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Abstract

Microgrids are local energy providetisat can potentiallyeduce energy experssand emissios by
utilizing distributed energy resources (DERs) and are alternativessting centralized systems. This
thesis investigates the optimal design and plannisgicfimicrogrids using a multidisciplinary design
optimization approachasedramework

Among a variety oDERSsit is widely accepted that renewalksource of enery play an important
role in providing a sustainable energy supply infrastrucaséhey are both inexhaustible and ron
polluting. However the intermittent nature and the uncertainties associated with renewable technologies

pose sufficient technologicahd economical challengéor system planners.

Design of complex engineering systems has evolved into a multidisciplinary field of\&tedievelop

a framework for design and planning of complex engineering systems under uncertainty using an
approach ofmultidisciplinary design optimization under uncertainty (MDOUU). The framework has
been designed to be general enough to be applicahlarge variety of complex engineering systems
while it is simple to applyMDOUU framework is a three stage plannstgategy which allows the
system planners to consider all aspects ranging from uncelitaigsourcestechnological feasibility,
economics, and life cycle impacts of the system and choose an optimal design suited to their localized
conditions. Motivation behind using MDOUU lies not only in the optimization of the individual

systems or disciplines but also their interactions between each other.

Following the modeling of the resourcea deterministic optimization model for planning microgirds

is developednd results are evaluated usiMgnteCarlo simulations. Given the obvious limitations of
the deterministic model in not being able to handle uncertainty efficiently and resulingxpensive
design we extenddtie model to a two stage stochastic prexgming model which provides a unified
approach in determining the sizing of microgrids by considering uncertainty implicitly by means of
scenariosProbabilistic scenarios are developsihgC-vine copulashat model nonlinear dependence.
We evaluate thesignificance of the stochastic programming model using standardized metrics

evaluatingoenefit of using the stochastic model.

As any product or service nestd be evaluated for its environmental impacts, MDOUU provisions a
LCA modulethatevaluates ta environmental impacts and energy demands ofdh#onents of the

systembased on extensive literature atatabasessing openLCA as a tool.



The overall system selection involves multiple critearad interests oflifferent stakeholdersThis
requiresa multi-attribute decision systemnda comprehensive ranking approagtoviding a list of
possible configuration based on itheelative importance as denoted by #stakeholdersWe use
Analytical Hierarchical Process (AHP) combined with compronpisegamming torank a list of
configurations based a@tonomic and environmentattributessuch as GHG emissions saved, cost of
energy, annual energy productjoet present value (NP} It allowsthe planners to make decisions

considering the interestd a majority ofstakeholders

The MDOUU framework proposed in this thesis with specific application to the microgrid planning
problem contributes in helping the planners handle uncertainty of renemestleces of energy and
environmental impacts in asgmatic wayAs such there is no method available in the literature which
considers planning of microgrid using such holistic and multidisciplinary framewbgk MDOUU
framework is a generic toahd isuseful for planning problems eavariety ofcomplex systems
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Chapter 1

l ntroducti on

1.1 Motivation and Challenges

It is evident that the global demand for energy has been increasing rapidly, which imposes a huge
dependencen existing energy resources (fossil fuels/oil); this leads to increasing pollution and global
warming[1]. It has been analyzed that in the upcoming 25 years the global energy demand is expected
to increase by 50 % given the population growth and economic development. In this context renewable
energy resources appear todbpromising source of clean enefdy.

In the past, the defining nature of the world's power supply systems has been of centraliehtion
much of which depended on foskikls Theyhave beeignificant majoresources to produce power
in large generation facilities to provide lasst electricity to high population densities. Given the
rapidy increasing cost of extension and maintenance of transmission networks fyerodatral grids,
many isolated systems have instead adopted distributed generation for local power supply. Renewable
energy is also an important alternatisesuch isolated systems (rural/islapgisven the high oil prices,
the cost of transmission expsion,andthehigh cost of transportation of fyellong with the desire to

reduce CQemissions.

Canada is the second leading producer of greenhouse gas (GHG) enmissicaigitaand one of the
fastest growing playersoatributing to energy demanfl]. Although the cost of energy from
conventionalresources is typically lower than that from the renewable enespurces, an optimal

mix of renewable energy with conventibmesourcesan reduce the overall cost of energy in isolated
systems, whiclare often referred to as microgrids. Distributed generation in these systems typically

range in capacity from 5kW to 10MW, at or near the-eser to provide the electric poweraded2].

1.2 Research Objectives and Scope

Increasing oil and fossil fuel prices, extreme changes in the climatic conditions have motivated us to
direct ourseles to meet our power needs from renewedsleurces of energy, away from a centralized
power system to a more decentralized and hybrid power system. Most of the work decr®gnian

design has been donsing deterministic methodsuta majority of theeferenced work acknowledges



the stochastic nature of the renewable generation and demand. It has been really challenging to develop
joint stochastic models for the design of small microgrids with high renewable penettaticio

multiple disciplines invtved and the need to consider both economic and environmental metrics
Developing models which incorporate planning and operation considedbdity to dispatchand
uncertainty in renewablesources and demandaisuallythe prime goal. Planning modehcorporate

a long time horizon with large time intervals while operation models incorporate a short time horizon
with smaller time intervalgand considering both simultaneously is nearly impossible for most real

world systems

Stochastic models have ®dderable advantage over deterministic models, one of these advantages is
that the overall cost, namely, the sum of investment and operational costs, is lower than the overall cost
from its deterministic counterpart and that the stochastic model canhmaejuirements for all the
foreseeable scenarios, something that a deterministic model cari3pt do

Developing stochastic models is just not enough in any proifleisk is na considered explicitly.

Hence, an optimization model for planning and operati@aminimizes riskdue torandom events is
needed. The mearariance Markowitz theorf4] can be applied with an introduction of a single risk
factor in the objective function to explicitly account for the traffe between the mean and variance

in benefits.

Markowitz theory hasbeen used extensively in portfolio optimization and has provefuluse the
context of microgrid planning and design, we have a portfolio of generation and storage resources and
costs associated with them. Given various operating, budget and religdglitgiit of load unservid
constraints, we wish to minimize ourats and the risk of our investment in long term.

