), denoted asO from now on. Similarly as forH-Packing [114]
and r-Set Packing with t-Overlap (Algorithm 6), we will construct an auxiliary bipartite graph B =
(VO, VP , E) to reduce O. In the kernelization algorithms of those problems, the reduction of O happens
via computing a maximum matching in B. More precisely, the elements of O that correspond to the
unmatched vertices of VO are removed from U . Given that in a t-Membership problem, an element of U
can be included in up to t sets of a solution, we will compute a generalization of the maximum matching
problem instead.

We construct the bipartite graph B = (VO, VP , E) with Algorithm 8. Let b : V (B) → N a degree
constraint for every vertex in B. For our reduction purposes, we will assign b(v) = 1 for all v ∈ VO,
and b(v) = t for all v ∈ VP . After that we will compute a cardinality b-Matching on B (see Chapter
2). Intuitively, every vertex of VP is matched up to t vertices from VO. However, every vertex in VO is
only matched to at most one vertex of VP . After that we will remove the elements of O corresponding to
unmatched vertices of VO. Our reduction rule is formally described next.

Reduction Rule 6. Construct an auxiliary bipartite graph B = (VO, VP , E) with Algorithm 8. Assign
b(v) = 1 for all v ∈ VO, and b(v) = t, for all v ∈ VP and compute a cardinality b-matching Mt. Let
VO′ ( VO be the set of unmatched vertices of VO and O′ ( O be the elements corresponding to those
vertices. Likewise, let S(O′) be the sets in S\R that contain elements of O′. Reduce U ′ = U\O′ and
S ′ = S\S(O′).

Example 11. Let us assume an instance of the r-Set Packing with t-Membership with k = 4, r = 4 and
t = 2.

S ={{b, c, d,m}, {a, b, c, d}, {b, e, f, q}, {a, b, e, f}, {h, i, j,m},
{g, h, i, j}, {l, h, i, j}, {t, h, i, j}, {m, e, q, i}, {p,m, e, q},
{r,m, e, q}, {s,m, e, q}, {l,m, e, q}}

Let us suppose the following set R after reduced by the repeat-loop of Lines 3-9 in Algorithm 9.

R ={{b, c, d,m}, {b, e, f, q}, {h, i, j,m}, {m, e, q, i}}
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In this way, O = {a, g, l, p, r, s, t}. The bipartite graph B = (VO, VP , E) constructed as in Algorithm 8
is shown in Figure 7.3. The degree constraint for every vertex is b(v) = 1 for all v ∈ VO, and b(v) = 2, for
all v ∈ VP . A maximum cardinality-b-matching of B is highlighted. In this example, the elements s and
t are identified as extra and will be removed from U . As a consequence the sets {s,m, e, q} and {t, h, i, j}
will be removed from S.

O*
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bcdv

befv

meqv

hijv
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vs

vt

P*
V

va

vg

vl

vp
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Figure 7.3: The bipartite graph constructed from Example 11. A maximum cardinality b-matching is
highlighted.

Correctness

Next, we prove the correctness of Algorithm 9. In general this algorithm reduces an instance of the r-Set
Packing with t-Membership in two steps: by removing extra sets of S and by removing extra elements of
U . The first step of reduction occurs by executing Algorithm 10 in the loop of Lines 4-9 in Algorithm 9.
We show that this step is correct with Lemmas 47 and 48. Reduction Rule 6 in Line 16 of Algorithm 9
triggers the second reduction step. The correctness of this rule is proved in Lemma 49.

Lemma 47. Let E ⊂ R be the collection of extra sets returned by Algorithm 10. R has a (k, r, t)-set
membership if and only if R\E has a (k, r, t)-set membership.

Proof. Since R\E ⊆ R, if R\E has a (k, r, t)-set membership then R has one. Let K be a (k, r, t)-set
membership of R. If K is also a (k, r, t)-set membership of R\E then the lemma follows. Otherwise, there
is at least one set in K that is in E (Line 10); that is, K∩E 6= ∅. We claim that we can replace each set in
K ∩ E (an extra set) by a set in R\E .

For any set Se ∈ E (removed from R), there is at least one subset of elements P ( Se such that
|P| > f(i) (Line 8). Recall that P collects all the sets in R that contain P . Since the variable i determines
the size of P and f(i) is an upper bound for the number of sets containing P , we will prove the lemma by
induction on i.
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Let i = ini (first iteration of loop of Line 3) and let P be a subset with ini elements such that
|P| > f(ini), where P is the collection of all sets in R that contain P (Line 6).

Observation 2. At most t sets of P are in K; otherwise, there would be at least t+1 sets in K containing
the subset P and K would not be a (k, r, t)-set membership.

Let us denote as Se the sets of P that are in K and are extra, i.e., Se = P ∩ (K ∩ E). By Observation
2, |Se| = m ≤ t.

We claim that we can replace each set in Se by a set in P ′ ⊆ R\E (P ′ is the subset of P that was kept
in R, Line 11).

Claim 9. The collection P ′ has at most r
t (k −m) sets that could conflict with the k −m sets in K\Se.

Proof. Let S′ be a set in P ′ that conflicts with the collection K\Se. (i) That is, there is at least one
element u ∈ S′ that is contained in exactly t sets of K\Se. This would imply that S′ cannot be added to
K\Se. More precisely, (K\Se) ∪ S′ is not an (l, r, t)-set membership where l = |(K\Se) ∪ S′|.

We next show that the element u is contained only in the set S′, i.e., u ∈ S′ and u /∈ S for each S ∈ P ′
with S 6= S′.

Recall that all sets in P contain a subset P , thus P ⊂ S′. Since Se ⊂ P, S′ shares at least P with
every Se ∈ Se.

First, we show that u /∈ P . Assume otherwise by contradiction. By assumption (i), u is in t sets of
K\Se. (ii) Since P ⊂ Se for each Se ∈ Se, this would imply that u is also in all the sets in Se, and therefore
in at least t+ 1 sets of K (recall that Se ∈ K), a contradiction since K is a (k, r, t)-set membership.

In this way, if u is in another set S 6= S′ of P, u must be in S\P . However, this implies that
|S ∩S′| ≥ |P |+ 1 = ini+ 1, a contradiction to Line 1 from Algorithm 10. Therefore, the element u is only
contained in S′, and u accounts for only one conflicting set in P ′.

Since by assumption (i), u is in t sets of K\Se, there are at most r(k − m) − t elements “left” in
val(K\Se) to count for possible conflicting sets in P ′. We can repeat up to j times the argument above
before we “run out” of elements in val(K\Se); that is, when r(k −m)− jt = 0

This implies that K\Se can conflict with at most j = r
t (k −m) sets in P ′.

By the claim above, P ′ should have at least r
t (k −m) + m to replace the m sets in Se by sets in P ′.

Since 1 ≤ m ≤ t, rt (k−m)+m is upper-bounded by r
t (k−1)+t. Given that f(ini) = 1, |P ′| = r

t (k−1)+t,
and there always will be m sets in P ′ to replace the m sets in Se.

We next develop the same argument for i < ini. Similarly, let P be a subset with i elements such that
|P| > f(i) and Se = P ∩ (K ∩ E).

Once again, we claim that we can replace each set in Se by a set in P ′, and we denote |Se| by m ≤ t
(Observation 2).

Claim 10. The collection P ′ has at most r
t (k −m)f(i+ 1) sets that could conflict with the k −m sets in

K\Se.
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Proof. Let S′ be a set in P ′ conflicting with K\Se. That is, as before, there is at least one element u ∈ S′
that is in exactly t sets of K\Se.

The element u is contained in at most f(i + 1) sets in P ′. This follows because f(i + 1) bounds the
number of sets that contain a subset of i+ 1 elements. Each set in P ′ contains P and |P | = i, thus there
are at most f(i+ 1) sets of P ′ containing P ∪ u (we showed before in (ii) that u cannot be in P ).

In this way, the element u accounts for f(i+ 1) conflicting sets in P ′. Once again, we can repeat up to
j times the argument above before we “run out” of elements in val(K\Se) that is when r(k−m)− jt = 0.
Hence, the sets in K\Se can conflict with at most j = r

t (k −m)f(i+ 1) sets in P ′.

By the above claim, P ′ should have at least r
t (k −m)f(i+ 1) +m to replace the m sets in Se by sets

in P ′. Since 1 ≤ m ≤ t, r
t (k −m)f(i+ 1) +m ≤ r

t (k − 1)f(i+ 1) + t, there will always be t sets in P ′ to
replace the extra sets in Se.

From the previous lemma, we can derive the following corollary which will be required in the proof of
Lemma 51.

Corollary 4. Every element of a set in R\E is contained in at most f(1) =
∑ini
j=0 t[

r
t (k − 1)]j < 2t

( rt (k − 1))ini sets in R\E.

Next, we show that the collection of sets E found in Lines 3-9 of Algorithm 9 is extra.

Lemma 48. After running Lines 1-9 of Algorithm 9, S has a (k, r, t)-set membership if and only if S\E
has a (k, r, t)-set membership.

Proof. Since (S\E) ⊆ S, if S\E has a (k, r, t)-set membership then S has one. Now, assume for contra-
diction that S has a (k, r, t)-set membership K but S\E does not have one. This implies that there is an
S ∈ K that is in E . If that set S is in E , then in some iteration of Algorithm 9 (Lines 3-9) S was in R in
Line 5 and after that S was not in R but in E ′. However, by Lemma 47 we know that R has a (k, r, t)-set
membership if and only if R\E ′ has one.

Lemmas 47 and 48 show the correctness of Algorithm 9 until Line 10. It remains to show the correctness
of Reduction Rule 6. Before doing that, it is fundamental in the correctness of this rule to notice that the
set O (O = U\val(R)) computed in this section follows Lemma 42.

We show next that Reduction Rule 6 correctly reduces U and S.

Lemma 49. Let S ′, U ′ be the reduced collection of sets and universe, respectively, output by Reduction
Rule 6. The collection S has a (k, r, t)-set membership if and only if S ′ has a (k, r, t)-set membership.

Proof. Since S ′ ⊆ S, if S ′ has a (k, r, t)-set membership, then S has one as well. Suppose that S has a
(k, r, t)-set membership K. If K is not a solution in S ′, then at least one set in K contains an element in O′

(unmatched elements). We next show that there is always a (k, r, t)-set membership that does not contain
any element from O′.

Let VO′ ( VO be the set of all unmatched vertices of VO. Let P be the collection of all Mt-alternating
paths in B each one starting in a vertex in VO′ . Now, let M∗t be the set of matched edges in these paths,
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i.e., M∗t = (E(P) ∩Mt), where Mt is the maximum cardinality b-matching computed in Rule 6. The set
VO∗ = V (M∗t )∩ (VO\VO′) corresponds to the end-points of the edges in M∗t that are in VO\VO′ . Similarly,
VP∗ = V (M∗t ) ∩ (VP ). (See Figure 7.3)

Claim 11. i. Vertices in VO′ ∪ VO∗ are only adjacent to vertices in VP∗ .

ii. Every vertex in VP∗ is matched to exactly t different vertices in VO∗ , and each vertex in VO∗ is
matched to exactly only one vertex in VP∗ . We call this a (1, t)-perfect matching between VO∗ and VP∗ .

Proof. Let us start first with the proof of (i). Assume for contradiction that there exists an edge (vo′ , vp)
with vo′ ∈ VO′ but vp /∈ VP∗ . Notice first that vp is a t-matched vertex. Otherwise, we could add the edge
(vo′ , vp) to Mt contradicting that Mt is maximum. Since vo′ is unmatched, there is an Mt-alternating path
vo, vp, v

∗
o (for some v∗o ∈ VO), and vp would be in VP∗ by our definition of VP∗ .

Once again by contradiction, assume that there exists an edge (vo, vp) with vo ∈ V ∗O but vp /∈ VP∗ .
Notice that vp must be t-matched. Otherwise, the edge (vo, vp) and the Mt-alternating path P ∈ P starting
in some vertex v′o ∈ V ′O and ending in vo would form an Mt-augmenting path. A contradiction because
Mt is maximum (Lemma 1). In this way, vp ∈ V ∗P . This concludes the proof of (i).

Since every vertex in V ′O is adjacent to only vertices in VP∗ , and there are no Mt-augmenting paths in
B, every vertex in VP∗ is matched to exactly t vertices in V ∗O and each vertex in V ∗O is matched to only one
vertex and that vertex is in VP∗ . Furthermore, vertices in VO∗ are only adjacent to vertices in VP∗ .

We refer to O∗ ⊆ (O\O′) as the set of elements corresponding to the vertices in V ∗O. Similarly, P ∗

is the collection of subsets each one represented by a vertex in VP∗ . By the construction of B, Claim 11
relates to the collection S and O in the following way.

Claim 12. (i) The elements in O′ ∪ O∗ are contained only in sets in S\R. Furthermore each of these
sets contains a subset of P ∗. More precisely, for any set S ∈ S\R containing one element o ∈ (O′ ∪ O∗)
(by Lemma 42 is only one), the subset P = (S\o) is in P ∗.

(ii) There are at least t|P ∗| sets in S\R of the form Pi ∪ o∗l where Pi ∈ P ∗ and o∗l ∈ O∗. Furthermore,
for each pair Pi ∪ o∗l and Pj ∪ o∗n of these sets, o∗l 6= o∗n.

Now we need to show that there is always a (k, r, t)-set membership that does not include unmatched
elements (elements from O′). Let K∗ ⊆ K be all sets of K that contain elements from O∗. Similarly,
K′ ⊆ K is the collection of sets of K that contain elements from O′. Each set in (K∗∪K′) contains a subset
in P ∗ (Claim 12 (i)). We claim that we cannot form more sets of K by forming sets using subsets in P ∗

with elements of O∗ ∪O′ rather than using O∗ only.

Any element in val(P ∗) is contained in at most t sets of K; otherwise, K would not be a solution by
(ii). Therefore, each member of P ∗ can be in at most t sets of K and |K′ ∪ K∗| ≤ t|P ∗|.

Since by Claim 12 (ii), there are t|P ∗| sets in S containing each one an element of O∗ and a subset of
P ∗, we know that we can replace all the sets in K′∪K∗ by sets that contain a subset in P ∗ and an element
in O∗. Let K̄ the collection of these newly formed sets. Every element of val(K̄) is contained in at most t
sets of (K\(K′ ∪K∗))∪ K̄. This follows because: 1. each element in val(P ∗) is contained in at most t sets
of K (see **), and 2. the elements in val(K̄)\val(P ∗) are elements from O∗ which by Claim 12 (ii) are all
different. Furthermore, elements from O∗ form sets of S (more precisely sets of S\R ) using only subsets
of P ∗.
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We now state the correctness of Algorithm 9.

Theorem 34. Let (S ′,U ′, k) be the reduced instance of the r-Set Packing with t-Membership returned by
Algorithm 9. The collection S has a (k, r, t)-set membership if and only if S ′ has one.

Kernel Size

Up to this point, we have shown that the reduced instance by Algorithm 9 has a (k, r, t)-set membership
if and only if the original instance has one. To prove that this instance is a kernel, we need to show that
Algorithm 9 runs in polynomial time in n and the size of the reduced instance is bounded by a computable
function f depending only on the parameter k. Recall that t and r are fixed-constants.

Lemma 50. Algorithm 9 runs in polynomial time.

Proof. Reduction Rule 4 can be computed in O(nr) time. An upper bound to compute the set R is O(nr).
Algorithm 10 runs in time O(rrnr). In addition, a cardinality b-matching can be computed in polynomial
time [129, 108].

It remains to determine an upper bound for the number of elements in the reduced universe U ′. Given
that U ′ = val(S ′) (Reduction Rule 6), we will use S ′ to upper-bound U ′.

The collection S ′ = (S ′\R) ∪ R. Since S ′\R ⊆ S\R, by Lemma 42 we know that each set in S ′\R
contains one element in O and r− 1 elements in a set of R. Thus, val(S ′) = O ∪ val(R). The elements in
O′ were removed from O (Reduction Rule 6), therefore, val(S ′) = (O\O′) ∪ val(R).

We next provide an upper bound for the size of R.

Lemma 51. The number of sets in R is at most 2r
(
r
t

)r−2
kr−1, and |val(R)| ≤ 2r2

(
r
t

)r−2
kr−1.

Proof. (i) Let M be a maximal (r, t)-set membership of R. Each set S ∈ R is either in M (S ∈ M),
or it shares one element with at least t sets in M, i.e., S /∈ M but |S ∩ Si| ≥ 1 for some collection
{S1 . . . St} ⊆ M. Otherwise, M would not be a maximal (r, t)-set membership.

There are |val(M)| elements in M. Assuming each one of them is contained in a set of R\M, and by
Corollary 4, we know that this element will be in at most f(1) sets in R, we have that |R| ≤ |val(M)|f(1).

Strictly by (i), at most |val(M|)t elements of M could be intersecting with sets in R\M, thus |R| ≤
|val(M|)

t f(1).

As each set in S has at most r elements, |val(M)| ≤ r|M|. If |M| ≥ k then M is a (k, r, t)-set
membership, and Algorithm 9 outputs a subset of M and stops in Line 14. Thus, |M| ≤ k − 1.

On the other hand, f(1) ≤ 2t( rt (k − 1))ini (Corollary 4).

Combining these upper-bounds, |R| ≤ r
t (k − 1)2t( rt (k − 1))ini.

Since ini = r−2 by Line 1 of Algorithm 10 (consequence of Line 4 of Algorithm 9), |R| ≤ 2r
(
r
t

)r−2
kr−1,

and |val(R)| ≤ r|R| ≤ 2r2
(
r
t

)r−2
kr−1.
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Now, we bound the size of O\O′.

Lemma 52. After applying Reduction Rule 6, there are at most 2r3
(
r
t

)r−3
kr−1 elements in O.

Proof. After applying Reduction Rule 49, |O| = |VO| ≤ t|VP |.

By our construction of VP , there are at most
(
r
r−1
)
|R| =r|R| vertices in VP . By Lemma 51, |R| ≤

2r2
(
r
t

)r−2
kr−1 and the lemma follows.

Theorem 34, Lemma 50, the 2r3
(
r
t

)r−3
kr−1 elements in O together with the 2r2

(
r
t

)r−2
kr−1 elements

in R give the following result.

Theorem 35. The r-Set Packing with t-Membership has a problem kernel with O
(
r3
(
r
t

)r−3
kr−1

)
elements

from the given universe.

The size of the reduced collection S ′ is given by |R| + |S\R|. By our construction of the bipartite
graph B (Algorithm 8) each edge in B is a set in S. In fact, |S\R| = |E(B)|.

Therefore, the size of S ′ = |E(B′)| + |R|, where B′ is the reduced graph B after Rule 6. This rule
removes unmatched vertices but not unmatched edges. Therefore, B′ could be a complete bipartite graph

and |E(B′)| ≤ |V ′O||VP |. There are 2r3
(
r
t

)r−3
kr−1 vertices in V ′O and 2r2

(
r
t

)r−2
kr−1 vertices in VP . In

this way, S ′ = (2r3
(
r
t

)r−3
kr−1)2 + 2r

(
r
t

)r−2
kr−1.

Theorem 36. Algorithm 9 returns a reduced collection S ′ with O
((
r3
(
r
t

)r−3
kr−1

)2)
sets.

Similarly as with the r-Set Packing with t-Overlap problem, by running directly Algorithm 10 with

input R = S (instead of Algorithm 9), we can improve this result to O(2r
(
r
t

)r−1
kr) (it would follow by

Lemma 51, ini = r− 1). However, this improvement on S ′ would imply a slightly bigger reduced universe

U ′ with O(2r
(
r
t

)r−1
kr) elements.

Improving the Kernel Size for the Weighted r-Set Packing with t-Membership problem

We next discuss how to improve the kernel size for the weighted r-Set Packing with t-Membership problem
with respect to kernel obtained in Section 6.1. The input of this improved kernelization algorithm consists
on running Algorithm 10 with input R = S. We also modify Line 7 of Algorithm 10 by keeping on
R, f(i) = r

t (k − 1) f(i + 1) + t sets of maximum weight (instead of an arbitrary selection). With this
modification we obtain the following result.

Theorem 37. The weighted r-Set Packing with t-Membership has a problem kernel with O(2r
(
r
t

)r−1
kr)

sets.

This kernel result slightly improves the O(er+1(r + 1)kr+1) kernel obtained with PPTs in Section 6.1.
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7.3.2 Smaller Kernel Sizes forH-Packing with t-Membership and t-Edge Mem-
bership Problems

As with the pairwise overlap problems in Section 7.2.2, we will improve the kernel sizes for our H-Packing
with t-Membership and t-Edge Membership problems applying the framework from Chapter 5. In that
framework, we basically transform an instance of H-Packing with t-Membership and t-Edge Membership
to instances of the r-Set Packing with t-Membership problem. By reducing the constructed instances of
the set packing version to a kernel, we obtain a kernel for the original graph problems.

The reader will notice that this is the process we applied in Sections 6.1.2 and 6.1.3 as well. The
difference relies in that now we use Algorithm 9 (instead of Algorithm 3) to reduce to a kernel the
constructed instances. This change allows us to improve the kernel sizes for our graph packing with
membership problems.

Vertex Membership

Let us briefly summarize how we apply the framework from Section 5.1.1 to reduce the H-Packing with
t-Membership to a kernel. We construct an instance (a universe U and a collection of sets S) of the r-
Set Packing with t-Membership problem from the instance of the H-Packing with t-Membership problem
with Transformation 1. After that, we reduce that constructed instance to a kernel with a kerneliza-
tion algorithm for the r-Set Packing with t-Membership problem. In Chapter 5, we call that algorithm
KernelAlg-M. In this chapter, Algorithm 9 takes the place of KernelAlg-M in that approach. Since
Algorithm 9 improves the kernel obtained by Algorithm 3, this lets us to also improve the kernel for our
graph problems. Once that we obtained the reduced universe U ′ and collection of sets S ′ with Algorithm
9, we can re-interpret U ′ towards a reduced graph G′ for the original graph problem with Transformation
2.

By Transformation 2, G′ = G[U ′], and by Algorithm 9 |U ′| = O
(
r3
(
r
t

)r−3
kr−1

)
. Lemma 13 permits us

to conclude:

Theorem 38. H-Packing with t-Membership has a problem kernel with O
(
r3
(
r
t

)r−3
kr−1

)
vertices, where

r = r(H).

In similar fashion, we obtain the next result.

Theorem 39. Induced-H-Packing with t-Membership has a problem kernel with O
(
r3
(
r
t

)r−3
kr−1

)
ver-

tices, where r = r(H).

The kernelization algorithm for the H-Packing with t-Membership that we described above corresponds
to Algorithm 2 with input G, H, k, r-SetPacking with t-Membership, Transformation 1, Algorithm 9, and
Transformation 2.

Edge Membership

With similar ideas as with the vertex membership version, we reduce the H-Packing with t-Edge Member-
ship to a kernel with the following kernelization algorithm: Algorithm 2 with input G, H, k, r-Set Packing
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with t-Membership, Transformation 3, Algorithm 9, and Transformation 4. The output of this algorithm
is a reduced graph G′.

By Transformation 4, G′ = G[V (U ′)], and by Algorithm 9 |U ′| = O
(
r3
(
r
t

)r−3
kr−1

)
. By Lemma 18, we

can state.

Theorem 40. The H-Packing with t-Edge Membership problem has a kernel with O
(
r3
(
r
t

)r−3
kr−1

)
vertices where r = m(H).

7.4 Conclusions

In this chapter, we obtained improved kernel sizes for all our pairwise overlap and membership problems
with respect to the kernels obtained via PPTs in the previous chapter. This improvement comes from
reducing the problems directly instead of transforming them to the r′-Set Packing problem (r′ > r). As
expected, tailored kernelization algorithms for the particular problems could be more involved and the
analysis of correctness and kernel sizes is also more technical.

Although t is considered a fixed-constant, it is still interesting to see the effect of its value in both
kernel sizes. In the O(rrkr−t−1) kernels for the pairwise overlap problems, this value of t affects directly

the exponent of parameter k, while in the O
(
r3
(
r
t

)r−3
kr−1

)
kernels of the membership problems, the value

of t only affects as a divisor factor. For both cases, this effect of t matches the intuition that the larger the
overlap or membership in the solution, the smaller the kernel should be. That is, we can “shrink” more
the instance as we are allowing for more overlap or membership between the members of the solution.

Finally notice that for t = 0 and t = 1 for pairwise overlap and membership problems, respectively, our
kernel sizes match the O(rrkr−1) [114, 1] kernel size of packing disjoint sets of size at most r (or graphs
of order at most r). Recall that for those values of t our problems become equivalent to packing disjoint
objects (sets or graphs, depending on the problem).

It remains of course to answer the question of how “good” the kernels obtained in these sections really
are. Specifically, it would be ideal to develop kernelization lower bounds for all of our problems. In
addition, it would be interesting to develop kernelization algorithms for other parameter combinations.
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Part III

Fixed-Parameter Algorithms
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Chapter 8

On Fixed-Parameter Algorithms

Previously, we focused on reducing packing problems with pairwise overlap and membership to a kernel
problem. We obtained such kernels with two different techniques: polynomial parametric transforma-
tions [16] and classical reduction [44, 117]. Obtaining a problem kernel implies obtaining an immediate
fixed-parameter algorithm, i.e., running a brute-force algorithm on the kernel.

In this chapter, however, we are interested on designing better algorithms than brute-force algorithms.
Instead of exploring all possible solutions, we will construct a search tree that will contain a solution for
our problems at one of the leaves of the tree (if one exists). To achieve an FPT-algorithm with a search
tree, the size of the tree (depth and branch-in) must be bounded by f(k), where f is a computable function
and k is the parameter. In addition, the time spend at each node must be polynomial in n. Bounded
search trees consists on a powerful technique for designing fixed-parameter algorithms [44, 117].

We obtain additional FPT-algorithms for our packing problems in a more indirect way. Recall that in
Chapter 6, we transform the instances of the packing problems with overlap into instances of the problem
of packing disjoint sets. Thus in this chapter, we show that we can obtain a solution for our problems by
running FPT-algorithms for the r-Set Packing problem (packing disjoint sets).

This chapter is organized as follows. We analyze the running time of brute-force algorithms on our prob-
lem kernels for the r-Set Packing with t-Overlap and t-Membership in Sections 8.1.1 and 8.2.1, respectively.
Although these results are straightforward, we still included them for completeness. In Sections 8.1.2 and
8.2.2, we design FPT-algorithms for the r-Set Packing with t-Overlap and t-Membership, respectively,
which are based on bounded search trees in combination with a greedy algorithm. Additionally in Sec-
tions 8.1.3 and 8.2.3, we discuss how to achieve efficient (the best ones from this chapter) FPT-algorithms
for our problems via FPT-algorithms for the problem of packing disjoint sets. Table 8.1 summarizes the
running times obtained for each algorithm. Finally in Sections 8.1.4 and 8.2.4, we point out how our
FPT-algorithms for the r-Set Packing with t-Overlap and t-Membership translate into FPT-algorithms
for the graph versions of those problems.
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r-Set Packing with FPT-Algorithm Running Time

t-Overlap
Brute-Force on kernel O(r2kk(r−t−1)

2k + nr)

Bounded Search Tree (on kernel) O(rr
2+rkk(r−t−1)(k+r)+2 + nr)

“Color-Coding” O(2O((c+1)(rt+1+1)k) + nr + nt+1)

t-Membership
Brute-Force on kernel O

((
r3
(
r
t

)r−3
kr−1

)2k
+ nr

)
Bounded Search Tree (on kernel) O((2rtk−(r(r−3))(rk)r

2+rk) + nr)
“Color-Coding” O(2O((c+1)(r+1)k) + nr)

Table 8.1: Summary of results presented in Chapter 8

8.1 On FPT-Algorithms for Packing Problems with Pairwise
Overlap

In this section, we will develop fixed-parameter algorithms for the r-Set Packing and H-Packing with
t-Overlap problems. First, we simply provide the running time of a brute-force search algorithm on the
kernel obtained in Section 7.2.1. After that, we develop an FPT-algorithm using a bounded search tree
in combination with a greedy algorithm. This algorithm does not necessarily run on a kernel. Finally,
we point out how to obtain a faster FPT-algorithm by running an FPT-algorithm on the constructed
instances of the (

(
r
t+1

)
+ 1)-Set Packing problem.

8.1.1 A Naive Algorithm

A simple way to obtain a (k, r, t)-set packing of the instance (U ,S, k) is by running a brute-force algorithm
on S. That is, finding all possible combinations of size k on S and check whether a combination is a
(k, r, t)-set packing or not.

In order that this algorithm be fixed-parameter tractable by the parameter k, the size of S must be
bounded by f(k), where f is a computable function. Thus, we will run this algorithm on the reduced S
from Theorem 29. The size of the reduced S is O(rr

2

k(r−t−1)
2

). Hence, the running time of the brute-force

algorithm on the kernel is O(rr
2kk(r−t−1)

2k).

Lemma 53. The r-Set Packing with t-Overlap problem can be solved with brute force in O(rr
2kk(r−t−1)

2k+

nr) running time, when |S| = O(rr
2

k(r−t−1)
2

).

8.1.2 A Bounded Search Tree with Greedy Localization Algorithm

We will develop in this section a search tree algorithm for the r-Set Packing with t-Overlap problem. This
algorithm uses a greedy routine to bound the number of children at each node of the tree. The FPT-
algorithm (called BST-algorithm t-Overlap) for the r-Set Packing with t-Overlap has three main
components: Initialization, Greedy, and Branching.

Let us explain first the global structure of BST-algorithm t-Overlap. This algorithm starts by
computing a maximal (r, t)-set packing M from S. If |M| ≥ k, then M is a (k, r, t)-set packing, and the
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BST-algorithm t-Overlap stops. Otherwise, we create a search tree T where at each node i, there is a
collection of sets Qi = {si1, . . . , sik} with sij ⊆ S for some S ∈ S. The children of the root of T are created
according to a procedure called Initialization.

After that for each node i of T , a routine called Greedy will attempt to find a (k, r, t)-set packing using
Qi. If Greedy succeeds, then BST-algorithm t-Overlap stops. Otherwise, the next step is to create
children of the node i using the procedure Branching. Each child l of the node i will have a collection
Ql that is the same as Qi with the difference that one of the sets of Ql is increased by one element.
The BST-algorithm t-Overlap will repeat Greedy in these children. Eventually, BST-algorithm
t-Overlap either finds a solution at one of the leaves of the tree or determines that it is not possible to
find one.

We next explain the three main components of BST-algorithm t-Overlap individually. Let us start
with the Initialization routine. As we will see in Lemma 54, if there is a solution K = {S∗1 , . . . , S∗k},
each S∗j contains at least t+ 1 elements which are contained in a set S ∈M (recall that M is a maximal
(r, t)-set packing). Furthermore, these t+ 1 elements are only contained in S∗j (and S); otherwise it would
be a pair of sets in K (and M) overlapping in more than t elements. Thus, we create a collection Mt+1

of sets that contains all possible subsets of t + 1 elements of S, for each S ∈ M. The root of the search
tree will have a child i for each possible combination of k sets from Mt+1.

At each node i, the Greedy routine returns a collection of sets Qgr. Initially, Qgr = ∅ and j = 1.
At iteration j, Greedy searches for a set S that contains sij and that S does not overlap in more than t

elements with any set in Qgr. Greedy searches for S in a collection S(sij ,Q
i, t). S(sij ,Q

i, t) ⊆ S(sij) is

the subcollection of S(sij) where for each S′ ∈ S(sij ,Q
i, t) each pair of sets in (Qi\sij)∪S′ does not overlap

in more than t elements. If such set S exists, Greedy adds S to Qgr, i.e., Qgr = Qgr ∪ S and continues
with iteration j = j + 1. Otherwise, Greedy stops executing and returns Qgr. If |Qgr| = k, then Qgr is
a (k, r, t)-set packing and BST-algorithm t-Overlap stops. If the collection Qi cannot be propagated
into a solution (Lemma 56), Greedy returns Qgr =∞.

The Branching procedure executes every time that Greedy does not return a (k, r, t)-set packing but
Qi could be propagated into one. That is, Qgr 6=∞ and |Qgr| < k. Let j = |Qgr|+1 and sij be the j-th set

in Qi. Greedy stopped at j because each set S ∈ S(sij ,Q
i, t) overlaps in more than t elements with at least

one set in Qgr. We will use the conflicting elements between S(sij ,Q
i, t) and Qgr to create children of the

node i. Let I∗ be the set of those conflicting elements which are obtained as I∗ = (
⋃

(S ∩ S′))\(val(Qi))
for each pair S ∈ S(sij ,Q

i, t) and S′ ∈ Qgr that overlap in more than t elements. Branching creates a

child l of the node i for each element ul ∈ I∗. The collection Ql of child l is the same as the collection Qi

of its parent i with the update of the set sij as sij ∪ ul, i.e., Ql = {si1, . . . , sij−1, sij ∪ ul, sij+1, . . . , s
i
k}.

Example 12. Consider the following instance of the r-Set Packing with t-Overlap problem (r = 4, t = 1,
k = 4).

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

S = {S1 = {1, 2, 3, 4}, S2 = {1, 3, 9, 10}, S3 = {1, 3, 10, 11},
S4 = {3, 4, 11, 12}, S5 = {5, 6, 7, 8}, S6 = {5, 6, 7, 4},
S7 = {6, 8, 13, 14}}
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A maximal (r, t)-set packing is M = {S1, S5}. Thus,

Mt+1 ={{1, 3}, {1, 4}, {1, 2}, {2, 3}, {2, 4}, {3, 4},
{5, 6}, {5, 7}, {5, 8}, {6, 7}, {6, 8}, {7, 8}}

One example of a child of the root is a node i with collection Qi = {si1 = {1, 3}, si2 = {3, 4}, si3 =
{5, 6}, si4 = {6, 8}}. Consider the execution of Greedy at this node. At j = 1, Greedy tries to find a
set that contains si1 = {1, 3}. Recall that Greedy searches in the collection S(si1,Q

i, t). All the sets in
S that contain si1 are S(si1) = {S1, S2, S3}. Observe however that S1 overlaps in t + 1 = 2 elements with
si2 = {3, 4}. Thus, S(si1,Q

i, t) = {S2, S3}. Now, assume that Greedy chooses S3 and Qgr = {S3}. Let
us look at the next execution of Greedy, j = 2. Greedy searches for a set in S(si2,Q

i, t) = {S4} (S1

also includes si2 but conflicts with si1). However, S4 overlaps in t+ 1 elements ({3, 11}) with the set S3 in
Qgr. Thus, Greedy stops executing.

After that Branching executes at that node and computes I∗. In this case, there is only one set in
Qgr = {S3} and S(si2,Q

i, t) = {S4}. Since |S4 ∩ S3| = |{3, 11}| ≥ t+ 1, I∗ = {11}. Note that the element
3 is not in I∗ as it is already in si2. After that, Branching creates a children l of the node i with collection
Ql = {{1, 3}, {3, 4, 11}, {5, 6}, {6, 8}}.

Correctness.

We next show that BST-algorithm t-Overlap finds a (k, r, t)-set packing, if S has one. Let us begin
with a lemma that shows how a maximal (r, t)-set packing and a (k, r, t)-set packing intersect. This will
help us to show the correctness of the Initialization routine.

Lemma 54. Let M and K be a maximal (r, t)-set packing and a (k, r, t)-set packing, respectively. We
claim that any S∗ ∈ K overlaps with some S ∈ M in at least t + 1 elements, i.e., |S∗ ∩ S| ≥ t + 1.
Furthermore, there is no pair S∗i , S

∗
j ∈ K for i 6= j that overlaps in the same set of elements with S for all

S with |S∗i ∩ S| ≥ t+ 1, i.e., (S∗i ∩ S) 6= (S∗j ∩ S).

Proof. Assume for contradiction that there is a set S∗ ∈ K such that for any set S ∈ M, the overlap
between them is at most t, i.e., |S∗ ∩ S| ≤ t. However, in this case, we could add S∗ to M, and M∪ S∗
is a (|M|+ 1, r, t) set packing contradicting the maximality of M.

To prove the second part of the lemma, assume for contradiction that there is a pair S∗i , S
∗
j ∈ K that

overlaps in the same set of vertices for all S ∈ M. However, by the first part of the lemma, we know
that there is at least one S ∈ M such that |S∗i ∩ S| ≥ t + 1. This would imply that |S∗i ∩ S∗j | ≥ t + 1, a
contradiction since the r-Set Packing with t-Overlap problem does not allow overlap greater than t.

A collection Qi = {si1, . . . , sij , . . . , sik} is a partial-solution of a (k, r, t)-set packing K = {S∗1 , . . . , S∗k} if

and only if sij ⊆ S∗j , for 1 ≤ j ≤ k. Now, we show the correctness of the Initialization routine.

Lemma 55. If there exists at least one (k, r, t)-set packing of S, at least one of the children of the root
will have a partial-solution.
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Proof. By Lemma 54, every set in K contains at least one set of t+1 elements of a set inM. Furthermore,
this set of t+1 elements will be contained in only one set of K. The collectionMt+1 contains each possible
subset of t+ 1 elements for each set inM. Since we created a node for each selection of k sets fromMt+1,
i.e.,

(Mt+1

k

)
, the lemma follows.

The next lemma states that BST-algorithm t-Overlap correctly stops attempting to propagate a
collection Qi.

Lemma 56. The collection Qi is not a partial-solution if either: i. there is a pair of distinct sets in Qi

that overlaps in more than t elements, or ii. for some sij ∈ Qi, S(sij ,Q
i, t) = ∅.

Proof. (i) Suppose otherwise that Qi is a partial-solution, but sij , s
i
l (j 6= l) overlap in more than t elements.

Since Qi is a partial-solution, sij ⊆ S∗j and sil ⊆ S∗l where S∗j ,S∗l ∈ K and K is a (k, r, t)-set packing.
However, our assumption implies that S∗j and S∗l also overlap in more than t elements, a contradiction.

(ii) To prove the second part of the lemma, we will prove the next stronger claim.