Microgrid planning not onlyconsidersthe energy needs of the local community but also helps in
preventing adverse effects to the environment by reducing thar@otherGHG emissions. They are
also helpfli in providing local employmentHowever, 1 is important to understand that any
infrastructural set up will involve investment in the form of money and (satje thatmay have
otherwise been used for agricultural purp@te, an issue that came to bederstood in recent days
from large increase in corn (food/feed crop) prices when used for fuel prodiggtibmour planning

we need to address all these issueettgrand the framework proposesl expectedo help such

planning

Therefore animportantobjectiveof our researcis to developa frameworkbased on the idea of multi

disciplinary design optimizatioMDO) and life cycle analysis. The former takes aairéhe multiple
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disciplineswhich we may have to consider for a robust design while the latter one encompasses the
cradle tograveanalysis of any component involved in the development of the microgrids and their

effects orthe environmentvhetherpositive or negative.

LCA of a microgrid involves detailed analysis of the individual components of the microgrid ranging
from the wind turbines, solar panels, batter@s to the system as a single entifyhis allows us to
evaluate the microgrid based onrhalistic approach and its impact on the environmé&htere is
immense evidence of a broad spectrum of research in thefak€A usefulfor renewable energy
technologies. Most of the research faces difficulty finding accurate data for localsrbgiomcent
advancements in comprehensive databases have reduced this difficulty manifolds

Microgrids can be autonomous or gdonnectedbased orthe location and future planning. An
analysis towards the feasibility of establishing a microgrid as compa@htecting it to the main
grids also plays an important role in the cost and planning anfgysis

In summary, the list of goals proposed in this resefnchuilding the framewik:

91 Develop statistical models for robust modeling of renewable emesgurces and demand given
uncertainties inherent in them. It is also important to understaniégendencbetween renewable
energyresources (solar and wind in our case) for optiplahning decisions of systems utilizing
such resourcedVe investigate first order dependermdween powegenerationgrom renewable

resources at various locations in proximity

1 Find an optimal configuration of a microgrid fed by renewable energy nesnuThisis an
optimization problem which considers the minimization of capital and operational costs subject to

operational and reliability constraints.

1 Developstochastic optimization model to incorporate the probabilistic uncertainties in supply and
demand. Stochastic optimization model is more complete as it encompaseasscenarios of
supply and demand. We use the approach ofstage stochastic programming with recourse for

our problemMarkovitz mearvariance model is used to consider riskrivestment.

1 Microgrids have a diversified impact on the environment and the community. Hence we need to

analyze its impacten the environment in detail and the most obvious approach is to undertake
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LCA of the possible microgrid configurations. Since leaonfiguration has multiplearying
attributes, we used a MuliCriteria Decision Analysis (MCDA) method based on compromise
programming for selecting a configuration, which is made possible by the proposed

multidisciplinary design optimization undenceatainty basedramework.

1.3 Thesis Outline

This thesisvork is presented ireven chapter€hapter 2ffers a comprehensive literature review of

the research contributions in the area of microgrid planning.

Chapter 3presentghe integration of the models of resource, demand, microgrid planning and LCA
We use Multidisciplinary design optimization to formulate a general frameworkheplanning of
micro gridsusingthe MCDA approach using comprongigrogrammingThe modelingaspects of our
work with uncertain resources angeplored inChapter 41t explains our approadhr modeling of wind

and solar energy using the Kumaraswamy distribugimithe ®pula based &/ine goproach to model

the dependence.

We extendthe deterministicoptimizationmodel into atwo-stagestochastic programming model in
Chapter 5In addition, weused the Markovitz meavariance model and extended our {stage
stodhastic programming modgb consider risk explicitly in microgrid planning

Chapter goresents aapproach talo life cycle analysis of the possible microgrid configuratjo@A

of each resource technologyging the large ammt of data availabla public data sets. Hllows us
to choosea microgridthatnot onlyis economically profitable but alssuitablyaddresseany adverse
effects orthe environment. We used apen sourcéool called OpenLCA for perfoing the LCA of

our microgrids.

Chapter Hresents summary and conclusionha thesisandhighlights the major contributions of the

thesis. It also lays path for researchers to investigate in newer areas of research.



Chapter 2
Mi cr oBlramnionbgl ePm: Literature Review

2.1 Introduction

There has been a thrust by UNFCCC (United Nations Framework Convention on Climate Change), to
prevent climate change and global warming by accelerating research and development to enhance the
penetratiorof renewable&esources of energy which are capable of replacing fossil fuels. A very precise
definition of a microgrid has been stated [B). A microgrid is a cluster of electity sources and
(possibly controllable) loads in one or more locations that may or may not be connected to traditional
wider power systems, or the grid. The most intriguing feature of a microgrid is its ability for local
control, allowing it to operate liably as an island. The success of such distributed microgrids will
depend heavily on the availability of renewable resource and the economics of the distributed energy
resources.

It is quite clear that the early success of small clusters of such meketwtegy generation, possibly
grouped with storage, controllable loads and other microgrid elements will empower such systems to
succeed. Long term economic, environmental and utility system benefits are evident, policies and
strategies are required to ped such microgrids to a more widespread audience. There are still some
technical, economical and regulatory issues which restrict the widespread deployment of renewable
energy systems (resource is wind and solar, for example) (RES) in any power systeyhth@rmost
significant issues with their deployment is their uncontrollability and undispatchability. Most of the

recent designs assume the renewsadsdeurces to be dispatchable, which is practically not feasible.

Electricity is one commodity that isegerally consumed almost instantaneously once generated.
Demands are generally fluctuating hence system planners perform complex, multistage planning
process that enable the generators to deliver the agreed amount of power and change their output
promptlyor on a short notice. One way to deal with the problem of uncontrollability of RES is to use
them in conjunction with controllable generators and energy storage. It is quite evident from the
literature that combinations of RES with controllable generaogsstorage systems ("Hybrid Power
Systems", HPS) are considered as feasible alternatives only in rural areas such as villages, islands and
oases, where it is prohibitively expensive to extend power transmission lines from the main grid to

serve the loads these remote areas.

Recently, the outlook towards installation of such HPS has been changing for two major reasons:
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1 RES and storage units are getting bigger and less expensive.

1 Decentralization of the grid is taking place, enabling higher penetratidRE& and
distributed generation.

The traditional centralized power grid which had a three layered architecture (generation,
transmission and distribution) is transforming into a more modular decentralized architecture with poly
microgrids with distributedjeneration and smart communication protocols to enable high renewable
penetration. In this context, development of an optimal strategy for choosing the right mix of renewable
resources of energy plays an important role in the planning and operationH® i@ the microgrid.

There has been extensive research performed in this domain but the uncertainty of rersowabls
of energy and pricey storage solutions make the process of technology selection a very challenging

task.