Claim 13. If Qi = {si1, . . . , sij , . . . , sik} is a partial-solution, then S∗j ∈ S(sij ,Q
i, t) for each 1 ≤ j ≤ k.

Proof. Assume for contradiction that Qi is a partial-solution but S∗j /∈ S(sij ,Q
i, t) for some j. If Qi is a

partial-solution then sij ⊆ S∗j ∈ K and ((Qi\sij) ∪ S∗j ) is a partial-solution as well. The set S∗j ∈ S(sij)

and S(sij ,Q
i, t) ⊆ S(sij). The only way that S∗j would not be in S(sij ,Q

i, t) is if there is at least one pair

of sets in ((Qi\sij) ∪ S∗j ) that overlaps in more than t elements but then ((Qi\sij) ∪ S∗j ) would not be a
partial-solution, a contradiction to (i).

Branching creates at least one child whose collection is a partial-solution, if the collection of the
parent is a partial-solution as well.

Lemma 57. If Qi = {si1, . . . , sij , . . . , sik} is a partial-solution, then there exists at least one ul ∈ I∗ such

that Qi = {si1, . . . , sij ∪ ul, . . . , sik} is a partial-solution.

Proof. Assume to the contrary that Qi = {si1, . . . , sij , . . . , sik} is a partial-solution but that there exists no

element ul ∈ I∗ such that Qi = {si1, . . . , sij ∪ ul, . . . , sik} is a partial-solution. This can only be possible if

(S∗j \sij) ∩ I∗ = ∅.

First, given that Qi is a partial-solution S∗j ∈ S(sij ,Q
i, t) (Claim 13). In addition, there exists at least

one set S′ ∈ Qgr such that |S∗j ∩ S′| ≥ t+ 1; otherwise, S∗j would have been selected by Greedy. By the
computation of I∗, (S∗j ∩ S′) ⊆ I∗.

Now it remains to show that |sij ∩ S′| ≤ t. In this way, at least one element of (S∗j \si) will be in I∗.

Assume otherwise by contradiction. Recall that S′ contains some set sih of Qi (for some h ≤ j). If S′ was
selected by Greedy, then S′ ∈ S(sih,Q

i, t). However, this immediately implies that |sij ∩ S′| ≤ t.

By the previous lemmas, we can state:

Theorem 41. The BST-algorithm t-Overlap finds a (k, r, t)-set packing of S, if S has at least one.
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Running Time

Lemma 58. The root has at most
(
e2r
t+1

)k(t+1)

children.

Proof. There are |
(
S
t+1

)
| distinct sets of t + 1 elements chosen from a set S ∈ M. The collection Mt+1

contains all possible subsets of t+1 elements from S, for each S ∈M. Since |M| ≤ k−1 and |S| ≤ r, there
are at most (k−1)

(
r
t+1

)
sets inMt+1. Since we have 1 ≤ t+1 ≤ r, then from the Stirling’s approximation,(

r
t+1

)
≤
(
er
t+1

)t+1

. Thus, there are at most (k − 1)
(
er
t+1

)t+1

sets in Mt+1.

From the root of the search tree, we create a node i for each possible selection of k sets from Mt+1,

i.e., |
(Mt+1

k

)
|. Hence,

((k−1)( er
t+1 )

t+1

k

)
≤
(
e(k−1)( er

t+1 )
t+1

k

)k
≤
(
e2r
t+1

)k(t+1)

.

Lemma 59. The height of the search tree is at most (r − t− 1)k.

Proof. If Greedy does not return a (k, r, t)-set packing but Qgr 6= ∞, Branching creates at least one
child l of a node i. Recall that one set in the collection of this child gets increased by one element. In
other words, each level on the tree corresponds to one element added to a set of Qi. Since at the first
level of the tree each set has t + 1 elements, any set of Qi could be completed into a set of S in at most
r − (t+ 1) levels (which are not necessarily consecutive).

Therefore, we need at most (r − t− 1)k levels to propagate Qi into a (k, r, t)-set packing.

Lemma 60. A node i at level h can have at most r(k − 1) children if h ≤ (r − t − 2)k and at most
r(k −m− 1) children where m = h− (r − t− 2)k if h > (r − t− 2)k.

Proof. There is a child of the node i for each element in I∗. Recall that I∗ =
⋃

(S ∩ S′) for each pair
S ∈ S(sij ,Q

i, t) and S′ ∈ Qgr that overlaps in more than t elements. Therefore, |I∗| ≤ r|Qgr|.

The greedy algorithm needs to complete only the sets in Qi that are not sets of S. Therefore, |Qgr| ≤
|Qi| −m where m is the number of sets of Qi that are already sets from S.

Assuming all the sets of Qi −m were completed by greedy but the last one, i.e., |Qgr| ≤ |Qi| −m− 1,
then |I∗| ≤ r|Qgr| ≤ r(|Qi| −m− 1) ≤ r(k −m− 1).

Now, we need to determine how many sets of Qi are already sets of S at level h, i.e., the value of
m. Since a set sij can be completed into a set in at most r − (t + 1) levels but these are not necessarily

consecutive, then we cannot guarantee that h
r−(t+1) is the number of sets of S at level h. Therefore, in the

worst-case one element is added to each set of Qi level by level. In this way, in at most (r− t− 2)k levels
every set of Qi could have r − 1 elements, and at level (r − t− 2)k + 1 we could obtain the first set of S.
After that level, the remaining sets of Qi are completed into sets of S by adding one element.

Theorem 42. The r-Set Packing with t-Overlap problem can be solved with BST-algorithm t-Overlap
in O(rrkk(r−t−1)k+2nr) time.
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Proof. By Lemmas 59 and 60, the size of the tree is

(
e2r

t+ 1

)k(t+1) (r−t−2)k∏
i=1

r(k − 1) +

k−r+t∏
i=1

r(k − i)

<

(
e2r

t+ 1

)k(t+1)

(r(k − 1))(r−t−1)k−1.

A maximal solution M can be computed in time O(krnr) which is also the required time to compute
the collection S(sij ,Q

i, t). The greedy algorithm runs in O(k2rnr).

We can run BST-algorithm t-Overlap on the O(rrkr−t−1) kernel obtained in Section 7.2.1. This

will imply an O(rr
2+rkk(r−t−1)(k+r)+2 + nr) running time.

8.1.3 A “Color-Coding” Algorithm

The color-coding technique introduced by N. Alon, R. Yuster and U. Zwick [3] has been successfully applied
to obtain algorithms with O(2k) running time for several problems, including the r-Set Packing problem.
The basic idea behind this technique applied to r-Set Packing is to randomly color the elements of the
universe and “hope” that all elements in a (k, r, 0)-set packing receive a different color.

We would like to highlight the observation that we could run an FPT-algorithm based on this technique
(or any other technique) in our constructed instances for the r′-Set Packing problem, where r′ > r (Section
6.2.1). However, we will be paying a price in the running time.

There exist several FPT-algorithms involving color-coding for the r-Set Packing problem [53, 90, 101,
25, 133]. With exception of [53], all of these algorithms are stated and analyzed for the specific case of r = 3.
Therefore, we will discuss how to run algorithm [53] on our constructed instances for the r′-Set Packing
problem. It is important to mention that the analysis of the running time of the FPT-algorithm [53] is
based on running this FPT-algorithm on a problem kernel, which is also obtained in [53].

First, we will transform an instance (S,U , k) of the r-Set Packing with t-Overlap to an instance
(ST ,UT , k) of r′-Set Packing problem with r′ =

(
r
t+1

)
+1 by running Transformation 11. After that,

we reduce (ST ,UT , k) to a kernel (S ′T ,U ′T , k) with kernelization algorithm [53]. Finally, we obtain a

(k, r′, 0)-set packing of S ′T by running the color-coding algorithm [53]. By Lemma 35, we can trans-
form a (k, r′, 0)-set packing of ST into a (k, r, t)-set packing of S. Algorithm 11 summarizes these steps.
Since algorithm [53] runs in O(|UT | + 2O((c+1)(r′k))) (where c ≥ 131.76 [101]) and by Transformation 11
|UT | = O(nr + nt+1), we can hence state:

Lemma 61. The r-Set Packing with t-Overlap problem can be solved with Algorithm 11 in
O((nr + nt+1) + 2O((c+1)(rt+1+1)k)).

This methodology would work as well by running any other FPT-algorithm for r′-Set Packing instead
of [53]. Also, it is not necessary to reduce the instance of the r′-Set Packing to a kernel before running such
an algorithm. Algorithm 11 does it in that way because the analysis of the running time of [53] considers
that assumption.
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Algorithm 11 “Color-Coding” - r-Set Packing with t-Overlap

Input: An instance (S,U , k) of the r-Set Packing with t-Overlap problem
Output: A (k, r, t)-set packing K ⊆ S, if S has one.

1: Transform the instance (S,U , k) of r-Set Packing with t-Overlap to an instance (ST ,UT , k) of r′-Set
Packing problem, where r′ = (

(
r
t+1

)
+ 1), by running Transformation 11.

2: Reduce the instance (ST ,UT , k) to a kernel (S ′T ,U ′T , k) by running kernelization algorithm [53].

3: Obtain a (k, r′, 0)-set packing of S ′T by running the color-coding algorithm [53].
4: Re-interpret this (k, r′, 0)-set packing as a (k, r, t)-set packing K of S as in Lemma 35.
5: Return K

8.1.4 FPT-Algorithms for the Graph Packing Versions

To obtain FPT-algorithms for the H-Packing with t-Overlap and t-Edge Overlap problems, we will follow
a similar methodology as with the kernelization algorithms in Sections 6.2.2 and 7.2.2. First, we transform
an instance of the H-Packing with t-Overlap and t-Edge Overlap problems to an instance of the r-Set
Packing with t-Overlap problem using Transformations 1 and 3, respectively. After that, we run any of
the FPT-algorithms discussed previously. Any of these algorithms outputs a (k, r, t)-set packing, if the
input instance has one. By Lemmas 20 and 24, we can transform a (k, r, t)-set packing into a (k, r, t)-H-
Packing and a (k, r, t)-Edge-H-Packing, respectively. Hence, we can state:

Lemma 62. The H-Packing with t-Overlap problem can be solved in O((nr + nt+1) + 2O((c+1)(rt+1+1)k)),
where r = r(H).

Lemma 63. The H-Packing with t-Edge Overlap problem can be solved in O((nr+nt+1)+2O((c+1)(rt+1+1)k)),
where r = m(H).

8.2 On FPT-Algorithms for Packing Problems with Membership

This section follows similar structure as Section 8.1. First, we analyze a brute-force algorithm for the
r-Set Packing with t-Membership problem. After that, we adapt the search tree algorithm of Section 8.1.2
to provide a (k, r, t)-set membership. We also discuss how we can obtain immediate FPT-algorithms for
the r-Set Packing with t-Membership via FPT-algorithms for the problem of packing disjoint sets. We
conclude this section showing how to solve the H-Packing with t-Membership and t-Overlap using the
FPT-algorithms for the set version of the problem.

8.2.1 A Naive Algorithm

A naive algorithm for the r-Set Packing with t-Membership simply searches for all possible combinations
of size k from S. When this algorithm runs on a kernel, it becomes a fixed-parameter tractable algorithm.

The collection S is reduced to O
((
r3
(
r
t

)r−3
kr−1

)2)
by Algorithm 9 (Theorem 36). In this way,

Lemma 64. The r-Set Packing with t-Membership problem can be solved with brute force in

O
((
r3
(
r
t

)r−3
kr−1

)2k
+ nr

)
running time, when |S| = O

((
r3
(
r
t

)r−3
kr−1

)2)
.
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8.2.2 A Bounded Search Tree with Greedy Localization Algorithm

We will adapt BST-algorithm t-Overlap to return a (k, r, t)-set membership of S (if exists) instead of a
(k, r, t)-set packing. We will call this modified algorithm BST-algorithm t-Membership. Even though
the general structure of both algorithms is the same, there are clear differences in the individual routines
of each of them. For explanatory purposes, we will explain this modified algorithm entirely instead of
re-using previous explanations.

Let us briefly recall how the algorithm works at high level. Once again, we compute first a maximal
solution, i.e., a maximal (r, t)-set membershipM from S. If |M| ≥ k, thenM is a (k, r, t)-set membership,
and BST-algorithm t-Membership stops. If not, we create again a search tree T where at each node
i, there is a collection of sets Qi = {si1, . . . , sik} with sij ⊆ S for some S ∈ S. The children of the root of T
will be created with Initialization.

After that for each node i of T , Greedy tries to find a (k, r, t)-set membership using Qi. If Greedy
finds one then BST-algorithm t-Membership stops. In the other case, this algorithm will create
children of the node i using Branching. Each child l of the node i will have a collection Ql that is the
same as Qi with the difference that one of the sets of Ql is increased by one element. BST-algorithm t-
Membership will repeat Greedy in these children. Eventually, BST-algorithm t-Membership either
finds a solution at one of the leaves of the tree or determines that it is not possible to find one.

We now explain each routine of BST-algorithm t-Membership separately. Let us start with the
Initialization routine. By Lemma 65, if there is a solution K = {S∗1 , . . . , S∗k} then each S∗j contains

at least one element from val(M), and each element of val(M) could be in at most t sets of Qi (t ≤
k).Therefore, to initialize the children of the root, we create a set Mt that contains t copies of each
element in val(M). That is, per each element u ∈ val(M) there are t copies u1 . . . ut in Mt, in this way
|Mt| = t|val(M)|. The root will have a child i for each possible selection of k elements from Mt. The
collection Qi is initialized with this selection. After this initialization, we remove the indices from the
elements in the sets of each Qi. Thus, if for example a collection Qi = {{u1}, {u2}, {ut}, {a1}, {b1}} after
removing the indices Qi = {{u}, {u}, {u}, {a}, {b}}.

At each node i, the Greedy routine returns a collection of sets Qgr. Initially, Qgr = ∅ and j = 1.
At iteration j, Greedy searches for a set S that contains sij subject to three conditions: (i) S is not

equal to any set in (Qi\sij), (ii) S is not already in Qgr, (iii) and each element of S is contained in at

most t sets in (Qgr ∪ S ∪ Q̄i), where Q̄i is the sub-collection of Qi defined as Q̄i = {sij+1, . . . , s
i
k}. The

first two conditions guarantees that all sets in a solution will be distinct while the third one ensures that
each element will be contained in at most t sets of a solution. Greedy searches for S in the collection
S(sij ,Q

i, t). S(sij ,Q
i, t) ⊆ S(sij) is the subcollection of S(sij) where for each S′ ∈ S(sij ,Q

i, t), each element

in val((Qi\sij) ∪ S′) is contained in at most t sets of ((Qi\sij) ∪ S′). If such set S exists, Greedy adds
S to Qgr, i.e., Qgr = Qgr ∪ S and continues with iteration j = j + 1. Notice that at each iteration Qgr

is a (|Qgr|, r, t)-set membership. Otherwise, Greedy stops executing and returns Qgr. If |Qgr| = k then
Qgr is a (k, r, t)-set membership and BST-algorithm t-Membership stops. If Qi cannot be propagated
into a solution (Lemma 67), Greedy returns Qgr =∞. Observe that the set S that will be added to Qgr

follows different conditions than the conditions in the Greedy routine of BST-algorithm t-Overlap.
In addition, the meaning of the collection S(sij ,Q

i, t) is different.

The Branching procedure executes every time that Greedy does not return a (k, r, t)-set membership
but Qi could be propagated into one. That is, Qgr 6=∞ and |Qgr| < k. Let j = |Qgr|+ 1 and sij be the
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j-th set in Qi. Greedy stopped at j because each set S ∈ S(sij ,Q
i, t) failed one of the three conditions

specified above. For the first condition, Greedy returns Qgr = ∞ (Lemma 67). Failing the second
condition implies that each element of S is contained in one set in Qgr while failing the third one implies
that at least one element u ∈ S is contained in more than t sets of (Qgr ∪ S ∪ Q̄i). Let I∗ be the set
of elements in S (for each S ∈ S(sij ,Q

i, t)) either contained in a set of Qgr or contained in t + 1 sets

in (Qgr ∪ S ∪ Q̄i). Branching creates a child l of the node i for each element ul ∈ I∗. The collection
Ql of child l is the same as the collection Qi of its parent i with the update of the set sij as sij ∪ ul,
i.e., Ql = {si1, . . . , sij−1, sij ∪ ul, sij+1, . . . , s

i
k}. Contrasting with Branching in the BST-algorithm

t-Overlap, the set I∗ is computed differently.

Example 13. Consider the following instance of the r-Set Packing with t-Membership problem (r = 3,
t = 2, k = 4)

U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

S = {S1 = {1, 2, 3, 4}, S2 = {1, 2, 5, 6}, S3 = {1, 9, 11, 12},
S4 = {1, 9, 13, 14}, S5 = {1, 15, 16, 17}, S6 = {1, 15, 16, 18},
S7 = {2, 9, 10, 19}, S8 = {2, 9, 7, 10}}

A maximal (r, t)-set membership M = {S1, S2}. Thus,

Mt = {1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6}

One example of a child of the root is a node i with collection Qi = {si1 = {1}, si2 = {1}, si3 =
{2}, si4 = {2}}. Let us consider the execution of Greedy at this node. At j = 1, Greedy will try
to find a set in S(si1,Q

i, t) that contains si1 = {1}. The collection S(si1,Q
i, t) is a subcollection of

S(si1) = {S1, S2, S3, S4, S5, S6}. A set in S(si1) would be in S(si1,Q
i, t), if each element of that set is in at

most t sets of Qi\si1. In this way, S(si1,Q
i, t) = {S3, S4, S5, S6}. Assume Greedy chooses S3 and add it

to Qgr. For the next iteration j = 2, assume that Greedy chooses S4 from S(si2,Q
i, t) = {S3, S4, S5, S6}.

Thus, at the end of that iteration Qgr = {S3, S4}. For iteration j = 3, Greedy tries to choose a set from
S(si3,Q

i, t) = {S7, S8}. However, both of these sets contain the element 9 which is contained in t = 2 sets
of Qgr. Thus, Greedy stopped at iteration j = 3. After that Branching computes the set I∗ = {9} and
creates a children l of the node i with collection Ql = {{1}, {1}, {2, 9}, {2}}.

Correctness

Let us start first providing an analogous lemma to Lemma 54 which shows how a maximal (r, t)-set member-
ship and a (k, r, t)-set membership intersect. This is fundamental to the correctness of the Initialization
routine.

102



Lemma 65. Let M and K be a maximal (r, t)-set membership and a (k, r, t)-set membership, respectively.
We claim that each S∗ ∈ K is either in M or it shares at least one element with at least t sets of M.
Furthermore, each element of val(M) can be in at most t sets of K.

Proof. Assume that there is a set S∗ ∈ K that is not inM and each element u ∈ S∗ is contained in at most
t − 1 sets of M. However, we could add S∗ to M contradicting the assumption that is maximal. Now,
assume that there is a set S∗ ∈ K that is also inM and S∗ shares at least one element with at least t sets
of M (excluding itself). However, in this case M would not be a (|M|, t)-set membership contradicting
our assumption. The second claim follows by definition of a (k, r, t)-set membership.

We will adapt the partial-solution term introduced in Section 8.1.2 for the r-Set Packing with t-
Membership problem. A collection Qi = {si1, . . . , sij , . . . , sik} is a partial-solution of a (k, r, t)-set member-

ship K = {S∗1 , . . . , S∗k} if and only if sij ⊆ S∗j , for 1 ≤ j ≤ k.

Lemma 66. If there exists at least one (k, r, t)-set membership of S, at least one of the children of the
root will have a partial-solution.

Proof. By Lemma 65, every set in K contains at least one element of val(M). Furthermore, every element
of val(M) will be contained in at most t sets of K (t ≤ k). The set Mt contains t copies of each element
of val(M). Since we created a node for each selection of k elements from Mt, i.e.,

(Mt

k

)
, and each set of

the collection Qi is initialized with one of these k elements, the lemma follows.

Recall that BST-algorithm t-Membership stops branching a node with collection Qi, when Greedy
returns ∅. This routine returns that value when Qi is not a partial-solution.

Lemma 67. The collection Qi is not a partial-solution either: i. if there is an element in val(Qi) that
is contained in more than t sets of Qi, ii. if each set in S(sij ,Q

i, t), for some sij, is equal to some set in

Qi\sij, or iii. if for some sij ∈ Qi, S(sij ,Q
i, t) = ∅,

Proof. (i) Suppose otherwise that Qi is a partial-solution, but there is an element u ∈ val(M) that is
contained in at least t + 1 sets of Qi. Let {si1 . . . sit+1} be those t + 1 sets. Since Qi is a partial-solution,
this would imply that sij ⊂ S∗j for 1 ≤ j ≤ t+ 1. However, this would imply that there are t+ 1 sets in K
that contain the element u a contradiction because K is a (k, r, t)-set membership.

(ii) This follows because all sets in a (k, r, t)-set membership are distinct.

(iii) To prove the third part of the lemma, we will prove the next stronger claim.

Claim 14. If Qi = {si1, . . . , sij , . . . , sik} is a partial-solution, then S∗j ∈ S(sij ,Q
i, t) for each 1 ≤ j ≤ k.

Proof. Assume by contradiction that Qi is a partial-solution but S∗j /∈ S(sij ,Q
i, t) for some j. If Qi is a

partial-solution, then sij ⊆ S∗j ∈ K and ((Qi\sij)∪S∗j ) is a partial-solution as well. The set S∗j ∈ S(sij) and

S(sij ,Q
i, t) ⊆ S(sij). The only way that S∗j would not be in S(sij ,Q

i, t) is if there is at least one element u

in val((Qi\sij)∪S∗j ) that is contained in more than t sets in ((Qi\sij)∪S∗j ) but then ((Qi\sij)∪S∗j ) would
not be a partial-solution a contradiction to (i).

103



Branching creates at least one child whose collection is a partial-solution, if the collection of the
parent is a partial-solution as well.

Lemma 68. If Qi = {si1, . . . , sij , . . . , sik} is a partial-solution, there exists at least one ul ∈ I∗ such that

Qi = {si1, . . . , sij ∪ ul, . . . , sik} is a partial-solution.

Proof. Assume to the contrary that Qi = {si1, . . . , sij , . . . , sik} is a partial-solution but that there exists no

element ul ∈ I∗ such that Qi = {si1, . . . , sij ∪ ul, . . . , sik} is a partial-solution. This can only be possible, if

(S∗j \sij) ∩ I∗ = ∅.

Since Qi is a partial-solution, S∗j ∈ S(sij ,Q
i, t) by Claim 14. In addition, either S∗j was equal to a set

in Qgr, or there exists at least one element u ∈ S∗j that is contained in t+1 sets in Qgr∪S∗j ∪Q̄i otherwise

S∗j would have been selected by Greedy. The first case directly implies that (S∗j \sij) ∩ I∗ 6= ∅. In the

second case we know by the computation of I∗ that u ∈ I∗. Thus, it remains to show, that u ∈ (S∗j \sij).

To that end, we first show that u must be contained in at least one set in Qgr. Suppose otherwise
that u is not in a set in Qgr. This would imply that u is in t + 1 sets in S∗j ∪ Q̄i. Recall that Q̄i is the

subcollection of Qi with {sij+1, . . . , s
i
k}. Since Q̄i ⊆ Qi, u would be in at least t+ 1 sets in ((Qi\sij)∪S∗j ).

However, in that case S∗j would not have been in S(sij ,Q
i, t).

Next we prove that u /∈ sij . This will guarantee that the node i would have at least one children.

Suppose that u ∈ sij . We previously showed that there exists at least one set S in Qgr that contains

u. Thus by our assumptions, u is in t sets in {sij , sij+1, . . . , s
i
k} ⊆ Qi. Recall that S was selected by

Greedy at some iteration l < j, and that S contains a subset sil ∈ Qi. In this way, S must be in
S(sil,Q

i, t). By definition of this collection, each element of S (including u) is contained in at most t sets
of (Qi\sil) ∪ Sl. However, this would imply that u is contained in at most t− 1 sets of {sil+1 . . . s

i
k} ⊆ Qi,

a contradiction.

By the previous lemmas, we can state:

Theorem 43. The BST-algorithm t-Membership finds a (k, r, t)-set membership of S, if S has at
least one.

Running Time

The number of children of the root is given by |
(Mt

k

)
| ≤

(
t(r(k−1))

k

)
= O((trk)k) and the height of the tree

is at most (r − 1)k. The number of children of each node at level h is given by |I∗|. We know from the
proof in Lemma 68 that each element in I∗ is contained in at least one set of Qgr, and the number of
elements in Qgr is at most r(k − 1), |I∗| ≤ (r)(k − 1). Thus, the size of the tree is given by:

(
t(r(k − 1))

k

) (r−1)k∏
h=1

r(k − 1) = O(tk(rk)rk)

.
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Theorem 44. The r-Set Packing with t-Membership problem can be solved with BST-algorithm t-
Membership in O(tk(rk)rknr) time.

We can run this algorithm in the kernel obtained in Section 7.3. The total running time of the algorithm
would be O(2rtk−(r(r−3))(rk)r

2+rk + nr) which is not better than running a brute-force algorithm on the
kernel.

8.2.3 A “Color-Coding” Algorithm

Recall from Section 6.1.1 that we can transform an instance of the r-Set Packing with t-Membership
to an instance of the (r + 1)-Set Packing problem. Similar as in Section 8.1.3, we will apply the FPT-
algorithm [53] in such constructed instance.

First, we will transform the instance (S,U , k) of the r-Set Packing with t-Membership to an instance
(ST ,UT , k) of r′-Set Packing problem with r′ = r+ 1 by running Transformation 5. After that, we reduce

(ST ,UT , k) to a kernel (S ′T ,U ′T , k) with kernelization algorithm [53]. Finally, we obtain a (k, r′, 0)-set

packing of S ′T by running the color-coding algorithm [53]. By Lemma 27, we can transform a (k, r′, 0)-set
packing of ST into a (k, r, t)-set membership of S (see Algorithm 12 for a summary of this approach).
Algorithm [53] runs in O(|UT | + 2O((c+1)(r′k))) (where c ≥ 131.76 [101]) and Transformation 5 returns
|UT | = O(nr), we can hence state:

Lemma 69. The r-Set Packing with t-Membership problem can be solved with Algorithm 12 in
O(nr + 2O((c+1)(r+1)k)).

Algorithm 12 “Color-Coding” - r-Set Packing with t-Membership problem

Input: An instance (S,U , k) of the r-Set Packing with t-Membership problem
Output: A (k, r, t)-set membership K ⊆ S, if S has one.

1: Transform the instance (S,U , k) of r-Set Packing with t-Membership to an instance (ST ,UT , k) of
r′-Set Packing problem, where r′ = r + 1, by running Transformation 5.

2: Reduce the instance (ST ,UT , k) to a kernel (S ′T ,U ′T , k) by running kernelization algorithm [53].

3: Obtain a (k, r′, 0)-set packing of S ′T by running the color-coding algorithm [53].
4: Re-interpret this (k, r′, 0)-set packing as a (k, r, t)-set membership K of S as in Lemma 27.
5: Return K

8.2.4 FPT-Algorithms for the Graph Packing Versions

We obtain FPT-algorithms for the H-Packing with t-Membership and t-Edge Membership problems by
transforming an instance of these problems to an instance of the r-Set Packing with t-Membership (Trans-
formations 1 and 3, respectively). After that we run any of the FPT-algorithm previously discussed to
obtain a (k, r, t)-set membership on the constructed instances. Finally, we re-interpret back that (k, r, t)-
set membership as a solution for the original graph problems (Lemmas 11 and 16, respectively). Hence,
we can state:
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Lemma 70. The H-Packing with t-Membership problem can be solved in O(nr + 2O((c+1)(r+1)k)), where
r = r(H).

Lemma 71. The H-Packing with t-Edge Membership problem can be solved in O(nr + 2O((c+1)(r+1)k)),
where r = m(H).

8.3 Conclusions

We developed in this chapter fixed-parameter algorithms for our packing problems with overlap in three
ways: a brute-force on a kernel, a bounded search tree, and by using an FPT-algorithm for the r′-Set
Packing problem (r′ > r). Our fastest FPT-algorithm, which has O(2rk) running time instead of O(krk),
consists of simply running an FPT algorithm (based on color-coding) on the constructed instance of the
r′-Set Packing problem (r′ > r) from Chapter 6. This is a powerful result because we believe that other
algorithms can be obtained in a similar fashion.

On the other hand, even though our search tree algorithm asymptotically behaves like a brute-force
algorithm on a problem kernel, we will see in the next chapter that this algorithm is very flexible and
effective. In particular, it will allow us to show fixed-parameter tractable results for much more general
packing problems allowing overlap.
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Chapter 9

Arbitrary Overlap Constraints in
Packing Problems

In the previous chapters, we studied the H-Packing with t-Overlap and t-Membership problems from a
parameterized point of view. The main motivation behind these problems is to capture the fact that
communities in real networks may overlap by sharing one or more of their members. In the specific case
of the H-Packing with t-Overlap problem, there is even an explicit upper-bound in the overlap between a
pair of communities.

Limiting the pairwise overlap is not an unrealistic scenario [62, 111, 31]. Similarly, Gossen et al. [68]
and Adamcsek et al. [2] suggest that the overlap should be low (at least in social networks). Nevertheless,
in some cases the type of overlap between a pair of communities may be more complex. For example, it
has been observed by Yang and Leskovec [138] that overlapping regions are more densely connected than
the rest of the community. Gossen et al. [68] suggested that overlapping regions should contain nodes
which have strong membership to all the communities they belong to. Also, Youssef et al. [139] consider
only boundaries nodes in the overlapping regions.

The study of the properties of the overlapping vertices or regions is not as developed as the properties of
the communities themselves. However, it is not unlikely to consider that overlapping nodes could present
common properties [112]. It would be more logical to expect that nodes that are “closer” to each other
belong to the same pair of communities than nodes that are far away within the same community, for
example. Motivated by this, we generalize the H-Packing with t-Overlap to restrict the pairwise overlap
by a function α() rather than by an upper-bound t. More precisely, we will say that for any pair of H-
subgraphs Hi, Hj in the solution, α(Hi, Hj) = 0. In this way, we could fix α to return zero (or no-conflict)
when Hi and Hj satisfy an overlap restriction. For example, return zero when the distance between every
pair of vertices in Hi ∩Hj is at most dt (for some constant dt).

In our problem generalization, we also consider other community models (represented through a graph
property Π) besides a family of graphs H. The scope of community definitions is vast, see [61, 137].
Thus in this chapter, we introduce the much more general problem Π-Packing with α()-Overlap. We also
propose a similar generalization for the problem of packing sets with pairwise overlap that we call the
r-Set Packing with α()-Overlap problem. In addition, we show that these problems are fixed-parameter
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tractable when the constraint function α() meets some natural conditions (a well-conditioned α()) and
when the parameter is the size of the solution.

This chapter is organized as follows. In Section 9.1, we provide an O(rrk k(r+1) k nr) algorithm for the
r-Set Packing with α()-Overlap problem, when α() meets specific requirements. This algorithm generalizes
our FPT-algorithm based on bounded search trees and greedy localization techniques from Chapter 8.

In Section 9.2, we first define the Π-Packing with α()-Overlap problem and then we transform this
problem to its set version. This allows us to achieve an algorithm with O(rrk k(r+1) k nr) running time,
provided that α() is well-conditioned.

In Section 9.3, we give specific examples of well-conditioned α() functions, some motivated by practical
applications while others by theoretical considerations. Specifically, a well-conditioned α() can restrict: i)
the size of the overlap, ii) the weight in the overlap region, (assuming as input a weighted graph), iii) the
maximum distance between any pair of vertices in the overlap, iv) the pattern in the overlap region, i.e.
the induced subgraph in the overlap should be isomorphic to a graph in F , where F is a graph class that
is hereditary, v) that all overlapping vertices must satisfy a specific property ξ, and vi) finally, that the
overlap region should have a specific density.

Motivated by clustering applications, we study the r-Set Packing with α()-Overlap (PCH) problem in
Section 9.4. In this setting, every set in the solution must contain a specific set of elements from a given
collection of sets C. This problem remains fixed-parameter tractable if |C| = O(g(k)) for some computable
function g dependent on k and independent of n.

9.1 Packing Sets with Overlap Constraints

In this section, we generalize the BST-algorithm t-Overlap from the previous chapter to allow arbitrary
overlap constraints between a pair of sets. Let us begin with the formal definition of our newly introduced
problem. Once more, r is a fixed-constant.

The r-Set Packing with α()-Overlap problem
Input : A collection of sets S each one of size at most r, drawn from a universe U , and a non-negative
integer k.
Parameter : k
Question: Does S contain a (k, α())-set packing, i.e., at least k distinct sets K = {S∗1 , . . . , S∗k}
where for each pair S∗i , S

∗
j (i 6= j) α(S∗i , S

∗
j ) = 0, where α : S × S → {0, 1}?

The FPT-algorithm provided in this section assumes that the function α() meets specific requirements
that we call it a well-conditioned α().

Definition 9. Let Ur be all possible subsets of elements of U each of size at most r, and α : Ur×Ur → {0, 1}
be a function. A pair of sets si, sj ∈ Ur α-conflict if α(si, sj) = 1 else they do not α-conflict. If α() satisfies
the following requirements, we say α() is well-conditioned.

i) α() is hereditary. Specifically, if si and sj do not α-conflict (α(si, sj) = 0), then α(s′i, s
′
j) = 0 for

any pair of subsets s′i ⊆ si and s′j ⊆ sj.

108



ii) If si and sj α-conflict (α(si, sj) = 1), then |si ∩ sj | ≥ 1. Furthermore, for any pair of subsets s′i ⊆ si
and s′j ⊆ sj with α(s′i, s

′
j) = 0 we have ((si ∩ sj)\(s′i ∩ s′j)) 6= ∅. The elements in si ∩ sj are referred

to as the conflicting elements.

iii) α is computable in polynomial time in n.

We can relax the condition (iii) in the well-conditioned α() when the properties that α() will evaluate
are given as part of the input. Given that each set in S has at most r elements (and r is considered a
fixed-constant), evaluating α(Si, Sj) will take constant time. Therefore, in the specific case that α() only
evaluates the properties in Si andSj , we can omit condition (iii) or only asks to be computed in O(r) time.

We introduced in Chapter 8 a search tree algorithm for the r-Set Packing with t-Overlap. The FPT-
algorithm of this section basically generalizes that algorithm. Before, we used to look to a specific type a
conflict between a pair of sets: overlap larger than t. Here, we will consider the more general α-conflicts.

As with the BST-algorithm t-Overlap, the FPT-algorithm (called BST α()-Algorithm) for r-Set
Packing with α()-Overlap has three main components: Initialization, Greedy, and Branching. The
main differences with the BST-algorithm t-Overlap are the Initialization and Greedy routines, a
different analysis of correctness and running time.

Once more, we start by computing a maximal collection of setsM from S such that for each S /∈M, S
α-conflicts with some S′ ∈M, i.e., a maximal α()-set packing M of S. If |M| ≥ k, thenM is a (k, α())-set
packing, and the BST α()-Algorithm stops. Otherwise, we create a search tree T where at each node i,
there is a collection of sets Qi = {si1, . . . , sik} with sij ⊆ S for some S ∈ S. The children of the root of T
are created according to a procedure called Initialization.

After that for each node i of T , a routine called Greedy will attempt to find a (k, α())-set packing
using Qi. If Greedy succeeds, then the BST α()-Algorithm stops. Otherwise, the next step is to create
children of the node i using the procedure Branching. Each child l of the node i will have a collection Ql

that is the same as Qi with the difference that one of the sets of Ql is increased by one element. The BST
α()-Algorithm will repeat Greedy in these children. Eventually, the BST α()-Algorithm either finds
a solution at one of the leaves of the tree or determines that it is not possible to find one. The pseudocode
of this algorithm is detailed in Algorithm 13.

We next explain the three main components of the BST α()-Algorithm individually. Let us start
with the Initialization routine. By Lemma 72, if there is a solution K = {S∗1 , . . . , S∗k}, each S∗j contains
at least one element of val(M). Notice that each element of val(M) could be in at most k sets of K. Thus,
we create a setMk that contains k copies of each element in val(M). That is, per each element u ∈ val(M)
there are k copies u1 . . . uk in Mk and |Mk| = k|val(M)|. The root will have a child i for each possible
combination of k elements from Mk. A set of Qi is initialized with one element of that combination.
For example, if the combination is {u1, u2, uk, a1, b1}, Qi = {{u1}, {u2}, {uk}, {a1}, {b1}}. After that, we
remove the indices from the elements in Qi, e.g., Qi = {{u}, {u}, {u}, {a}, {b}}. See Algorithm 14 for
details.

At each node i, the Greedy routine (Algorithm 15) returns a collection of sets Qgr. Initially, Qgr = ∅
and j = 1. At iteration j, Greedy searches for a set S that contains sij (recall that sij is the jth set of Qi)
subject to two conditions: (1) S is not already in Qgr and (2) S does not α-conflict with any set in Qgr.
If such set S exists, Greedy adds S to Qgr, i.e., Qgr = Qgr ∪ S and continues with iteration j = j + 1.
Otherwise, Greedy stops executing and returns Qgr. If |Qgr| = k, then Qgr is a (k, α())-set packing
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and the BST α()-Algorithm stops. If Qi cannot be propagated into a solution (Lemma 74), Greedy
returns Qgr =∞. Greedy searches for the set S in the collection S(sij ,Q

i, α) ⊆ S(sij) which is obtained

as follows: add a set S′ ∈ S(sij) to S(sij ,Q
i, α), if S′ does not α-conflict with any set in (Qi\sij) and S′ is

distinct of each set in (Qi\sij) (see Algorithm 17). Observe that this last condition can only be true for

sets in Qi that are already sets of S.