2.2 Literature Review

Global eavironmental concerns and the ever increasing need for energy, combined with the steady
progress in renewable energy technologies gravided huge thrust in industry andcademia to
explore solutions for energy which are cheap, environmental friendigbleeand selsustaining.
Extensive research has been carried out inpts few decades towards design of systems which
encompass the above mentioned featutesice in an attempt to design HPS with mainly solar and
wind power as renewablesources oknergy we review literature of techniques for designing self
sustaining HPS in isolation and with grid connectivity. Large spectrum of mathematical tools have been

employed in an attempt to find an optimal mix of such resources to develop reliable systems
2.3 Modeling of Random Variables (Renewable Energy Resources)

2.3.1 Wind Energy

Wind energy is the kinetic energy of wind utilized for the production of electricity. There has been a
dramatic growth in wind power penetration since the beginning of tFlec@dtuy. Total global
installed capacity of wind power at the end of 2011 was around 238 GW which was significantly large
than 18 GW at the end of year 2000. AlImost 41GW was added in 2011 alone. There has been extensive
growth in wind power in Asia, overtakinguiEope and North America. China, in specific, has become
the leader in terms of the total installed capacity in a very short span of time, exceeding United States
in 2010. There have also been a number of recent developments in offshore wind projeats & doz
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European countries have provided their consent for development of an off shore electricity grid in the
North Sed1].

2.3.1.1 Wind Turbine Model

The analysis of power generation using any renewable sourcessantial component of the planning
studies. In the context of Wind Turbines (WT), it is not possible to achieve a realistic evaluation of the
electrical system in question by simply using deterministic analysis. The probability of a given wind
speed carbe estimated if the probability distribution is known. Once the wind speed is known, the

power injected into the grid can be calculated by means of the WT powef{&@urve

2.3.1.2 Wind Turbine Characteristics

The output of a wind generator is determined by the average hourly wind speed at the hub height and
the output characteristics of the wind generator. For evaluating the output power of the wind generator,
the measured data of average hpwind speed must be converted to the corresponding values at the
hub height, using the wind speed at a reference hiaigimd wind speed at a specific hub heiglfdr

the chosen location as in Equation 2.1, wheig wind speed in m/sj, is wind sped at reference

height in m/s andl is the power law exponeffl].

S 2-1

In association with the wingpeed evaluated in Equati@ri, the mode]9] used to evaluate the wind
powerd O W, generated by the wind turbine is as shown in Equ&t®nvherePr is rated power
of wind turbine in KW v is cut in speed of wind turbine in mig, is cutoff speed and is the rated

speed of the wind turbine in m/s
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Figure2-1: Power Curve for Whisper 3kW Wind Turbine

The power curve for the Vidper 3kW (Sothwest Wind Powdt)0] wind turbine is developed based

on the equations above. This is one of the small wind turbines used in a few microgrid projects. The
power curve and spedifition are obtained directly from HOMER. The power curve of most of the
wind turbines in the range of 1kW to 30kW follow a similar shape. But the choice of a specific wind
turbine is based on the average annual wind speed of the location and econonsipsr BKW wind

turbine was used in similar a microgrid in South Afritd] and hence we decided to use this wind

turbine for our case study.

2.3.1.3 Wind Speed Modeling using Probability Distributions

Hourly wind speed is considered as a random variable and is modeled using the Weibull Probability
Distribution (PDF)12], the mathematical expressions are given by Equat® i his endles planners
to predict the wind speed at a given location for any specific time. This information is useful for

predicting accurately wind power available at the site.
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2.3.2 Solar Energy

Photovoltaic (PV) systems generate electricity using energy from the sun. They constitute another
environmentally friendly alternative way for energy production. They operate quietly without
emissions anthey can be installed quickly. Their long lifetimes and little maintenance requirements
make them an ideal solution for not only urban but rural deployments when used as autonomous
systems. PV systems can be located close to the sites where the electddityconsumed. Generator
systems near the emder can reduce transmission and distribution costs as well as transmission and
distribution losses. At the moment, the major barrier to the widespread adoption of photovoltaic
technology is its high cost.

Within Europe there are several countries with extensive experience withogrnected systems.

These include Austria with its 200kW Photovoltaic Rooftop ProdgiE®h Gemany with its 1000

Roofs Program (now 100,000 Roofs Program), which led to the installation of more than 2250 systems

by 1999, ltaly with ENELs 3.3MW PV plant, the Netherlands with an expanding research and

demonstration program (several MW of PV have hestalled, mainly on roofs) and Switzerland with

its Energy 2000 program. There are also, many experimental PV power stations and demonstration

projects. Japan with its 70,000 roofs program plans to increase its installed capacity from 10000 systems

in 1997 to 4600MWop by 2010. In the UK the potential is seen for building integrated PV systems.
Irradiation or sometimes simply radiation is the radiant energy per unit area on a surface and is

measured in J/for Wh/n?. Irradiance is the power per unit areaacsurface and is measured in V&/m

Our prediction of solar radiation at a certain location is based on radiation data from the past. The solar

radiation data are usually recorded on the horizontal surface.

The solar radiation on a surface of an arbit@rgntation at any time depends on the angle of the solar
rays with the surface in question, that is to say, on the relevant position of the surface with respect to

the sun. This is determined by the surface orientation and the astronomical parametgste RV
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modeling requires the knowledge of radiation on the inclined surface of the PV panel which usually
has to be calculated using the radiation on the horizontal surface. The steps in the radiation conversion
are as follows: Firstly, the radiation haste decomposed into the two components; beam and diffuse.
The next step is the transposition of each onto the inclined plane. The total (global) radiation contains
a sum of the two components as well as the ground reflected radiation. The key procédeire is
calculation of diffuse radiation. The key quantity in this calculation is the clearness index which
expresses the effect of the atmosphere on the extraterrestrial solar ra@atms.most of the
environmental factors are random and we are awatedler insolation variekom day to dayat the

same hour we need a technique to model this uncertainty.

2.3.2.1 PV Panel Characteristics

The hourly output power of a PV panel can be calculated by several analytical models which define

the currertvoltage relatinships based on the electrical characteristics of the PV panel.