The Branching procedure (Algorithm 16) executes every time that Greedy does not return a (k, α())-
set packing but Qi could be propagated into one. That is, Qgr 6= ∞ and |Qgr| < k. Let j = |Qgr| + 1
and sij be the j-th set in Qi. Greedy stopped at j because each set S ∈ S(sij ,Q

i, α) either it was
already contained in Qgr, or it α-conflicts with at least one set in Qgr (see **). We will use the conflicting
elements between S(sij ,Q

i, α) and Qgr to create children of the node i. Let I∗ be the set of those
conflicting elements. Branching creates a child l of the node i for each element ul ∈ I∗. The collection
Ql of child l is the same as the collection Qi of its parent i with the update of the set sij as sij ∪ ul,
i.e., Ql = {si1, . . . , sij−1, sij ∪ ul, sij+1, . . . , s

i
k}. (Line 12, Algorithm 16). The set I∗ is obtained as I∗ =

I∗ ∪ ((S\sij) ∩ S′) for each pair S ∈ S(sij ,Q
i, α) and S′ ∈ Qgr that α-conflict or that S = S′ (see Lines

4-8 of Algorithm 16).

Correctness.

Let us re-define the partial-solution term for the r-Set Packing with α()-Overlap problem. A collection
Qi = {si1, . . . , sij , . . . , sik} is a partial-solution of a (k, α())-set packing K = {S∗1 , . . . , S∗j , . . . , S∗k} if and only

if sij ⊆ S∗j , for 1 ≤ j ≤ k.

We will show the correctness of our algorithm in two steps: first, we show that at least one child of the
root will have a partial solution, and second, if a node is a partial-solution, at least one of its children will
be a partial-solution as well. In this way, a (k, r, α())-set packing will be at one of the leaves of the tree.
We use extensively properties (i) and (ii) of the well-conditioned α() for show such correctness. The third
property of a well-conditioned α() is used for running time computation.

The Initialization procedure uses a maximal α()-set packing to create the children of the root. The
correctness of that procedure basically follows because as we will see in the next lemma every set of a
(k, α())-set packing shares at least one element with at least one set of a maximal α()-set packing. This
intersection is due to the (ii) property of a well-conditioned α().

Lemma 72. Given an instance (U ,S, k) of r-Set Packing with α()-Overlap, where α() is well-conditioned,
let K and M be a (k, α())-set packing and a maximal α()-set packing, respectively. For each S∗ ∈ K, S∗

shares at least one element with at least one set S ∈M.

Proof. If S∗ ∈M, the lemma simply follows. Assume by contradiction that there is a set S∗ ∈ K such that
S∗ /∈M and there is no set S ∈M α-conflicting with S∗. However, we could add S∗ toM, contradicting
its maximality. Thus, there exists at least one S ∈M α-conflicting with S∗. Since α() is well-conditioned,
by Definition 9 (ii) |S ∩ S∗| ≥ 1.

Lemma 73. If there exists at least one (k, α())-set packing of S, at least one of the children of the root
will have a partial-solution.
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Proof. By Lemma 72, every set in K contains at least one element of val(M). It is possible that the same
element be in at most k different sets of K. Therefore, we replicated k times each element in val(M)
collected inMk. Since we created a node for each selection of k elements fromMk, i.e.,

(Mk

k

)
, the lemma

follows.

The next lemma states that the BST α()-Algorithm correctly stops attempting to propagate a
collection Qi. Due to the hereditary property of the well-conditioned α(), we can immediately discard a
collection Qi, if it has a pair of sets that α-conflicts. In addition, the collection S(sij ,Q

i, α) contains all sets

from S(sij) that are not α-conflicting with any set in Qi (excluding sij). So again, if Qi is a partial-solution,

due to the hereditary property of α(), S(sij ,Q
i, α) cannot be empty.

Lemma 74. Assuming α() is well-conditioned, Qi is not a partial solution either: i. if there is a pair of
sets in sij , s

i
l ∈ Qi (j 6= l) that α-conflict, or ii. if for some sij ∈ Qi, S(sij ,Q

i, α) = ∅.

Proof. (i) Suppose otherwise that Qi is a partial-solution, but sij , s
i
l α-conflict. Since Qi is a partial-

solution, sij ⊆ S∗j and sil ⊆ S∗l where S∗j ,S∗l ∈ K and K is a (k, α())-set packing.

The pair S∗j ,S∗l does not α-conflict, otherwise, K would not be a solution. However, α() is hereditary,

sij ⊆ S∗j , and sil ⊆ S∗l , thus, sij and sil do not α-conflict either.

(ii) To prove the second part of the lemma, we will prove the next stronger claim.

Claim 15. If Qi = {si1, . . . , sij , . . . , sik} is a partial-solution, S∗j ∈ S(sij ,Q
i, α) for each 1 ≤ j ≤ k.

Proof. Assume by contradiction that Qi is a partial-solution but S∗j /∈ S(sij ,Q
i, α) for some j.

If Qi is a partial-solution, sij ⊆ S∗j ∈ K and ((Qi\sij) ∪ S∗j ) is a partial-solution as well. The set

S∗j ∈ S(sij) and S(sij ,Q
i, α) ⊆ S(sij) (see Algorithm 17 for the computation of S(sij ,Q

i, α)). The only way

that S∗j would not be in S(sij ,Q
i, α) is if there is at least one set S in (Qi\sij) that α-conflicts with S∗j or

if S∗j is equal to a set in (Qi\sij) but then ((Qi\sij) ∪ S∗j ) would not be a partial-solution a contradiction
to (i).

Branching creates at least one child whose collection is a partial-solution, if the collection of the
parent is a partial-solution as well. Recall that I∗ is computed when Greedy stopped its execution at
some j ≤ k, i.e., it could not add a set that contains sij to Qgr. If Qi is a partial solution, sij ⊆ S∗j and
S∗j ∈ K. Given property (ii) for a well-conditioned α(), S∗j must be intersecting in at least one element
with at least on set in Qgr. Therefore, at least one element of S∗j will be in I∗.

Lemma 75. If Qi = {si1, . . . , sij , . . . , sik} is a partial-solution, there exists at least one ul ∈ I∗ such that

Qi = {si1, . . . , sij ∪ ul, . . . , sik} is a partial-solution.
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Proof. Assume to the contrary that Qi = {si1, . . . , sij , . . . , sik} is a partial-solution but that there exists no

element ul ∈ I∗ such that Qi = {si1, . . . , sij ∪ ul, . . . , sik} is a partial-solution. This can only be possible if

(S∗j \sij) ∩ I∗ = ∅.

First, given that Qi is a partial-solution S∗j ∈ S(sij ,Q
i, α) (Claim 15).

In addition, either S∗j is already in Qgr (i.e, it is equal to some set S′ ∈ Qgr) or S∗j must be α-conflicting
with at least one set S′ ∈ Qgr; otherwise, S∗j would have been selected by Greedy. Any of these situations
implies that |S∗j ∩ S′| ≥ 1 (Definition 9 (ii)). By the computation of I∗ (Algorithm 16), S∗j ∩ S′ ⊆ I∗.

Now it remains to show, that at least one element of S∗j ∩ S′ is in S∗j \sij . This will guarantee that the

set sij will be increased by one element at the next level of the tree. This immediately follows if S∗j = S′.

Thus, we will show it for the case that S∗j 6= S′ but S∗j α-conflicts with S′. Suppose that (S∗j ∩ S′) ∩
(S∗j \sij) = ∅ by contradiction. Recall that S′ contains some set sih of Qi (for some h ≤ j). Furthermore,

S′ ∈ S(sih,Q
i, α); otherwise S′ would not have been selected by Greedy.

If S′ is α-conflicting with S∗j but S′ is not α-conflicting with sij (otherwise S′ would not have been in

S(sih,Q
i, α)), then (S′ ∩ (S∗j \sij)) 6= ∅ by property (ii) in Definition 9.

By the previous lemmas, we can state:

Theorem 45. The BST α()-Algorithm finds a (k, α())-set packing of S, if S has at least one and α()
is well-conditioned.

Running Time.

The number of children of the root is given by |
(Mk

k

)
| ≤

(
k(r(k−1))

k

)
= O((rk2)k) and the height of the tree

is at most (r − 1) k. The number of children of each node at level h is equivalent to the size of I∗ at each
level h. We know from Lemma 75 that |I∗| ≤ |val(Qgr)|. The number of elements in val(Qgr) is at most

r(k−1), thus, |I∗| ≤ r(k−1). Therefore, the size of the tree is given by
(
k (r(k−1))

k

) ∏(r−1)k
h=1 r (k−1) which

is O(rrk k(r+1) k). In addition, α() is computable in polynomial time in n (Definition 9, (iii)).

Theorem 46. The r-Set Packing with α()-Overlap problem can be solved in O(rrk k(r+1) k nr) time, when
α() is well-conditioned.
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Pseudocode.

Algorithm 13 BST α()-Algorithm

1: Compute a maximal α()-set packing M
2: if |M| ≥ k then Return M end if
3: T=Initialization(M)
4: for each node i of T do
5: Let Qi be the collection of sets at node i
6: Qgr =Greedy(Qi)
7: if Qgr! =∞ then
8: if |Qgr| = k then Return Qgr end if
9: Branching(T ,node i,Qi,Qgr)

10: end if
11: end for

Algorithm 14 Initialization(M)

1: Replicate k times each element u ∈ val(M) and identify them as u1, . . . , uk.
2: Let Mk be the enlarged set val(M)
3: i = 0, T = null
4: while i < |

(Mk

k

)
| do

5: Let Qi = {si1, . . . , sik} be the ith combination of
(Mk

k

)
6: CreateNode(T ,root,node i,Qi)
7: i = i+ 1
8: end while
9: Return T

Algorithm 16 Branching(T ,node i,Qi,Qgr)

1: Let sij be the first set of Qi not completed by Greedy, i.e.,

2: j = |Qgr|+ 1 and sij = Qi[j]
3: I∗ = ∅
4: for each S ∈ S(sij ,Q

i, α) do
5: for each S′ ∈ Qgr do
6: if α(S, S′) == 1 OR (S == S′) then I∗ = I∗ ∪ ((S\sij) ∩ S′) end if
7: end for
8: end for
9: l = 0

10: while l ≤ |I∗| do
11: Let ul be the lth element of I∗

12: Ql = {si1, si2, . . . , sij ∪ ul, . . . , sik}
13: CreateNode(T ,node i,node l,Ql)
14: l = l + 1
15: end while
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Algorithm 15 Greedy(Qi)

[H]

1: Qgr =∞
2: //Check if Qi could not be a partial solution
3: if there is no pair sif ,sig in Qi (f 6= g) with α(sif , s

i
g) = 1 then

4: Qgr = ∅; j = 0
5: repeat
6: Let sij be the jth set of Qi

7: if S(sij ,Q
i, α) = ∅ then

8: Qgr =∞
9: else

10: //Choose arbitrarily a set S from S(sij ,Q
i, α) such that

11: //S does not α-conflict with any set in Qgr

12: //and S is not already in Qgr

13: f = 0
14: while f < |S(sij ,Q

i, α)| do

15: Let Sf be the f -th set in S(sij ,Q
i, α)

16: Conflicts = 0
17: for each S′ ∈ Qgr do
18: if (α(Sf , S

′) == 1) OR (Sf == S′) then
19: Conflicts = Conflicts+ 1
20: end if
21: end for
22: if Conflicts == 0 then S = Sf ; f = |S(sij ,Q

i, α)|+ 1 end if
23: end while
24: //Add the set S to Qgr

25: if such set S does not exist then
26: j = k + 1
27: else
28: Qgr = Qgr ∪ S
29: end if
30: j = j + 1
31: end if
32: until (j ≥ k) OR (Qgr =∞)
33: end if
34: Return Qgr
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Algorithm 17 Compute S(sij ,Q
i, α)

1: l = 0, S(sij ,Q
i, α) = ∅

2: while l < |S(sij)| do

3: Let Sl be the l-th set in S(sij)
4: f = 0, conflicts = 0
5: while f < |Qi| do
6: if f 6= j then
7: if α(sif , Sl) == 1 OR (sif == Sl) then
8: conflicts = conflicts+ 1
9: end if

10: end if
11: f = f + 1
12: end while
13: if conflicts == 0 then S(sij ,Q

i, α) = S(sij ,Q
i, α) ∪ Sl end if

14: l = l + 1
15: end while
16: Return S(sij ,Q

i, α)
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9.2 Packing Graphs with Overlap Constraints

The Π-Packing with α()-Overlap problem generalizes the H-Packing with t-Overlap problem by includ-
ing other community definitions in addition to prescribed graphs and by allowing more complex overlap
restrictions. Let us start with the formal definition of this problem. Once more, r is a fixed-constant.

The Π-Packing with α()-Overlap problem
Input : A graph G and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, α)-Π-packing, i.e., a set of at least k induced subgraphs K =
{H∗1 , . . . ,H∗k}, subject to the following conditions: i) each H∗i has at most r vertices and obeys the
property Π, and ii) for any pair Hi, Hj , with i 6= j, α(H∗i , H

∗
j ) = 0 and V (Hi) 6= V (Hj)?

In this problem, we represent a community through a graph property Π. Intuitively, if a subgraph H
of order at most r has the property Π (called a Π-subgraph), H is a community. Observe that we are
explicitly bounding the size of a community by a constant r. To obtain an FPT algorithm, we require
however that Π be verifiable in polynomial time in n, where n = |V (G)|.

Examples of properties Π that could represent communities are the following. Let S be an induced
subgraph of G with at most r vertices. S is a community if it has a density of at least t (|E(S)| ≥ t) and
the number of edges connecting S to rest of the network is at most a specific value [111]. S is a community
if every vertex in S is adjacent to at least |V (S)|− c vertices in S (for some constant c). Observe that with
our property Π, we still can use a family of graphs H to represent a community. In that case, Π would
correspond to the condition that S is a community if S is isomorphic to a graph H in H.

In the Π-Packing with α()-Overlap problem, we regulate the pairwise overlap with a function α(). More
precisely, we say that two induced Π-subgraphs Hi and Hj α-conflict if α(Hi, Hj) = 1; otherwise they
do not α-conflict. To provide a solution for the Π-Packing with α()-Overlap problem, we will basically
follow the approach of reducing this problem to the set version, i.e., to the r-Set Packing with α()-Overlap
problem.

To this end, we first compute the collection of all induced Π-subgraphs of G, and we collect them in
ΠG. This is done by naively testing all sets of at most r vertices from G. We highlight that we are not
asking to compute the largest subgraph of G that follows Π, but rather only verifying whether a specific
induced subgraph of at most r vertices satisfies Π or not. In this way, |ΠG| = O(nr).

Next, we construct an instance of r-Set Packing with α()-Overlap as follows.

Transformation 15. Input: G Output: U , S

The universe U equals to V (G).

There is a set S in S for each induced Π-subgraph H in ΠG and S = V (H).

Furthermore, α(Si, Sj) = α(Hi, Hj).

In this way, the size of U is O(n) while the size of S is |ΠG| = O(nr). Each set in S has at most r
elements.
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Lemma 76. The collection S has a (k, α())-set packing if and only if G has a (k, α())-Π-packing.

Proof. We build a (k, α())-set packing KS from a (k, α())-Π-packing. For each Π-subgraph Hi in K, we
add a set Si = V (Hi) to KS . By construction, Si ∈ S. Every pair of sets Si, Sj KS does not α-conflict.
This follows because every pair Hi, Hj ∈ KS does not α-conflict, i.e., and α(Hi, Hj) = 0.

Given a (k, α())-set packing KS , we build a (k, α())-Π-packing K of G. For each set Si in KS , we
add a Π-subgraph Hi = (Si, E(G[Si])). By construction, Hi is an induced Π-subgraph of G. Any pair of
Π-subgraphs in K does not α-conflict; otherwise, there would be a pair of sets in KS α-conflicting.

We assume once more that the function α() is well-conditioned. After that, we run Algorithm 13 of
Section 9.1 on the constructed instance. By Lemma 76, we can transform back the set packing instance
to the original graph problem.

Theorem 47. The Π-Packing with α()-Overlap problem can be solved in O(rrk k(r+1)k nr) time, when α()
is well-conditioned and Π is polynomial time verifiable.

9.3 Well-Conditioned Overlap Constraints

We provide next several examples of well-conditioned α() functions. In the first section, we focus on
functions concerning the r-Set Packing with α()-Overlap problem that by Transformation 15 could be
used to restrict the overlap for the graph version as well. After that in Section 9.3.2, we provide functions
that consider properties exclusively from graphs.

9.3.1 Restricting the Overlap Between Sets

Constant Overlap. Upper-bounding the overlap size by a constant t (as in the r-Set Packing with
t-Overlap problem) where 0 ≤ t ≤ r − 1 is a well-conditioned α() function. More precisely, let α-
Constant(si, sj) be a function that returns 0 (no-conflict) if |si ∩ sj | ≤ t, otherwise returns 1 (α-conflict).

Function α-Constant(si, sj)
Result =no-conflict
if |si ∩ sj | > t then Result =α-conflict end if
Return Result
EndFunction

Lemma 77. The function α-Constant is well-conditioned.

Proof. (i) α-Constant is hereditary. For any pair of sets si,sj with α(si, sj) = 0, |si ∩ sj | ≤ t. Thus, there
cannot be a pair of subsets s′i ⊆ si, s′j ⊆ sj with |s′i ∩ s′j | > t.

(ii) Since t ≥ 0, for any pair si, sj with α(si, sj) = 1, |si ∩ sj | ≥ t+ 1 ≥ 1. Let s′i ⊆ si and s′j ⊆ sj be a
pair of subsets with α(s′i, s

′
j) = 0. Note that at most one s′i = sj or s′j = sj ; otherwise α(s′i, s

′
j) = 1. Since

α(s′i, s
′
j) = 0, |s′i ∩ s′j | ≤ t. Therefore, ((si ∩ sj)\(s′i ∩ s′j)) 6= ∅.

(iii) Finally, we can decide in constant time whether |si ∩ sj | > t.
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Weighted Overlap. Let us assume that each u ∈ U has associated a non-negative weight w(u). We could
restrict the overlap region by its weight. The function α-Weight(si, sj) returns no-conflict if w(si ∩ sj) =
(
∑
u∈(si∩sj) w(u)) ≤ wt where wt ≥ 0 is a constant, else returns α-conflict.

Function α-Weight(si, sj)
Result =no-conflict
if w(si ∩ sj) = (

∑
u∈si∩sj w(u)) > wt then Result =α-conflict end if

Return Result
EndFunction

Lemma 78. The function α-Weight is well-conditioned.

Proof. (i) α-Weight is hereditary. For any pair of sets si,sj with w(si∩sj) ≤ wt (α(si, sj) = 0), there is no
pair of subsets s′i ⊆ si, s′j ⊆ sj with w(s′i ∩ s′j) > wt (α(si, sj) = 1). For the sake of contradiction, suppose
otherwise. Notice that (s′i ∩ s′j) ⊆ (si ∩ sj). Thus, if w(si ∩ sj) ≤ wt but w(s′i ∩ s′j) > wt, then there must
be some elements in (si ∩ sj)\(s′i ∩ s′j) with negative weights, a contradiction because the weights in U are
non-negative.

(ii) If α(si, sj) = 1, then w(si ∩ sj) > wt and (si ∩ sj) 6= ∅. Let s′i ⊆ si and s′j ⊆ sj be any pair of
subsets with α(s′i, s

′
j) = 0, (i.e., w(s′i ∩ s′j) ≤ wt). Note that at most one s′i = sj or s′j = sj ; otherwise

α(s′i, s
′
j) = 1. Since w(si ∩ sj) > wt, w(si ∩ sj)− w(s′i ∩ s′j) > 0. Therefore, ((si ∩ sj)\(s′i ∩ s′j)) 6= ∅.

(iii) Finally, we can determine in O(r) time, if w(si ∩ sj) > wt.

Notice that we could use α-Weight(si, sj) to upper-bound the overlap size by a constant t. To this end,
we make w(u) = 1 for each u ∈ U , and wt = t. However, we have defined these functions separately to
combine them into a well-conditioned α() function that restricts the overlap by size and weight.

Function α-ConstantAndWeight(si, sj)
Result =no-conflict
if |si ∩ sj | > t OR w(si ∩ sj) > wt then Result =α-conflict end if
Return Result
EndFunction

Lemma 79. The function α-ConstantAndWeight is well-conditioned.

Measures Overlap. A measure of a set S is a function µ that satisfies the following conditions: i. (non-
negative) µ(S) ≥ 0, ii. (zero for the empty set) µ(S) = 0 if S = ∅, and iii. (additive) µ(S) = µ(S1) +µ(S2)
for any disjoint sets of S. The last property also implies that for any S′ ⊆ S, µ(S′) ≤ µ(S). Let µ be a
measure on each set si∩ sj , and t ≥ 0 a constant value. The function α-Measure(si, sj) returns no-conflict
if µ(si ∩ sj) ≤ t otherwise returns α-conflict.

Function α-Measure(si, sj)
Result =no-conflict
if µ(si ∩ sj) > t then Result =α-conflict end if
Return Result
EndFunction

Lemma 80. The function α-Measure is well-conditioned.
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Proof. (i) α-Measure is hereditary. Assume for contradiction that µ(si ∩ sj) ≤ t but there is a pair of
subsets s′i ⊆ si, s

′
j ⊆ sj with µ(s′i ∩ s′j) > t. Let S = (s′i ∩ s′j). First S 6= ∅, otherwise, µ(S) = 0 and

since t ≥ 0 there would be a contradiction. Second S ⊆ (si ∩ sj), thus by the additive property of µ,
µ(S) ≤ µ(si ∩ sj). Since µ(si ∩ sj) ≤ t, the claim holds.

(ii) If µ(si∩sj) > t, then |si∩sj | ≥ 1. This follows because µ(∅) = 0 and t ≥ 0. Let s′i ⊆ si and s′j ⊆ sj
be a pair of subsets with α(s′i, s

′
j) = 0, (i.e., µ(s′i ∩ s′j) ≤ t). Note that at most one s′i = si or s′j = sj ;

otherwise α(s′i, s
′
j) = 1. Since µ(si∩sj) > t, µ(si∩sj)−µ(s′i∩s′j) > 0. In this way, ((si∩sj)\(s′i∩s′j)) 6= ∅.

(iii) The function µ is computed in polynomial time; thus, we can verify in constant time whether
µ(si ∩ sj) > t or not.

Metric Overlap. Let us assume that U is a metric space. That is, there is a metric or a distance function
that defines a distance between each pair of elements u, v of U , subject to the following conditions:
distU (u, v) ≥ 0, distU (u, v) = 0 if (u = v), distU (u, v) = distU (v, u) and distU (u,w) ≤ distU (u, v) +
distU (v, w). For a constant dt > 0, we define the function α-Metric(si, sj) which returns no-conflict if
|si ∩ sj | ≤ 1 or distU (u, v) ≤ dt for each pair u, v (u 6= v) in si ∩ sj , else it returns α-conflict.

Function α-Metric(si, sj)
if |si ∩ sj | ≤ 1 OR (distU (u, v) ≤ dt for each pair u, v in (si ∩ sj), u 6= v) then
Result =no-conflict

else
Result =α-conflict

end if
Return Result
EndFunction

Lemma 81. The function α-Metric is well-conditioned.

Proof. (i) α-Metric is hereditary. For any pair of sets si,sj that does not α-conflict (i.e., α(si, sj) = 0),
there is no pair of subsets s′i ⊆ si, s

′
j ⊆ sj with α(s′i, s

′
j) = 1. Assume the opposite by contradiction.

|s′i∩ s′j | ≥ 1, otherwise s′i and s′j would not α-conflict. Observe that (s′i∩ s′j) ⊆ (si∩ sj). In addition, since
U is a metric-space and α(si, sj) = 0, distU (u, v) ≤ t for each pair u, v (u 6= v) in (si ∩ sj). Given that we
are using distU and not dists′i∩s′j , there is no pair of elements in (s′i ∩ s′j) with distU (u, v) > t.

(ii) Since dt > 0, for any pair si, sj with α(si, sj) = 1, |si ∩ sj | > 1. Let s′i ⊆ si and s′j ⊆ sj be a
pair of subsets with α(s′i, s

′
j) = 0. Note that at most one s′i = si or s′j = sj ; otherwise α(s′i, s

′
j) = 1.

distU (u, v) ≤ t for each pair u, v (u 6= v) in (s′i ∩ s′j). Since α(si, sj) = 1 but α(s′i, s
′
j) = 0, then it must

exists at least one element u in ((si ∩ sj)\(s′i ∩ s′j)) such that distU (u, v) > t for some v in (si ∩ sj). In
this way, ((si ∩ sj)\(s′i ∩ s′j)) 6= ∅.

(iii) Assuming as input a metric space U , α-Metric is verified in O(r2) time.

9.3.2 Restricting the Overlap Between Subgraphs

Prescribed Pattern. It has been observed in social networks that the overlap region is often more
densely connected than the rest of the community [138]. Inspired by this, we will allow pairwise-overlap in
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a (k, α())-Π-packing, if the overlap region has a specific pattern, for example, it is a clique. More precisely,
we say that a pair of Π-subgraphs Hi,Hj does not α-conflict, if G[V (Hi)∩V (Hj)] is isomorphic to a graph
F in a class F . To define a well-conditioned α(), F is a graph class that is hereditary (i.e., it is closed
under taking induced subgraphs). To preserve our FPT results, any graph in F should be polynomial time
verifiable. Examples of F are cliques, planar and chordal graphs. Indeed this applies to any graph class
that is closed under minors, since this is hereditary and by the Robertson-Seymour theorem the graph is
polynomially testable by checking for the forbidden minors [125]. We define the function α-Pattern(si, sj)
that returns no-conflict if |si∩sj | = 0 or if G[si∩sj ] is isomorphic to a graph F in F ; otherwise, it returns
α-conflict.

Function α-Pattern(si, sj)
if |si ∩ sj | = 0 OR G[si ∩ sj ] is isomorphic to some F ∈ F then

Return no-conflict
else

Return α-conflict
end if
EndFunction

Lemma 82. The function α-Pattern is well-conditioned.

Proof. (i) α-Pattern is hereditary. Assume for contradiction that there is pair si,sj with α(si, sj) = 0 but
there is a pair of subsets s′i ⊆ si and s′j ⊆ sj with α(s′i, s

′
j) = 1. If α(s′i, s

′
j) = 1, this implies that G[s′i∩ s′j ]

is not isomorphic to a graph F in F . Notice that (s′i ∩ s′j) ⊆ (si ∩ sj). In addition, G[si ∩ sj ] is isomorphic
to a graph F ∈ F (otherwise, α(si, sj) = 1). Since F is a graph class that is hereditary, G[s′i ∩ s′j ] is also
isomorphic to F and s′i and s′j do not α-conflict.

(ii) It follows by definition of α-Pattern(si, sj) that for any pair si, sj that α-conflict (i.e., α(si, sj) = 1)
|si∩ sj | ≥ 1. Let s′i ⊆ si and s′j ⊆ sj be a pair of non-empty subsets where α(s′i, s

′
j) = 0. This implies that

G[s′i∩s′j ] is isomorphic to a graph F ∈ F . Recall that (s′i∩s′j) ⊆ (si∩sj). Since G[si∩sj ] is not isomorphic
to a graph in F but G[s′i ∩ s′j ] is and F is closed under taking induced subgraphs, ((si ∩ sj)\(s′i ∩ s′j)) 6= ∅.

(iii) Finally, α-Pattern is computed in polynomial time as it is a constraint of the class F .

Distance. In [139], overlapping nodes occur only in the boundary regions of overlapping communities
in sensor networks. Motivated by this, we consider in the overlap region only nodes that are “closer”
to each other. In this way, two Π-subgraphs Hi,Hj do not α-conflict if the distance in G between any
pair of vertices u, v in V (Hi) ∩ V (Hj) is at most a constant dt > 0, i.e., distG(u, v) ≤ dt. Recall that a
Π-subgraph Hi is represented by a set Si = V (Hi) in S. Since the graph distance is a metric on V (G), we
use the function α-Metric defined previously (Lemma 81). Notice that using distG[Hi∩Hj ] instead is not a
well-conditioned α() function. Specifically, it does not follow the hereditary property.

Property. There are several vertex properties that are relevant in the analysis of real networks: vertex
strength [19, 110], vertex weight [99], and disparity [110], among others. On the other hand, weights in the
edges of a network may better reflect the strength of a relationship in social and communication networks
[70]. Moreover, Onnela et al., [118] suggest that edges in the overlapping regions have large weights.

Hence, we suggest considering only overlapping nodes or edges that present the same property ξ (or
properties). For example, overlapping nodes or edges each with at least a specific strength or weight. We
assume however that the properties values for each vertex or edge are given as part of the input.
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Recall that by Transformation 15, we have a set S = V (H) per each induced Π-subgraph H in G. To
consider edges properties in the overlap region, we would need to slightly modify that transformation and
make U = E(G) and S = E(H) instead. This only increases the size of the sets in S by a factor of r and

|S| = O(nr
2

).

We define α-Property(si, sj) which simply returns no-conflict either if |si ∩ sj | = 0 or if each element
u in (si ∩ sj) satisfies ξ. Otherwise, it returns α-conflict.

Function α-Property(Si, Sj)
if |Si ∩ Sj | = 0 OR (for each element u in (Si ∩ Sj) u satisfies ξ ) then

Return no-conflict
else

Return α-conflict
end if
EndFunction

Lemma 83. The function α-Property is well-conditioned.

Proof. (i) α is hereditary. Assume by contradiction that there is pair si,sj with α(si, sj) = 0 but there is
a pair of subsets α(s′i, s

′
j) = 1 where s′i ⊆ si and s′j ⊆ sj . If α(si, sj) = 0, every element in si ∩ sj satisfies

the property ξ. Since (s′i ∩ s′j) ⊆ (si ∩ sj), every element in s′i ∩ s′j satisfies ξ as well.

(ii) By definition of α-Property any pair of disjoint sets do not α-conflict. Let s′i ⊆ si and s′j ⊆ sj be a
pair of subsets with α(s′i, s

′
j) = 0. If α(si, sj) = 1 but α(s′i, s

′
j) = 0, there must exists at least one element

in ((si ∩ sj)\(s′i ∩ s′j)) that does not follow ξ and therefore ((si ∩ sj)\(s′i ∩ s′j)) 6= ∅.

(iii) The property ξ for each element of U is given as part of the input. Thus, we can verify in constant
time whether si, sj α-conflict or not.

Dense Overlap. We design another α() function to model the behavior that the overlap region is densely
connected. To that end, we define α-DenseOverlap(si, sj) that returns no-conflict if |si ∩ sj | = 0 or

|E(G[si ∩ sj ])| ≥ O(O−1)
2 − c, where O = |si ∩ sj | and c ≥ 0 is a constant; otherwise, it returns α-conflict.

Function α-DenseOverlap(si, sj)
Set O = |si ∩ sj |.
if |si ∩ sj | = 0 or |E(G[si ∩ sj ])| ≥ O(O−1)

2 − c then
Return no conflict

end if
Return α-conflict
EndFunction

Lemma 84. The function α-DenseOverlap is well-conditioned.

Proof. (i) α-DenseOverlap is hereditary. Assume by contradiction that there is pair of sets si, sj with
α(si, sj) = 0 but there is a pair of subsets s′i ⊆ si and s′j ⊆ sj with α(s′i, s

′
j) = 1. Notice that (s′i ∩ s′j) 6= ∅;

otherwise, α(s′i, s
′
j) = 0. Therefore, if α(s′i, s

′
j) = 1, then |E(G[s′i∩s′j ])| <

O′(O′−1)
2 −c, where O′ = |s′i∩s′j |.

However since G[s′i∩s′j ] is an induced subgraph of G[si∩sj ], |E(G[si∩sj ])| < O(O−1)
2 − c, a contradiction.
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(ii) If α(si, sj) = 1, |si ∩ sj | ≥ 1. Furthermore, for any pair of subsets s′i ⊆ si and s′j ⊆ sj with
α(s′i, s

′
j) = 0, (si ∩ sj)\(s′i ∩ s′j) 6= ∅. Assume otherwise by contradiction. If α(s′i, s

′
j) = 0 then |E(G[s′i ∩

s′j ])| ≥
O′(O′−1)

2 − c, where O′ = |s′i∩s′j |. Thus, if (si∩sj)\(s′i∩s′j) = ∅, then |E(G[si∩sj ])| ≥ O(O−1)
2 − c,

where O = |si ∩ sj |, a contradiction to our assumption that α(si, sj) = 1.

(iii) We can verify in polynomial time this condition.

9.4 Packing Problems with Predetermined Cluster Heads

The problem of discovering communities in networks has been tackled with clustering algorithms as well
[116]. Many of these algorithms consider as part of the input a collection of sets of vertices C = {C1, . . . , Cl}
where each set Ci ⊂ V (G) is called a cluster head. The objective is to find a set of clusters in G where each
cluster contains exactly one cluster head. In addition, clusters should not share elements of the cluster
heads [130, 19, 99, 31, 139].

Motivated by this, we introduce the r-Set Packing with α()-Overlap problem (PCH), where PCH stands
for Predetermined Clusters Heads.

The r-Set Packing with α()-Overlap problem (PCH)
Input : A collection S of sets each one of size at most r, drawn from a universe U , a non-negative
integer k and a collection C = {C1, . . . , Cl} of sets of elements where Ci ⊂ U .
Parameter : k
Question: Does S contain a (k, α())-set packing (PCH), i.e., a set of at least k distinct sets
K = {S∗1 , . . . , S∗k} subject to the following conditions: each S∗i contains at least one set of C; for
any pair S∗i ,S∗j with i 6= j, ((S∗i ∩ S∗j ) ∩ val(C)) = ∅, and S∗i , S

∗
j do not α-conflict?

Recall that a Π-subgraph (or a cluster) is represented by a set in S (Transformation 15, Section 9.2).
Thus, this problem translates into a PCH variation for our Π-Packing problem as well. Also notice that
our PCH variation is more relaxed in the sense that each cluster could contain more than one cluster head.

To solve the r-Set Packing with α-Overlap problem (PCH), we need to do two modifications to the
BST α()-Algorithm described in Section 9.1.

First, we redefine the routine that creates the children of the root of the search tree, and we call it
Initialization (PCH) (Algorithm 18). By Lemma 72, a maximal solution M is used to determine the
children of the root. In the (PCH)-variation, we no longer compute M but rather we use C to compute
those children. That is, the root will have a child i for each possible combination of

(C
k

)
. Recall that a

node i has a collection Qi = {si1, . . . , sik}. Each set of Qi is initialized with set of that combination.

Lemma 85. If there exists at least one (k, α())-set packing (PCH) of S, at least one of the children of the
root will have a partial-solution.

Proof. It follows by the explicit condition that each set in a (k, α())-set packing (PCH) should contain at
least one set from C and because the routine Initialization (PCH) tries all possible selections of size k
from C to create the children of the root.
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The second modification to the BST α()-Algorithm consists on redefining the α() function as α()-
PCH. Since the sets of a (k, α())-set packing (PCH) cannot share elements of val(C), we say that two
sets si, sj also α-conflict if there is at least one element of (si ∩ sj) in val(C). This new function returns
α-conflict if ((si ∩ sj) ∩ val(C)) 6= ∅; otherwise executes the original α() function and returns α(si, sj).

Function α-PCH(si, sj)
if ((si ∩ sj) ∩ val(C)) 6= ∅ then

Return α-conflict
else

Call the original α() function
Return α(si, sj)

end if
EndFunction

Lemma 86. If the function α() is well conditioned, the function α()-PCH is also well-conditioned.

Proof. (i) α-PCH is hereditary. Assume that α-PCH(si, sj) = 0, and there is pair of subsets s′i ⊆ si and
s′j ⊆ sj with α-PCH(s′i, s

′
j) = 1. Since α is well conditioned, this is only possible if ((s′i ∩ s′j)∩ val(C)) 6= ∅.

However, (s′i ∩ s′j) ⊆ (si ∩ sj) and by our assumption ((si ∩ sj) ∩ val(C)) = ∅, a contradiction.

(ii) If α-PCH(si, sj) = 1, |si ∩ sj | ≥ 1. Assume otherwise by contradiction. Since α is well-conditioned,
this is only possible if the extra condition in α-PCH returns α-conflict when si ∩ sj = ∅. However, in
that case there cannot be an intersection with the set val(C), and α-PCH(si, sj) = 0 instead. It remains
to show that for any pair of subsets s′i ⊆ si and s′j ⊆ sj with α-PCH(s′i, s

′
j) = 0, (si ∩ sj)\(s′i ∩ s′j) 6= ∅.

Assume otherwise by contradiction, but in that case again there cannot be an intersection with val(C) and
α-PCH(si, sj) = 0.

(iii) Since α is well-conditioned, and it takes O(r) time to verify the extra condition in α-PCH, α-PCH
is verified in polynomial time.

The above modifications guarantee that Algorithm 13 will find a (k, α())-Set Packing (PCH) if S has
at least one. To maintain our running time, |C| = O(g(k)), where g is a computable function dependent
only on k and possibly r but independent of n. Observe that if there is at least one cluster head in C with
more than r elements, we simply output that the instance does not have a solution. Hence, we can state:

Theorem 48. If α() is well-conditioned, the r-Set Packing with α()-Overlap problem (PCH) is solved in
O((g(k))k(rk)(r−1)knr) time, where |C| = g(k) and each set in C has size at most r − 1.

We could also omit the

condition that clusters cannot share members of the cluster heads as in [45]. In that case, we do not
need to redefine the function α().
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Algorithm 18 Initialization (PCH)(C)
1: i = 0, T = null
2: while i < |

(C
k

)
| do

3: Let {Ci1, . . . , Cik} be the ith combination of
(C
k

)
4: Make Qi = {si1, . . . , sik} equal to {Ci1, . . . , Cik}, i.e, sij = Cij
5: CreateNode(T ,root,node i,Qi)
6: i = i+ 1
7: end while
8: Return T

9.5 Conclusions

In this chapter, we introduced the r-Set Packing and Π-Packing with α()-Overlap problems as more
universal versions for the problem of packing sets and graphs subject to overlap constraints modeled
by a function α(). These generalizations could capture a much larger percentage of potential real life
applications.