The model presented p34] is used in all the calculations. It allows for calculating the PV panel current
(Impp) @and voltage (Wpp) at the maximum power point using a maximum power point tracker (MPPT).
This model includes the effects of irradiation level and panel temperature on the output power as shown
in Equation2.71 2.14, wherdscis short circuit cuient of solar panel in A/maxandVoc are maximum

voltage of PV panel at the reference operating condition and open circuit voltage of PV panel in Volts,
respectively,  is temperature coefficient for open circuit voltage in V/degis the maximum

current of the PV panel at the reference operating contitipnis temperature coefficient for short
circuit current at reference operating conditi@sand Ges are hourly irradiance on tilted surface in

W/n? and irradiance at reference operating conditions equal to 1006, Wéspectively, and dland

Trer are PV panel operating temperature and reference temperature in degree Celsius, respectively.
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and the PV panel powat the maximum power poifppiS expressed as:
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where normal operating cell temperature (NOCT) is defined as the cell temperature when the PV panel
operates under 800//nt of solar irradiathn and 26C of ambient temperature and NOCT is usually
between 42C and 46C.

Most of the data sources provide only solar irradiation data on a horizontal plane. The power incident
on a PV module depends not only on the power contained in the sunligiisdah the angle between
the module and the sun. When the absorbing surface (PV panel) and the sunlight are perpendicular to
each other, the power produced is maximum. However, the angle between the sun and a fixed surface
is continually changing, the per density on a fixed module is hence always less than that of the

incident sunlight.

The tilt angle has a major impact on the solar radiation incident on a surface. For a fixed tilt angle,
the maximum power over the course of a year is obtained whéit tregle is equal to the latitude of
the location. However, steeper tilt angles are optimized for large winter loads, while lower title angles
use a greaterdction of light in the summer and hence accordingly one needs to change the orientation

of thesolar panels. For our study we would restrict to the values of horizontal solar irradiation only.
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2.3.3 Modeling of Random Variable with non-linear dependence structure

2.3.3.1 Correlation analysis between renewable generation using Copulas

wind power isone of thewbrd 6 s | ar ge st aesodrcesna reriewable energy.sSolér | e
power is becoming the second most poprégsources of renewable energy. However, intermittency in

the availability of the renewabhesources of energy presents a barrier to the rerevealergy based

systems (mostly wind and solar power) to meet the demand entirely. Wind shows sudden changes, and
a very high variability. While, solar power is more stable than wind and follows aeteljnized

pattern but the power output shows highafaitity with a slight change in solar insolatiddur analysis

is based on locations in Canada and the United States, although our models are general and can be
employed to any data set.

Wind speeds in general are nGaussian and nedinearly correlatedand so are their spatial
dependencies. Hence, we utilize the Kumaraswamy distribution to model the wind Poererare

two reason for using Kumaraswamy distribution, firsfly t 6 s a genewith bimilati st r i b
characteristics as the beta disttibn and, secondly, ihas a very simple analytical formulatitimat

allows forfastcomputatios andeasyintegration with copulgsvhichwill be discussed in detail later.

There has been existing literature on the possibility of smoothing wind power cnaggeographical
dispersion or by interconnecting the existing dispersed systems. Most of the literature refers to wind
farms. In[15], authors investigate the impact of thesays of wind turbines of varying sizes. They

used data from California and concluded that the reliability of the systems increased with increased in
system size. Also recently, it has been found that interconnection has a great impact on reliability and
stability of renewable energy generation (mostly wind poEs).

Dependence is quantified usually using measures of association, such as linear correlation coefficient
[17]. It has been shown in the literature that the linear correlation coefficient of the power from wind
power plants tends to decrease with increase in the separation and dsitedpghavior for longer
averaging periodgl8].

The linear correlation coefficients provide general information about dependence; it does not uniquely
describes the structucef dependence. Unfortunately, it doesn
information that can be used by system operators or planners. Let us for example assume a system
planner wishes to know the number of hours in a year the aggregate windipoweesystem will be

above or below some threshold value. It has been demonstrated that the information on linear

correlation coefficient, even coupled with knowledge of marginal distributions of wind power is not
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sufficient to determine the actions gpecific information. The only possible way to describe the
dependency structure fully is by using joint distribution functions. On the other hand, no multivariate
distribution models are available for wind power and moreover no common joint distrikfittigimsl

power data accurately.

There are always options for modeling such scenarios, one possible way studied in the literature is by
decomposing the assumed correlation matrix using Cholesky decompd$iiornis approach is only
suitable if one has linear correlation, and it allows the planner to have no control in utilizing the possible
nonlinear dependence structure. Hence a more appropriate approach to méidelampron-normal,

and more complex dependency structure is by uSopulas[18, 2023)].

Copulas are very widely ad in the field of financgl7, 24] andauthorspossess some unique
characteristics which make them attractive and appropriate for wind power md@8&finghe most
important feature of copulas is their ability to model the dependence structure independently of the
marginal distributions of the participating variables. This is quite impoagottput of wind power at
different locations is often not trivial and therefore finding this dependence independently of their
behavior is of great advantage for the system planners. The correlation between the locations can be
estimated from charactetiiss such as separation distance, averaging perid@®&7]. Therefore, if

only basic information is available about the location of the wind turbines, quite accurate model of the
dependency structure can be produced. The selection of an appropriate copula function is very
important at this poin Inappropriate selection of the copula can result in unacceptable errors.

In literature it is most commonly found that the default choice for copula is the Gaussian copula, but it
has not been rigorously investigated that if this is an appropriateediooieind power. Irf22] wind

power was modeled using the standard Gaussian copula and their decision to use the Gaussian copula
was based on the qualitative assessmktiteoQQ plots. While a more comprehensive approach was
adopted if27] where they tested a number of standard copulas on wind speed rather than wind power
and only tested the Archimedn copulagl7].

The most important usage of modeling wind power using copulas is in the generation of s8jarios

As it will be demonstrated in this thesis, wind power production scenarios are necessary for stochastic
programming which is a common decision making tool in power system analysis and planning research.
For example|29] utilized Gaussian copulas to generate these scenarios, while Empirical copulas were
used in[30] whereauthorsmodela the dependency structure between the wind speed and the wind
power output. In31] copulas are used for wind speed forecasting, where they utilized a guaptila

kernel densit estimator to improve the probabilistic wind power forecasts.

13



It has been shown in the literature for a quite a long time that wind speed arernaily distributed

and recent studies on the evaluation of the dependence structure of the wind sgeeéirhae that

they are nodinearly dependar{il8, 22]and many more.