In addition, we obtain fixed-parameter tractable results for our problems when the α() function is
subject to specific conditions (Definition 9). It would be interesting to obtain FPT-algorithms for any
function α which not necessarily meets Definition 9. For example, when the overlap is bounded by a
percentage of the sizes of the communities or when the overlap size has a lower-bound instead of an
upper-bound.

Finally, it remains to explore other techniques that could help to design more practical fixed-parameter
algorithms for these problems.

124



Part IV

Conclusions
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Chapter 10

Conclusions and Future Work

We have introduced in this thesis generalizations for the classical problems of packing graphs (H-Packing)
and packing sets (r-Set Packing). Our generalizations allow overlap in a solution in two different ways: by
bounding the pairwise overlap between sets or subgraphs (family of t-Overlap problems) and by bounding
the number of times an element or a vertex is contained in a set or a subgraph (family of t-Membership
problems). The motivation of allowing overlap in a packing arises in the context of discovering communities
in networks.

We start in Chapter 3 with the formal study of the computational complexity of our packing problems.
In that chapter, we provide a dichotomy theorem (analogous to the one of Kirkpatrick and Hell [88]) which
shows that for any graph H, the H-Packing with t-Membership is NP-complete if |V (H)| ≥ 3 and solvable
in polynomial time otherwise. A similar result can be stated for the r-Set Packing with t-Membership.
We also show that there always exists at least one graph H such that the H-Packing with t-Overlap is
NP-complete. We consider these results as a starting point on the study of the computational complexity
of our problems as several questions remain open. The complexity of the disjoint-version of our problems
(H-Packing) has been studied for specific families of graphs (cycles, cliques, stars, among others - see
Section 2.4.1). It would be interesting therefore to investigate the complexity of our problems under those
families of graphs. Furthermore, we know the existence of polynomial solvable cases for the H-Packing
problem for specific input graphs G (trees and partial k-trees). It is also another research path to determine
if those specific graph classes (or perhaps others) consist on polynomial solvable instances for our packing
problems with overlap as well.

In Chapter 6, we reduce our packing problems to polynomial kernels using polynomial parametric
transformations (PPTs). PPTs were previously used in [96, 42] to obtain kernels (for different problems).
In this way, our results strength the suggestion that PPTs could be considered as an alternative kerneliza-
tion technique. In Chapter 7, we improve our kernel results by using the classical approach of reduction.
Thus, the next question arises: are these improved kernel sizes tight? To answer this question, one need
to determine kernelization lower bounds for our problems as the ones by Dell and Marx [35] for the r-Set
Packing problem. Other relevant topics for future research could be to consider prescribed graphs H or G
to see if smaller kernels (perhaps even linear) could be obtained. Paths or trees could be good candidates.

After reducing a problem to a kernel, the problem can be solved (in FPT-time) by running brute-force
on the kernel. However, one always wonder if there is a faster way than brute-force. We attempt to
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solve that question in Chapter 8. In that chapter, we obtain fixed-parameter algorithms for our problems
based on search trees and greedy localization techniques. Our algorithms run in time O(kck) (where c is a
constant) which asymptotically is equivalent to running brute-force on the kernel. We are able to obtain
an O(2ck) algorithm by means of an FPT-algorithm [53] for the disjoint version of our problems (r-Set
Packing). This algorithm involves the color-coding technique. However, this approach does not solve our
problem directly; we need to transform our packing problems with overlap to an instance of the disjoint-
version, obtain a solution for the constructed instance (disjoint-version), and then re-interpret this solution
to a solution for the original (overlapping) instance. It is therefore crucial to obtain an O(ck) algorithm

that solves our problems directly. Very recently, Gabizon et al. [64] provided an O(2O(rk log t
t )|S|nO(1))

deterministic algorithm for the r-Set Packing with t-Membership problem by using an extended notion of
representative sets. Such generalization does not apply for the r-Set Packing with t-Overlap. This result
could imply that the t-Overlap variant may be more difficult to solve than the t-Membership version.

Considering overlap in packing problems was introduced to abstract the problem of discovering over-
lapping communities in networks. Even though it is realistic to expect a small overlap between a pair
of communities [62, 111, 31], we wanted to capture situations where the overlap satisfies more complex
conditions. This motivated us to pose our problems in an even more general way, and in Chapter 9, we
introduce the Π-Packing with α()-Overlap problem. In this way, if for example it is expected that the
overlap region between a pair of communities contains only nodes with small distance within each other, we
could represent that condition through α(). We show that when the function α() obeys specific properties
(Definition 9), Π-Packing with α()-Overlap is in FPT. We also give several α() functions that meet those
conditions. A next research step for this problem could be to determine either an FPT-algorithm that
solves the problem for functions other than those as in Definition 9, or perhaps determine which conditions
in α() make the problem fixed-parameter intractable.

We introduce our packing problems that allow overlap to give a more theoretical treatment to the
community discovering problem. We consider that this thesis takes the first steps towards that goal. It
would be very appealing to obtain more practical solutions for these problems without leaving a theoretical
analysis behind. Perhaps considering specific properties for the graph G that mimic the behavior of real
networks (such as degeneracy, average degree node, average path length, among others) could help to
achieve that goal. Curiously, even in online social networks which are dynamic networks, there are graph
theoretical properties of the network that remain stable over time [132, 135].

On the other hand, the H-Packing and r-Set Packing problems (disjoint version) have been studied
for almost four decades. There exists a myriad of results for these problems from different methodologies
(classical and parameterized complexity, polynomial solvable instances, approximation algorithms, among
others). Not surprisingly, most of those results do not transfer directly to our packing problems allowing
overlap. The techniques heavily rely on the assumption that overlap is not allowed in a packing. Thus
besides the practical motivation behind of our problems, it is relevant to see now the implication of such
overlap at least on the classical and parameterized complexity of packing problems. We believe that there
is value on our proposed generalized packing problems and that this thesis could lead to further work on
these problems.
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Appendix A

Additional Polynomial Parametric
Transformations

This appendix contains alternative polynomial parametric transformations for the H-Packing with t-
Membership and t-Overlap problems. In Chapter 6, we reduce these problems to a kernel by transforming
them to the r-Set Packing with t-Membership and t-Overlap, respectively. Here, we obtain the same kernel
sizes as the ones obtained in that chapter, but we transform these problems to the r′-Set Packing (for
some r′ > r) instead.

Recall that the r′-Set Packing problem identifies at least k disjoint sets from a collection S, if possible.
Each set of S is drawn from a universe U and has at most r′ elements. All our PPTs use the collections
V and E . The reader is referred to Chapter 2 for the definitions of those collections.

A.1 From Packing Graphs with Membership to Packing Disjoint
Sets

We introduce in this section polynomial parametric transformations from theH-Packing with t-Membership
and t-Edge Membership problems to the (r + 1)-Set Packing problem. These transformations allow us to
obtain alternative kernelization algorithms to the ones provided in Chapter 6.

A.1.1 An Alternative PPT for H-Packing with t-Membership

Let us begin with the H-Packing with t-Membership problem. Recall that this problem looks for a set of
at least k H-subgraphs such that each vertex of G belongs to at most t of those H-subgraphs. In addition,
for each pair of H-subgraphs Hi, Hj , V (Hi) 6= V (Hj).

We create an instance for the (r + 1)-Set Packing problem, (a universe U and a collection S) using an
instance of the H-Packing with t-Membership problem.
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Transformation 16. Input: G, H; Output: U , S, and r

Let r = r(H).

The universe U equals (V (G)× {1, . . . , t}) ∪ V.

The collection S contains all subsets of U each with at most r + 1 elements

{{(v1, j1),. . . ,(vi, ji),. . . ,(vr′ , jr′), V } | V ∈ V, V = {v1, . . . , vr′}, for each 1 ≤ ji ≤ t and 1 ≤ i ≤ r′,
where r′ ≤ r}.

The intuition behind our transformation is that each set in S would represent an H-subgraph in G.
Since each vertex in V (G) can be in at most t H-subgraphs, we duplicate t times each vertex. This would
imply that there are tr sets in S representing the same H-subgraph H of G. All of those sets have a
common element which is precisely the set of vertices in V (H), i.e., some V ∈ V ⊂ U .

Example 14. Consider the graph of Figure 6.2 with H = {C4}, k = 2, r = 4, and t = 2. The constructed
instance for the (r + 1)-Set packing is as follows.

V ={{a, b, c, d}, {b, c, e, f}, {b, c, g, h}}
U ={(a, 1), (b, 1), (c, 1), (d, 1), (e, 1), (f, 1), (g, 1), (h, 1),

(a, 2), (b, 2), (c, 2), (d, 2), (e, 2), (f, 2), (g, 2), (h, 2)

∪ V}.

Some sets of the collection S are

{(a, 1), (b, 1), (c, 1), (d, 1), {a, b, c, d}},
{(a, 1), (b, 1), (c, 1), (d, 2), {a, b, c, d}},
{(a, 2), (b, 2), (c, 2), (d, 2), {a, b, c, d}},
{(b, 1), (c, 2), (e, 1), (f, 2), {b, c, e, f}},
{(b, 1), (c, 1), (g, 2), (h, 2), {b, c, g, h}}.

A (2, 5, 2)-set packing for this instance is

{{(a, 1), (b, 1), (c, 1), (d, 1), {a, b, c, d}},
{(b, 2), (c, 2), (e, 1), (f, 1), {b, c, e, f}}}

This corresponds to the following (2, 4, 2)-H-packing

{H1 ⊆ G[{a, b, c, d}],
H2 ⊆ G[{b, c, e, f}]}.

Note that it does not matter which C4 from the K4 G[{b, c, e, f}] we assign to H2.

129



The size of U is bounded by |U| = |V (G)| × t+ |V| ≤ tn+ nr = O(nr). Each set in S has size at most
r + 1. For each V ∈ V, we can form at most tr sets with the tr ordered pairs from the vertices in V . In
this way, for each V ∈ V there are tr sets in S, and |S| = tr|V| = O(trnr). This leads us to the following
result.

Lemma 87. Transformation 16 can be computed in O(trnr) time.

Lemma 88. G has a (k, r, t)-H-membership if and only if S has a (k, r + 1, 0)-set packing (i.e., at least
k disjoint sets).

Proof. We build a (k, r + 1, t)-set packing KS from a (k, r, t)-H-membership K. For each Hj ∈ K, we add
a set Sj with |V (Hj)| + 1 elements as follows. The element V in Sj corresponds to the set of vertices
V (Hj). Note that V (Hj) ∈ V ⊂ U . For each vertex vi ∈ V (Hj) (1 ≤ i ≤ |V (Hj)| ≤ r), we add an ordered
pair (vi, l + 1) to Sj where l corresponds to the number of H-subgraphs in {H1, . . . ,Hj−1} ⊂ K that vi is
contained. Since each vertex is contained in at most t H-subgraphs, 0 ≤ l ≤ t − 1 and (vi, l + 1) always
exists in U . By our construction of S, each Si ∈ S. It remains to show that the sets in KS are pairwise
disjoint. Since V (Hi) 6= V (Hj) for each pair Hi, Hj ∈ K, none of the sets in KS will share the same
element V . In addition, no pair Si, Sj shares an ordered pair (v, l) for some v ∈ V (G) and 1 ≤ l ≤ t. If Si
and Sj share a pair (v, l) this would imply that there are two H-subgraphs Hi and Hj that share the same
vertex v. Without lost of generality assume that Hi appears first than Hj in K. If (v, l) is contained in
both Si and Sj then v is a member of l − 1 H-subgraphs from both {. . . , Hi, . . . } and {. . . , Hi, . . . ,Hj}.
A contradiction since both Hi and Hj contain v.

We construct a (k, r, t)-H-membership K using a (k, r + 1, t)-set packing KS . Each set Si ∈ KS has
an element VSi ∈ V which corresponds to a set of vertices in V (G) that forms an isomorphic subgraph
to H in G. We add to K an H-subgraph HSi ⊆ G[VSi ] for each set Si ∈ KS . Since the sets in KS are
pairwise-disjoint, V (HSi

) 6= V (HSj
). Now, we need to show that each vertex of V (G) is a member of at

most t H-subgraphs in K. Assume otherwise by contradiction. If two H-subgraphs in K share a vertex v,
then there are two sets in KS where each one has a pair (v, i) and (v, j), respectively. Since the sets in KS
are disjoint, then i 6= j. If a vertex v ∈ V (G) is a member of more than t H-subgraphs in K, then there
are at least t+ 1 ordered pairs (v, 1), . . . , (v, t+ 1) contained in t+ 1 different sets in KS . However, by our
construction of U , there are at most t ordered pairs that contain v.

After that we run the kernelization algorithm for the (r + 1)-Set Packing problem [1]. This algorithm
would leave us with a new universe U ′ with at most 2(r− 1)!(rk− 1)r−1 elements, as well with a collection
S ′ of subsets.

Lemma 89. S has a (k, r + 1, 0)-set packing if and only if S ′ has a (k, r + 1, 0)-set packing.

Next we construct a reduced graph G′ using U ′.

Transformation 17. Input: G, U ′; Output: G′

Take each vertex v that appears in each (v, i) ∈ U ′ and the vertices in each V ∈ V ′ and consider the
graph G′ induced by all these in G.

By this construction, G′ has at most 2(r − 1)!(rk − 1)r−1 vertices.
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Lemma 90. G′ has a (k, r, t)-H-membership if and only if S ′ has a (k, r + 1, 0)-set packing.

Theorem 49. H-Packing with t-Membership has a problem kernel with O(rrkr−1) vertices, where r =
r(H).

The induced version of the problem obtains at least k induced H-subgraphs in G where each vertex in
V (G) is contained in at most t of these H-subgraphs (if possible). To achieve a problem kernel, we only
need to redefine V as a collection of sets of vertices each of which must induce an H-subgraph in G.

Theorem 50. Induced-H-Packing with t-Membership has a problem kernel with O(rrkr−1) vertices, where
r = r(H).

In this way, the kernelization algorithm for the H-Packing with t-Membership that we described above
corresponds to Algorithm 2 with input G, H, k, (r+1)-SetPacking, Transformation 16, Algorithm [1], and
Transformation 17.

A.1.2 An Alternative PPT for H-Packing with t-Edge Membership

In the H-Packing with t-Edge Membership problem, the goal is to obtain a collection of at least k H-
subgraphs in G such that each edge of E(G) belongs to at most t of those subgraphs. In addition, for each
pair of H-subgraphs, E(Hi) 6= E(Hj).

We transform an instance of the H-Packing with t-Edge Membership problem to an instance of the
(r + 1)-Set Packing problem.

Transformation 18. Input: G, H; Output: U , S, and r

Let r = m(H).

The universe U equals (E(G)× {1, . . . , t}) ∪ E.

The collection S contains all subsets of U each with at most r + 1 elements

{{(e1, j1), . . . , (em′ , jm′), E} | E ∈ E, E = {e1, . . . em′}for each 1 ≤ ji ≤ t and 1 ≤ i ≤ m′, where
m′ ≤ m}.

Example 15. Consider that graph of Figure 6.2 with H = {C4}, k = 2, r = 4, and t = 2. The instance
for the (r + 1)-set packing looks like follows.

E ={{ab, ad, bc, dc}, {gh, hc, bc, dc}, {bc, cf, ef, be}, {bf, cf, ec, be}, {bc, bf, ef, ec}}
U ={(ab, 1), (ad, 1), (dc, 1), (bc, 1), (be, 1), (ef, 1), (cf, 1), (bf, 1), (ec, 1), (gb, 1), (dc, 1), (hc, 1),

(ab, 2), (ad, 2), (dc, 2), (bc, 2), (be, 2), (ef, 2), (cf, 2), (bf, 2), (ec, 2), (gb, 2), (dc, 2), (hc, 2)

∪ E}.

Some sets of the collection S are

131



{(ad, 1), (ab, 1), (bc, 1), (dc, 1), {ad, ab, bc, dc}},
{(bc, 1), (cf, 1), (ef, 1), (be, 1), {bc, cf, ef, be}},
{(bf, 1), (cf, 1), (ec, 1), (be, 1), {bf, cf, ec, be}},
{(bc, 1), (bf, 1), (ef, 1), (ec, 1), {bc, bf, ef, ec}},
{(gh, 1), (dc, 1), (bc, 1), (hc, 1), {gh, dc, bc, hc}}.

An (2, 5, 2)-set packing for this instance is

{{(bf, 1), (cf, 1), (ec, 1), (be, 1), {bf, cf, ec, be}},
{(bc, 1), (bf, 2), (ef, 1), (ec, 2), {bc, bf, ef, ec}}}

This corresponds to the following (2, 4, 2)-edge-H-membership

{H1 = ({b, e, c, f}, {bf, cf, ec, be}),
H2 = ({b, e, c, f}, {bf, cf, ec, be}).

Notice that the subgraphs have identical set of vertices. The NISV version of the H-Packing with t-Edge
Membership problem avoids this situation (see Section 6.1.3).

The size of our constructed instance is bounded by |U| = |E(G)| × t+ |E| ≤ tn+nr = O(nr). Each set
in S has size r + 1, and |S| ≤ trnr. Recall that r = m(H).

Lemma 91. Transformation 18 can be computed in O(trnr).

Lemma 92. G has an (k, r, t)-edge-H-membership if and only if S has a (k, r + 1, 0)-set packing.

Proof. We build a (k, r+ 1, t)-set packing KS from a (k, r, t)-edge-H-membership K. For each Hj ∈ K, we
add a set Sj with |E(Hj)| + 1 elements as follows. The element E in Sj corresponds to the set of edges
E(Hj). Note that E(Hj) ∈ E ⊂ U . For each edge ei ∈ E(Hj) (1 ≤ i ≤ |E(Hj)| ≤ m), we add an ordered
pair (ei, l+ 1) to Sj where l corresponds to the number of H-subgraphs in {H1, . . . ,Hj−1} ⊂ K that ei is a
member. Since each edge is a member of at most t H-subgraphs, 0 ≤ l ≤ t− 1 and (ei, l+ 1) always exists
in U . By our construction of S, each Si ∈ KS ⊆ S. It remains to show that the sets in KS are pairwise
disjoint. Since E(Hi) 6= E(Hj) for each pair Hi, Hj ∈ K, none of the sets in KS will share the same
element E. On the other hand, no pair Si, Sj shares an ordered pair (e, l) for some edge e ∈ E(G) and
some integer 1 ≤ l ≤ t. If Si and Sj share a pair (e, l) this would imply that there are two H-subgraphs Hi

and Hj that share the same edge e. Without lost of generality assume that Hi appears first than Hj in K.
If (e, l) is contained in both Si and Sj then e is a member of l − 1 H-subgraphs from both {. . . , Hi, . . . }
and {. . . , Hi, . . . ,Hj}. A contradiction since both Hi and Hj contain e.
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We construct a (k, r, t)-edge-H-membership K using a (k, r + 1, t)-set packing KS . Each set Si ∈ KS
has an element ESi ∈ E which corresponds to a set of edges in E(G) that forms an isomorphic subgraph
to H in G. In this way, for each set Si ∈ KS , we add to K an H-subgraph HSi

with a set of vertices
V (ESi

) and a set of edges ESi
, i.e., HSi

= (V (ESi
), ESi

). Since the sets in KS are pairwise-disjoint,
E(HSi

) 6= E(HSj
). Now, we need to show that each edge of E(G) is a member of at most t H-subgraphs

in K. Assume otherwise by contradiction. If two H-subgraphs in K share an edge e, then there are two
sets in KS where each one has a pair (e, i) and (e, j), respectively. Since the sets in KS are disjoint, i 6= j.
If an edge e ∈ E(G) is a member of more than t H-subgraphs in K then there are at least t + 1 ordered
pairs (e, 1), . . . , (e, t+ 1) contained in t+ 1 different sets in KS . However, by our construction of U , there
are at most t ordered pairs that contain e.

Similarly as in the vertex-version, the kernelization algorithm [1] will leave us with a reduced universe
U ′ with at most O((r + 1)rkr) elements.

Lemma 93. S has a (k, r + 1, 0)-set packing if and only if S ′ has a (k, r + 1, 0)-set packing.

We now obtain a reduced graph G′ using U ′ as follows.

Transformation 19. Input: G, U ′; Output: G′

We take the end-points of each edge e that appears in each (e, i) ∈ U ′ and the vertices in each V ∈ V ′
and consider the graph G′ that is induced by all these in G.

Lemma 94. G′ has a (k, r, t)-edge-H-membership if and only if S ′ has a (k, r + 1, 0)-set packing.

Theorem 51. The H-Packing with t-Edge Membership problem has a kernel with O((r+ 1)rkr) vertices,
where r = m(H).

The kernelization algorithm for the H-Packing with t-Edge Membership that we described above cor-
responds to Algorithm 2 with input G, H, k, (r + 1)-Set Packing, Transformation 18, Algorithm [1], and
Transformation 19.

A.2 From Packing Graphs with Pairwise Overlap to Packing Dis-
joint Sets

This section introduces polynomial parametric transformations from the H-Packing with t-Overlap and t-
Edge Overlap to the (

(
r
t+1

)
+1)-Set Packing problem. These transformations allow us to obtain alternative

kernelization algorithms for these problems with the same kernel sizes as the ones presented in Chapter 6.

A.2.1 An Alternative PPT for H-Packing with t-Overlap

In this section, we will transform an instance of the H-Packing with t-Overlap problem to an instance of
the (

(
r
t+1

)
+ 1)-Set Packing problem.
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Transformation 20. Input: G, V; Output: U , S, and r

Let r = r(H)

The universe U is defined as V ∪ {I | I ⊂ V (G), |I| = t+ 1}.

The collection S contains all subsets of U with at most
(
r
t+1

)
+ 1 elements, of the following form:

{V = {v1, . . . , v|V |}, {I1}, . . . , {I(|V |t+1)
} | V ∈ V and each Ii ⊂ V where |Ii| = t+ 1}.

Intuitively, there is a set S in the collection S per each H-subgraph H in G. The set S contains one
element V that represents the set of vertices V (H), and

(|V (H)|
t+1

)
elements each one representing a subset

of t + 1 vertices from V (H). In this way, any pair sets in S that are disjoint corresponds to a pair of
H-subgraphs that overlaps in at most t vertices.

Example 16. Consider the graph of Figure 6.2 with H = {C4}, k = 2, r = 4, and t = 2. The instance of
the (

(
r
t+1

)
+ 1)-Set Packing problem corresponds to.

V ={{a, b, c, d}, {b, c, e, f}, {b, c, g, h}}
U ={V ∪
{a, b, c}, {a, b, d}, {b, c, d}, {b, c, g}, {b, c, h}, {c, g, h}, . . . ,
{b, c, e}, {b, c, f}, {e, c, f}}

S ={S1 = {{a, b, c, d}, {a, b, c}, {a, b, d}, {b, c, d}},
S2 = {{b, c, g, h}, {b, c, g}, {b, c, h}, {c, g, h}},
S3 = {{b, c, e, f}, {b, c, e}, {b, c, f}, {e, c, f}}}

A (2, 4, 2)-set packing of S is {S1, S2}. This corresponds to the (2, 4, 2)-H-packing H1 ⊆ G[{a, b, c, d}]
and H2 ⊆ G[{b, c, g, h}].

The size of our constructed instance is bounded by |U| ≤ nr +
(
n
t+1

)
= O(nr + nt+1). Each set S ∈ S

has at most
(
r
t+1

)
+ 1 elements, and there is one set in S per set in V. Thus, the size of S is O(nr).

Lemma 95. Transformation 20 can be computed in O(nr + nt+1) time.

Lemma 96. G has a (k, r, t)-H-packing if and only if S has a (k,
(
r
t+1

)
+ 1, 0)-set packing (i.e., at least k

disjoint sets).

Proof. We build a (k,
(
r
t+1

)
+ 1, 0)-set packing KS from a (k, r, t)-H-packing K. For each Hj ∈ K, we add

a set Sj with
(|V (Hj)|

t+1

)
+ 1 elements as follows. The element V in Sj corresponds to the set of vertices

V (Hj). We add one element to Sj for each subset of t + 1 vertices from V (Hj). Thus, we are adding(|V (Hj)|
t+1

)
elements to Sj each one corresponding to a set of t+ 1 vertices. By our construction of S, each

Sj ∈ KS ⊆ S. It remains to show that the sets in KS are pairwise disjoint. Since V (Hi) 6= V (Hj) for
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each pair Hi, Hj ∈ K, none of the sets in KS will share the same element V . On the other hand, no pair
Si, Sj shares a set I with t + 1 elements. Otherwise, if Si and Sj would share an element {v1, . . . , vt+1}
for some set of t+ 1 vertices of V (G), then there are two H-subgraphs Hi and Hj that overlap in at least
t+ 1 vertices, a contradiction.

We construct a (k, r, t)-H-packing K using a (k,
(
r
t+1

)
+ 1, 0)-set packing KS . Each set Si ∈ KS has

an element VSi
∈ V which corresponds to a set of vertices in V (G) that forms an isomorphic subgraph

to H in G. We add to K an H-subgraph HSi
⊆ G[VSi

] for each set Si ∈ KS . Since the sets in KS are
pairwise-disjoint, V (HSi

) 6= V (HSj
). Now, we need to show that each pair of H-subgraphs in K overlaps in

at most t vertices. Assume otherwise by contradiction. If a pair of H-subgraphs in K shares t+ 1 vertices
({v1, . . . , vt+1}), then there is a pair of sets Si, Sj in KS that has an element I = {v1 . . . vt+1} in common.
However, this would imply that Si and Sj are not pairwise-disjoint, a contradiction.

We could now run a kernelization algorithm for the (
(
r
t+1

)
+ 1)-Set Packing problem which will leave

us with a reduced universe U ′T with at most 2rt+1((rt+1 + 1)k − (rt+1 + 1))r
t+1

elements as well with a
reduced collection of sets S ′.

Lemma 97. S has a (k,
(
r
t+1

)
+ 1, 0)-set packing if and only if S ′ has a (k,

(
r
t+1

)
+ 1, 0)-set packing.

Next we construct a reduced graph G′ using U ′.

Transformation 21. Input: G, U ′; Output: G′

Take each vertex v that appears in each U ′ and consider the graph G′ induced by all these in G.

By this construction, G′ has at most 2rt+1((rt+1 + 1)k − (rt+1 + 1))r
t+1

vertices.

Lemma 98. G′ has a (k, r, t)-H-packing if and only if S ′ has a (k,
(
r
t+1

)
+ 1, 0)-set packing.

Theorem 52. H-Packing with t-Overlap has a problem kernel with O((rt+1 + 1)r
t+1

kr
t+1

) vertices, where
r = r(H).

The induced version of the problem aims to obtain at least k induced H-subgraphs in G where each
pair of H-subgraphs shares at most t vertices, if possible. To achieve a transformation from this problem
to the (

(
r
t+1

)
+ 1)-Set Packing problem, we only need to redefine V as a collection of sets of vertices each

of which must induce an H-subgraph in G.

In this way, the kernelization algorithm for the H-Packing with t-Overlap that we described above
corresponds to Algorithm 2 with input G, H, k, (

(
r
t+1

)
+1)-Set Packing, Transformation 20, Algorithm [1],

and Transformation 21.

A.2.2 An Alternative PPT for H-Packing with t-Edge Overlap

The transformation for this version of the problem follows closely the one for the vertex-version. The
difference is that now we are having all possible sets of t+ 1 edges from an H-subgraph (instead of sets of
t+ 1 vertices) in U and S.
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Transformation 22. Input: G, H; Output: U , S, and r.

Let r = m(H)

The universe U is defined as E ∪ {I | I ⊂ E(G), |I| = t+ 1}.

The collection S contains all subsets of U with at most
(
r
t+1

)
+ 1 elements, of the following form:

{E, {I1}, . . . , {I( |E|t+1)
} | E ∈ E and each Ii ⊂ E where |Ii| = t+ 1}.

Example 17. Consider the graph of Figure 6.2 with H = {C4}, k = 2, r = 4, and t = 2. The instance of
the (

(
r
t+1

)
+ 1)-Set Packing problem is as follows.

E = {{ab, ad, bc, dc}, {gh, hc, bc, dc}, {bc, cf, ef, be}, {bf, cf, ec, be}, {bc, bf, ef, ec}}
U = E ∪ {ab, ad, bc}, {ab, ad, dc}, {ab, ad, be}, . . . ,
{gb, gh, hc}

S = {{S1 = {ab, ad, bc, dc}, {ab, ad, bc}, {ab, ad, cd}, {ad, bc, cd}, {ab, bc, cd}},
{S2 = {bc, gh, hc, bg}, {bc, gh, hc}, {bc, gh, bg}, {gh, hc, bg}, {bc, hc, gc}},
{S3 = {bc, cf, ef, eb}, {bc, cf, ef}, {bc, cf, eb}, {cf, ef, eb}, {bc, ef, eb}},
{S4 = {be, cf, ef, eb, bf, ce}, {bc, cf, ef}, {bc, cf, eb}, . . . , {eb, bf, ce}}}

A (2, 21, 2)-set packing for this instance is {S1, S4}. This corresponds to the (2, 4, 2)-H-packing H1 =
({a, b, c, d}, {ab, ad, bc, dc})) and H2 = ({b, e, c, f}, {be, cf, ef, eb, bf, ce}.

Lemma 99. Transformation 22 can be computed in O(nr
2

+ n2(t+1)) time.

Lemma 100. G has a (k, r, t)-edge-H-packing if and only if S has a (k,
(
r
t+1

)
+ 1, 0)-set packing (i.e., at

least k disjoint sets).

Proof. We build a (k,
(
r
t+1

)
, t)-set packing KS from a (k, r, t)-H-edge-packing K. For each Hj ∈ K, we add

a set Sj to KS with
(|E(Hj)|

t+1

)
+ 1 elements as follows. The element E in Sj corresponds to the set of edges

E(Hj). We add an element to Sj for each subset of t+ 1 edges from E(Hj). Thus, we are adding
(|E(Hj)|

t+1

)
elements to Sj each one is a set of size t+ 1. By our construction of S, each Sj ∈ KS ⊆ S. It remains to
show that the sets in KS are pairwise disjoint. Since E(Hi) 6= E(Hj) for each pair Hi, Hj ∈ K, none of
the sets in KS will share the same element E. On the other hand, no pair Si, Sj shares an element I. If
Si and Sj would share an element I = {e1, . . . , et+1} for some set of t+ 1 edges of E(G), there would be
two H-subgraphs Hi and Hj that overlap in at least t+ 1 edges, a contradiction.

We construct a (k, r, t)-edge-H-packing K using a (k,
(
r
t+1

)
, t)-set packing KS . Each set Si ∈ KS has

an element ESi
∈ E which corresponds to a set of edges in E(G) that forms an H-subgraph HSi

. In this
way, we add to K an H-subgraph HSi

with edges ESi
for each set Si ∈ KS and vertices V (ESi

). Since the
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sets in KS are pairwise-disjoint, E(HSi) 6= E(HSj ). Now, we need to show that each pair of H-subgraphs
in K overlaps in at most t edges. Assume otherwise by contradiction. If a pair of H-subgraphs in K would
share at least t + 1 edges ({e1, . . . , et+1}), then there would be a pair of sets Si, Sj in KS that has an
element I = {e1 . . . et+1} in common. However, this would imply that Si and Sj are not pairwise-disjoint,
a contradiction.

Using similar steps as with the H-Packing with t-Overlap (vertex-version), we can reduce this trans-
formed instance to a kernel.

Theorem 53. H-Packing with t-Edge Overlap has a problem kernel with O((rt+1 + 1)r
t+1

kr
t+1

) vertices,
where r = m(H).
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Appendix B

Compendium of Parameterized
Problems

We list in this appendix all the parameterized problems studied in this thesis. For the set problems, each
set in S has at most r elements while for the graph problems, each graph in H has at most r vertices and
m edges.

B.1 Set Problems

The r-Set Packing
Input : A collection S of distinct sets, each of size at most r, drawn from a universe U of size n,
and a non-negative integer k.
Parameter : k
Question: Does S contain a (k, r, 0)-set packing, i.e., at least k sets K = {S1, . . . , Sk} where
|Si ∩ Sj | = 0, for any pair Si, Sj with i 6= j?

The r-Set Packing with t-Membership problem
Input : A collection S of distinct sets, each of size at most r, drawn from a universe U of size n,
and a non-negative integer k.
Parameter : k
Question: Does S contain a (k, r, t)-set membership, i.e., at least k sets K = {S1, . . . , Sk} where
each element of U is in at most t sets of K?
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The r-Set Packing with t-Overlap problem
Instance: A collection S of distinct sets, each of size at most r, drawn from a universe U of size n,
and a non-negative integer k.
Parameter : k.
Question: Does S contain a (k, r, t)-set packing, i.e., a collection of at least k sets K = {S1, . . . , Sk}
where |Si ∩ Sj | ≤ t, for any pair Si, Sj with i 6= j?

The r-Set Packing with α()-Overlap problem
Input : A collection S of sets each of size at most r, drawn from a universe U , and a non-negative
integer k.
Parameter : k
Question: Does S contain a (k, α())-set packing, i.e., at least k distinct sets K = {S1, . . . , Sk}
where for each pair Si, Sj (i 6= j) α(Si, Sj) = 0?

The r-Set Packing with α()-Overlap (PCH) problem
Input : A collection S of sets each of size at most r, drawn from a universe U , a non-negative
integer k and a collection C = {C1, . . . , Cl} of sets of elements where Ci ⊂ U .
Parameter : k
Question: Does S contain a (k, α())-set packing (PCH), i.e., a set of at least k distinct sets
K = {S1, . . . , Sk} subject to the following conditions: each S∗i contains at least one set of C; for
any pair Si,Sj with i 6= j, ((Si ∩ Sj) ∩ val(C)) = ∅, and Si, Sj do not α-conflict?

B.2 Graph Problems

The H-Packing problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, r, 0)-H-packing, i.e., a set of at least k subgraphs K = {H1, . . . ,Hk}
where each Hi is isomorphic to some graph from H and |V (Hi) ∩ V (Hj)| = 0 for any pair Hi, Hj

with i 6= j?

The Edge-H-Packing problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k,m, 0)-edge-H-packing, i.e., a set of at least k subgraphs K =
{H1, . . . ,Hk} where each Hi is isomorphic to some graph H ∈ H, and |E(Hi) ∩ E(Hj)| = 0 for
any pair Hi, Hj with i 6= j?
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The H-Packing with t-Membership problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, r, t)-H-membership, i.e., a set of at least k subgraphs K =
{H1, . . . ,Hk} where each Hi is isomorphic to some graph H ∈ H, V (Hi) 6= V (Hj) for i 6= j,
and every vertex in V (G) is contained in at most t subgraphs of K?

The Induced-H-Packing with t-Membership problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, r, t)-induced-H-membership, i.e., a set of at least k induced sub-
graphs K = {H1, . . . ,Hk} where each Hi is isomorphic to some graph H ∈ H, V (Hi) 6= V (Hj) for
i 6= j, and every vertex in V (G) is contained in at most t subgraphs of K?

The H-Packing with t-Membership (ISV) problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, r, t)-H-membership (ISV), i.e., a set of at least k subgraphs K =
{H1, . . . ,Hk} where each Hi is isomorphic to some graph H ∈ H, E(Hi) 6= E(Hj), and every
vertex in V (G) is contained in at most t subgraphs of K?

The H-Packing with t-Edge Membership problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k,m, t)-edge-H-membership, i.e., a set of at least k subgraphs K =
{H1, . . . ,Hk} where each Hi is isomorphic to some graph H ∈ H, E(Hi) 6= E(Hj) for i 6= j, and
every edge in E(G) belongs to at most t subgraphs of K?

The H-Packing with t-Edge Membership (NISV) problem
Input : A graph G, and a positive integer k.
Parameter : k
Question: Does G contain a (k, r, t)-edge-H-membership (NISV), i.e., a set of at least k subgraphs
K = {H1, . . . ,Hk} where each Hi is isomorphic to some graph H ∈ H, V (Hi) 6= V (Hj), and every
edge in E(G) belongs to at most t H-subgraphs of K?

The H-Packing with t-Overlap problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, r, t)-H-packing, i.e., a set of at least k subgraphs K = {H1, . . . ,Hk}
where each Hi is isomorphic to some graph from H, V (Hi) 6= V (Hj), and |V (Hi)∩ V (Hj)| ≤ t for
any pair Hi, Hj with i 6= j?
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The Induced-H-Packing with t-Overlap problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, r, t)-induced-H-packing, i.e., a set of at least k induced subgraphs
K = {H1, . . . ,Hk} where each Hi is isomorphic to some graph from H, V (Hi) 6= V (Hj), and
|V (Hi) ∩ V (Hj)| ≤ t for any pair Hi, Hj with i 6= j?

The H-Packing with t-Edge-Overlap problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k,m, t)-edge-H-packing, i.e., a set of at least k subgraphs K =
{H1, . . . ,Hk} where each Hi is isomorphic to a graph H ∈ H, E(Hi) 6= E(Hj), and |E(Hi) ∩
E(Hj)| ≤ t for any pair Hi, Hj with i 6= j?

The H-Packing with t-Edge Overlap (NISV) problem
Input : A graph G, and a non-negative integer k.
Parameter : k
Question: Does G contain a (k,m, t)-edge-H-packing, i.e., a set of at least k subgraphs K =
{H1, . . . ,Hk} where each Hi is isomorphic to a graph H ∈ H, V (Hi) 6= V (Hj), and |E(Hi) ∩
E(Hj)| ≤ t for any pair Hi, Hj with i 6= j?

The Π-Packing with α()-Overlap problem
Input : A graph G and a non-negative integer k.
Parameter : k
Question: Does G contain a (k, α)-Π-packing, i.e., a set of at least k induced subgraphs K =
{H1, . . . ,Hk}, subject to the following conditions: i. each Hi has at most r vertices and obeys the
property Π, and ii. for any pair Hi, Hj , with i 6= j, α(Hi, Hj) = 0 and V (Hi) 6= V (Hj)?
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