Hence when the multivariate data is not normdistributed the quantiles of sums of margins may not

be calculated from sums of variances and covariancg&8]nauthorshave modeled the univariate

time series of wind spdausing a seasonal ARMA model which was proposed by Benth and[B2hth

for each location individually. To model the correlation between the various locatiepgnalyze the
correlation between the residuals of the various univariate time series and fit copulas to the residuals
developing copula&SARCH models. They have addressed this issue based on daily mean wind speed
and we feel that a stronger correlatgiructure underlies the wind power on an hourly basis as wind
has finite velocity and change in wind velocity at one location is-tagged correlated to the other

and the correlation is significant and cannot be neglected.

2.3.4 Microgrid Planning - Deterministic Approaches

In [33], Ofry et. al. developed a graphical method based on the loss of power supply probability to
design a standlone solar electrical system. The idea addy[33] was to minimize a linear cost
function comprising the cost of battery and solar arrays. The minimum is obtained by finding the
derivative of the cost function. Thiméar cost function is shown below, wh&€ is the total cost of
the system, is the cost of a single PV pankl,is the cost of a single battery aril is the fixed
installation cost. All costs are in dollars ($):

60 |0 To 0 2-15
In [33], the authors expressed the feasibility of their model using a real world example of a low power
communication box, which means that extending the idea of suchaltarelsystems to large power
applications was a challenge.
A very similar approach t¢33] was carried out a few years la{84]. An analytical approach was
adopted with whih extensive simulations were performed on meteorological data obtained from
various places in ltaly. The system under studfB# also consisted of a photovoltaic array, power
tracker battery storage, inverter and a controllable load. Given the extensive research being carried out
in the domain of design of stafadbne systems, a sizing habdok was published, which summarized
all the techniques developed till then based on the sizinges and loss of power supply probability.
The repor{35] extended the work to include seasonal variations in the meteorological data.
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In [36], the author has presented an analytical technigue for the design of standalone solar and battery
systems. He presents an analogy between the battery storage and reservoir, queues and stocks and
approabed the problem by formulating the energy deficitMarkov processHe discretized the
probability distribution for the energy deficit and solar power generated and converted them into finite
states. States were then evaluated using the transition gitytrabirices.

Design of HPS for a house was carried out initiallf3%]. Authors fixed the number of wind turbines

and developed a methodology for calculation of aimw size of a battery bank and the PV array for

a windPV system. Long term hourly meteorological data was used to evaluate average wind power
and PV power for every hour of a typical day of a month. The load was considered as a typical
household in theity of Massachusetts. Given the load and desired loss of load probability an optimal
number of batteries and PV modules were calculated based on minimum cost criteria.

In [38], deggn of a HPS without considering the daily variation in the meteorological parameters is
presented. Instead they consider the monthly variation which prevents over sizing of the system design.
In their work they do consider the impact of battery storagedbunot discuss about the size of the
battery. It becomes an important parameter in design of HPS to obtain an optimal number of batteries
or any other storage since it governs an important and significant portion of the systems cost. The work
in [38] considers the problem of optimal design by a graphical technique by building graphs of PV vs
Wind and identifying the feasible region. These graphs are usually referresizimgeuves Seasonal
variations in the meteorological information have also been considered as a part of the analysis.
Interesting conclusion ¢88] was that the principal reason for HB&ng the cheaper solution than PV

or wind alone is the fact that the energy generated by the hybrid can be matched more closely to the
load and prevents over sizing of systems which may be too expensive.

The work in[39] addresses the design and integration of an isolated HPS. A goal of this work was to
design a stationary electric power system for Necker Island near California, which allows full operation
and future expansioof the facility and drastically reducing the environmental impact of the current
fossil fuel generation. 1{89], the power system of Necker Island was redesigned which iredgiee

Island's hot water, electrical and water desalination systems. They formulate the combined optimization
problem based on the performance and by constraining carbon emissions. Issue of voltage stability is
also addressed in the context of low voltggd. They employ the idea of distributed control to enable

each unit float their frequency to ensure system stability with changing demand and supply profiles.
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2.3.5 Microgrid Planning - Stochastic Approaches

Stochastic desigapproach has been recently agajby Chandy et. d40], whereauthorsdiscretized
the battery state and modeled it as a Markov process. They considered the state of energy deficit as an
absorbing state and hence ay anstant, to evaluate the probability of loss of power supply, it was
obvious to find the probability of the storage to be in the absorbing state. Very similar stochastic models
have already been used in hydrology to understand and model the resdriebihave a direct analogy
to a battery in our case. Jal], Ponnambalam et. al. presented an analysis of a multireservoir system
based on the development of first and secomenent expressions for the stochastic storage state
variables. The expressions[#il] give explicit consideration to the maximum and minimum storage
bounds in the reservoir sgsh. Their formulation provided analytical results for various parameters
such as variance of storage, reliability levels and failure probabilities, which are of significant
importance to a power system under consideration as well. The ideas of usingifditaions from
[41] was extended i2] to analyze the 2 Method from{41] in capacity design of a battery bank in
renewable energy systems with constant demand and uncertain supply.
Analytical expressions similar {84] were obtained for the probability of deficit of the storage system.
An important inference frorf#3] and others is that there exists a thresholdroay size below which
no amount of storage capacity will suffice to ensure prescribed system reliability.
The techniques discussed above reveal one important aspect. The numerical models are accurate in
estimating the loss of load probability, howevesytlare time consuming and complex. On the other
hand, all analytical models allow sizing of PV systems in a very simple way by means of
straightforward calculations. However they lack significant amount of accurad@4]nauthors
developed an accurate analytical method for sizing of PV systems based on location specific
coefficients obtained from the site topography.
Interest in the community has been developing to increase the penetfaRES and hence methods
to design HPS have increased[4B], authorsdevelop a linear programming technique to solve the
design problem of an integrated elewdtidistribution system considering variety of loads, electricity
resources (conventional and renewable) and energy storage. The model develdiddidyermines
the optimal size and site of all the types of power supply units and connection lines. Their model has
flexibility to be extended towards considering the expansion of power distribution systems by
converting it into a multstage model.
In [37], authorsdevelop probability density functions for the wind power (Weibull distribution) and the
PV power (bimodal distribution). Once the model is set up with the power output fraemtéheable
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resources, simulations are performed given the system operational constraints and the charging and
discharging of the battery bank. Iteratively, optimal number of battery bank and PV modules are
obtained by minimizing the systems cost. They alsal the Equatior2.1 for finding the optimal
minimal cost combination.

Demand and supply both have an uncertainties which need to be considered candfutiysigning

any system. The stochastic behavior of both the entities injects substantial afegyeglexity into

the systems design framework. Posadillo ef48l] developed a statistical technique for the design of
standalone HPS for an uncertain demand. Sizing netHor HPS depend solely on the distribution
function of the daily global irradiance. As a standard apprpHitalso used the loss of load probability

as a parameter to chatagze the system design and includes information on the standard deviation of
loss of load probability, annual number of system failures and standard deviation of annual number of
system failures. The use of a detailed statistical characterizationy&dkit radiation is a significant
contribution off46].

Thermal generation is required for reliable HPS operation with high renewable pen¢#ationhe

authors present the operational aspect of such HPS where a fuzzy logic controller is used for solving
the thermal unit commitment problem with integrated wind power. Inclusion ttéripavith wind

power is essential to compensate the frequency and voltage fluctuations. They try to model the
uncertainty and imprecision in the wind energy by fuzzification. The traditional unit commitment
problem is then solved using a modified diffdiainevolution approach. A trivial differential evolution
approach is modified to embed the mitatkger nature of the unit commitment problem which needs
discrete optimization.

In another approach to handle the uncertainty and unpredictability in rdeeesurces[48] applied
stochastic optimization to identify the size of the storage in\indel isolated grids. Energy storage

is important in winediesel hybrid systems as it &means for optimizing the energy use and for
reducing the consumption of the diesel fuel. An important inference of the work is that the storage size
and cost of delivered energy is dependent on wind penetration levels, storage efficiency and diesel
operding strategy. Various scenarios for wind and demand profiles are considered. They also employ
the twostage stochastic programming technique where the first stage variables being power rating and
energy rating of the energy storage along with the ingnergy storage, whereas the second stage
variables constitute diesel generator power, dump load, binary variables associated with the diesel

generator dispatch and energy discharged from the storage at any given instant of time.
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There have been numeroudeatpts for the design ofnicrogrids using various open source
applications, HOMER developed by University of California, Berkeley is one of the most commonly
used one. It performs techiagonomic analysis and prioritizes the solutions based on cost. @re of

very successful attempts towards microgrid design using HOMER. isnfortunately, the software

has many approximations and assumptions which need to be addressed usihgdanazttaé matical
formulation to handle the uncertainty and unpredictability in the renewable eresmyces and
demand.

Inclusion of market impact with the planning of RES and storage is of vital importance given the
increasing penetration of RES. Mueia al[49] considers the stochastic nature of the wind power in
terms of inherent variability and unpredictability even in short term. Including storage of any sort i
the system has always been an intuitive approach towards complementing wind energy and handling
positive and negative energy imbalances. The approach adopi@ s/that of using standard two

stage stochastic optimization framework including two random variables; wind generation and market
prices. Joint configuration is modeled and compared with an uncoordinated operation. An economic
analysis of the inclusion glumped storage in an islanded system which has abundant renewable energy
available is performed ifb0]. Their model addresses the capacity sizing for the pumped storage using
alinear programming problem framework. The stochastic nature of load and reneegabiees is
handled using scenarios generated using fuzzy clustering. The model optimizes the unit capacity,
storage size and operating strategy.

If more than one microgri&are connected to the main grid then they would start energy exchange at
the bus. Sarkar et. 1] addresgsthis issue of energy exchange by multiple microgridagughe
concepts frongame theonand explicitly compute the condition Bfash Equilibriumand show that it

is unique.

2.3.6 Microgrid Planning - Global Optimization Approaches

Optimization has always been a challenging task, and global optimization techsigtieas Genetic
Algorithms or Evolutionary Algorithms have been employed extensively in the design of HBJ, In

the authors use the genetic algamic framework for optimal sizing and operation of a HPS. Given
the nonlinearity in the system model and the system components, it becomes a very difficult and
challenging optimization problem. [62], the authors divided the algorithm into two parts: one for the

optimal sizing and the other for the optimal operation of the HPS. This results in an optimal selection
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of a HPS configuration and an opémgtstrategy for the given site. Genetic Algorithms have also been
used in[53] for distributed energy resource selection, sizing and effective coordination. The problem
was brmulated as a mixed integer nlmear problem which minimizes the total capital cost,
operational and maintenance cost subject to constraints as energy limits, emission limits and loss of
power supply probability. Simulated Annealing based approactpfonal sizing and siting is used in

[54].

A very similar approach as i[88] and [52] was adopted by55] towards optimal sizing of the
generation units fostandalone and hybrid systems. Authors [Bb] consider a location specific
scenario in a remote area in Montana with a typical residential load. They designed the systam using
simple numerical approach, later on they compared three major scenarios for economic feasibility:
setting a new HPS; extending the connection to the main grid; and supplying load with the conventional
generating units.

In [56], a more recent algorithm, DIRECT (Dividing Rectangles), was used to solve the horizon
planning optimization problem for sizing of a wind/PV system. DIRECT was developad hyws a

global optimization method. It is an effective deterministic algorifg6. It finds the minimum of a
Lipschitz coninuous function without knowing the Lipschitz constant. In DIRECT an assumption is
made that the ratef-change of the objective function and constraints are bounded. In brief, the entire
search space is divided into a set of rectangles and optimal aliréxtiietermined by evaluating the
objective function at the center points of the subdivided boxes. In this case, they used a few varieties
of renewable energiesources types and capacities to choose from but it made the search space high
dimensional.

A recent work by58], recommends an optimal design model for designing of an HPS including battery
banks. The model evaluates optimal system configuration and ensures thatuhkizad cost of the
system is minimized while satisfying the custom required loss of load probability. The decision
variables of their model include the number of PV modules, the PV module slope angle, the number of
wind turbines, the wind turbine indiaion height and the battery capacity. The method has been
applied to a low power telecommunication relay station along the soutlcagattof China. They
utilized GeneticAlgorithms (GA) for determining the optimal configurations.

In [59], the authors address more operational issues in a microgrid operating in autonomous or grid
connected mode. Concept of Particle Swarm Optimization is utilized for finding the optimal parameters
for the control system. Whered80] uses Computationdntelligence technique such agumal

networks and fuzzy system for microgrid control and operation.
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2.3.7 Microgrid Planning - Multidisciplinary Design Optimization based Approaches

Microgirds, as mentioned earlier find extensive application in remote and rural communifédq, In

the work is towardghe design of a village microgrid with RES and performs evaluation of its economic
feasibility. They follow a four stage process: initializing based on the natural environment and demand
analysis, the selection of appropriate distributed renewable emmagyrces and the electrical network
design and, power network analysis, and its economic evaluation. A case study of Changwon Dongjeun
village in Kyoungnam province in China is taken as a case study where the load diversity ranges from
single family house commercial buildings, apartment buildings and a public park.

An integrated approach is used[@2] to solve the problem of RWind-DiesetBattery HPS. They
address the problem as altinobjective optimization problem with two objectives: minimizing the

total cost and minimizing the total G&missions, while capping the Expected Unserved Energy. Direct
and indirect assessments of emissions of all the components are obtained uglygleifsssessment

(LCA) techniques. The approach was applied to a city with 50,000 thousand residents. The results
obtained from the linear programming model were used to construct the Pareto front, which represented
the best tradeff between cost and essions under different reliability conditions. Even[@3],
authorsconsidered the two objectives but approached the problem using the Mesh Adaptive Direct
Search (MAS) method.

Khaparde et. db4] presents a very sophisticated approach towards solving the complexities involved
in selection of various distributed generation technel®diased on a set of attributes. An approach
referred to as MultAttribute Decision Making (MADM) has been proposed. Important attributes in
reference to a microgrid are incremental losses, capital costs and percentage time for which demand is

not servedor all users.

2.4 Literature Analysis

A detailed review paper on the distributed generation and its realization using the microgrids was done
recently[65] and[66]. It touches upon various aspects of distributed generation and microgrid design.
Various distributed energy resources as diesel engines,-taitiioes, fuel cells, photovoltaic, small

wind turbines etcand their coordinated operation and control with controllable loads and storage

devices such as capacitors, flywheels, batteriesetanain focus of the microgrid design. Operational
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strategies for microgrids, grcbnnected or in an mshded mode. Ii66], various case studies of
microgrids around the world have been discussed.

It can be seen quite evidently that a lot of research has been doneastthethe area of microgrid
planning. A large majority of work falls under the category of deterministic algorithms. While in the
recent past, in the last&years there has been an increasing trend in the number of papers using a
variety of stochastiapproaches towards planning of microgrids. We can clearly see that there is still a
need for a more comprehensive research in the development of stochastic approaches which consider
the inherent uncertainties in supply and demand.

Lastly, the planning ofmicrogrids or any power system (either micro or large) is seen as a
multidisciplinary problem, considering not only economics of the system but also the social and
environmental impacts of the system as a whole. We do see a few papers working in thealtea o
criteria design analysis in planning of power systems but not a single paper is found using the approach
of multidisciplinary design optimization and muittiiteria decision analysi$MCDA) together. Our
work is an attempt to fill the gaps iniglarea of research

2.5 Summary

A detailed and a comprehensive literature review of the research being carried out on the planning and
operation of microgrids suggeghat thegproblem although seems quite simple but is challenging. With

the advancements in thenewable energiechnology and thrust from various government agencies
and worldwide consortiums has led to an increase investments in the research and implementation of
robust techniques and approaches in power system planning based on reresvalies of energy

and more towards decentralizedwer systemsThe entire literature survey reveals that the methods
available currently lack in considering uncertainties in the system design inherently. Also, it is quite
clear that power system planning at agale, in this case even a midewel planning is a complex
project affecting many domains together ranging from economics, social, and environmental. We have
proposed methods which fill this gap in the research for planning of microgrids. We notapgéer

a more complete methodology for planning of microgrids based on stochastic programming but also

incorporate other aspects on environment using a more complete LCA and MCDA based approaches.
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Chapter 3
Mul tidisciplinary DMOORN sPpt epmiseaddph o n

3.1 Introduction

Engineering problems are complex and often multidisciplinary. Utsisally desirable to break the
complex problem into smaller sywoblemsdefined bydisciplinesas each discipline may have
different requirements.Each sukproblem mg involve a discipline dependent systeulti-
disciplinary design optimization offers us a structured platform to analyze and solve complex
engineering problems using various optimization and analysis techniques already used by the

disciplinespecificresearcherswhile considering the overall objective simultaneously.

3.2 Multidisciplinary Design Optimization

Multidisciplinary design optimization (MDOQ) is a new upcoming domain in engineering that focuses
on the use of the numerical optimization techniqueasisociation with various statistical tools for

design of systems involving multiple disciplines or systems.

The motivation behind using MDO based techniques lies not only in the optimization of the individual
systems or disciplines but also their interaasi between each oth&@onsidering these interactions in

a single optimization problem requires extensive mathematical foundation and is often challenging.
Therefore MDO based architectures are designed to suit various problem structures and simplify the
mathematical complexitipr the system under consideration. It is still an evolving field but early results
have been promising enough in reducing the time and cost of the design cycle by making appropriate
use of computational analysis tof#3].

An important challengeone faces in usingdDO architectures igo decide how toorganiz the
disciplinespecificanalysis models, approximation models and optimization moalettheir various

interactions

There are as many MDO architectures to solve a given problemmanyasthere are optimization
algorithms to solve a givedesignproblem However the choice of the architecture has a significant

impact on the solution timend the final design.

It involves choosing from the right algorithtmthe types ofinterconnectios of disciplines. A simple

example of such a scenario could be using a global optimization algortsusa gradient based
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algorithm. The former leads toghobal optimal solution but may consume a lot of time while on the
otherhandgradient based algorithms are faster but may get stuck in local maxima/minima. Therefore,
it is a choicea system designer needs to make by understardeyroblemand suitakd methodsn

detailsoas to find the best fit.

It is important to consider if the calculations in a given architecture can be computed in parallel then
then onecanuse it to efficiently perform calculationth most cases distributed architecture vhit
support for parallel processing is preferred over monolithic architectures. In general, careful
consideration of the human and computing environments, the available algorithms, and the design
problem at hand is important in decidiagappropriate MDO ahitecture[68].

In our work, we primarily focus on methods for solving MDO problems with a single objective function
and continuous design variables. We assume that the adipyinof a design corresponds to the
satisfaction of the Karuskuhn-Tucker (KKT) optimality conditiond69] . These conditions are
necessary for locaptimality; hence it imecessary for functions to be differentiable and continuous to
be able to obtain optimal points. Although there has begidevariety of work done ithe context of

MDO usingglobal optimizatiorapproachessuchtechniques are not tiecusof this thegs and hence

shall not be discussed.

In a recent review on various architectures for multidisciplinary design optimization techniques two
main categories of MDO architectures have been listed as monolithic and distributed archjiéjtures

Our work uses the monolithic architecture given the structure and nature of our problem.

3.2.1 MDO Problem Formulation

Like tradifonal optimization problems, MD problems can beepresented by a fundamental problem
formulation which describes the goals of the optimization. This fundamental formulation is comprised

of a set of six things:

Local design variables
Global design variables
Objective(s)
Constraints

Coupling variable pas

o o M W NP

Analysis components
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We shall introduce the various terms and nomenclature used commonly in the MDO literature. A design
variable is a quantity in the MDO problem that is always under the explicit control of the optimizer.
The design variables may becéd or they may be shared by multiple disciplines. Another important
aspect in MDO is disciplinanalysisijt refers to the analysis of simulation that models the behavior of

one aspect of a multidisciplinary system resulting in the state variables assespf the disciplines.

In MDO, most disciplines exchange coupling variables to mdeelrteractionsof the entire system.

In many MDO based desigmultiple copies of coupling variables is made to allow independent
discipline analysis and concurrentys mentioned ifi70] these copies of variables function as design
variables in the problem formulation and are often referred to aartjet variables.

3.2.2 Architecture Diagram

It is important to understand that reformulation of a given problem into the MDO framework allows us

to analyze and solve the problem in a comprehensive manner with a more in depth understanding. The
idea behind the MDO architectuig to reformulate the problem using the standardized notation.
Unfortunately, describing the entire chain of operations required in implementing the model poses
significant clallenge for the system plannérg].

In an attempt to coherently describe our exposition we adapted the approach referred as the extended
design structure matrix (XDSMY1]. As the name suggests, XDSM is based on the DSM (Design
Structure Matrix),a commonly used approach in systems enginedf2g. It is used in systems
engireering to visualize the interconnections among components of complex systems. The traditional
DSM shows the components and the connections between the components but the meaning of the
connections is left ambiguous. This problem was addressed in the X2&kXéeture For most of the

MDO problems, one needs to represent two types of connections: data dependency and process flow.
XDSM amalgamates the two dependencies very neatly in a single diagram. More details on XDSM can
be found in the work bf71].

Monolithic IDF (Individual Discipline Feasible) Architecture
This is one of the simplest architectures. It uses a single optimizer to drive the whole process. The
XDSM for IDFis shown irFigure3-1. The main reason for the choicelBF architecture was primarily
due to its computational efficiendy3] and ease of managing the coupling variable along with
individual discipline feasibility The problemformulationbased on théDF architectureused in this
thesis is described ygquations3-1 to 34 in their most general form3he IDF formulation prowdes
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a way to avoid a complete multidisciplinary design analysis at optimizgtdn It maintains the
individual discipline feasibility, while allowing the optimizer to drive theiuidual disciplines to
multidisciplinary feasibility and optimality by controlling the interdisciplinary coupling variables. In
IDF, the specific analysis variables that represent communication, or coupling, tefeaplines are
treated as part of the optimization design variables and are in fact indistinguishable from the design

variables from the point of view of single discipline analysis.

In the above formulation the equality constraints also contain the interdisciplinary constraints. The
XDSM framework for the IDF formulation is shown in thigure3-1. Here thewis a vector of design
variableswis a vector of coupling variables or outputs from other disciplines or anabysisa vector
of coupling variable target or in some sense input to the discipline based ar@lisithe objective
function and"Q are the constraints} ‘Qdenotes the number of disciplines, indicates variables
shared by the more than one disciplines,is for individual discipline constraints and relates to

the constraints consisting of couplingriables.
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XDSM for Individual Discipline Feasibl@éiDF) architecture is shown iRigure3-1. XDSM diagrams
describe both data flow and process flow, so they provide a complete description of the algorithm. The
thin-black lines in the diagram describe process flow, indicating what order the blocks get executed in.
The thickgrey linesdescribe the movement of data, with vertical lines indicating inputs to a given
block and horizontal lines indicating outputs. All of the parallelogram blocks arebidates,
representing variables. All other blocks represent components or driversandlysis. When any

given block is shown stacked up, and ha&lmthe title (e.g. Analysi¥p that indicates that such

blocks could exist and could be run in parallel if desired. Each step in the process is given a numeric
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label (the first step ithe process is always 0), which applies to both process flows and data flows. For

a process flow, thiabels are used to indicate loops (e.g. solver loops, optimizations). For example in

Figure 3-1 the optimizatim | oo p

S

gi ven

t he |

abel

ino,

3

Y1o0.

follow the path through from 1 to 2 to 3 and then step 3 loops back through step 1 until an optimum is

reached. The numeric labels in datacks indicate during which step the aas$ either input to or

output from the block.

Analysis i

[3:1.9:9° A

Functions

Figure3-1: XDSM for IDF Framework

3.2.3 Multidisciplinary Design Optimization under Uncertainty (MDOUU)

In traditional deterministic designs, to account for utaeties, the constraints were generally

reformulated based on some predefined factors instead of the ideal ones. This ideology was based on

the philosophy of marginal desigwhich was used to maintain redundancy of the system in face of

uncertaintie$75]. It is obvious that with this approach the designs and optimization are prone to reach

solutions which are too conservative and over redundant, resulting in excessive cost and l§jze pena

This is quite revealing and convincing that these traditional methods of implicitly and roughly dealing

with uncertainty are far from enough to economically improve systems performance, robustness and

reliability.

This challenges us to develop morevaced and accurate analytical approaches based on a deeper

mathematical foundation for uncertainty analysis and modeling. It would enable us to tackle

uncertainties systemaéty andrationally.
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Design optimization under uncertainty (DOUU) has beeneareh field for quite some tinjé6]. The

major application of themethodologies developed in DOUU have been observed in aerospace
engineering and civil engineering which haudngent regulation towards system reliability and
robustnes§’7, 78]

DOUU has recently penetrated more formallyhie domain of MD(79]. It has been observed that
DOUU can greatly improve design of systems by making use of the coupling between the disciplines
and enabling allaborative optimization, and meanwhile enhancing the reliability and robustness.

As part of this work our intentiois to introduce the concepts of DOUU in MDO frameworkhe
context of microgrid planning, although these concepts are general enouggndredapplied for other

more complex design problems. As we refer to uncertainty throughout this thesis we would like to
clarify that we refer to uncertainty in the probabilistic selige shall define a fevierminologiesfor

understanding design optinaiton under Uncertainty.

1 Uncertainty: The incompleteness in knowledge and the inhepeolbabilistic or statistical

variability of the system and its environrména | so ref erred to. as Oal ea

1 Robustness:The degree of tolerance of the gystto be insensitive to variations in both the

system itself and the environment.

1 Reliability: The likelihood that a component (or system) will perform its intended function

without failure for a specified period of time under stated operating conditions.

In design optimization theorthe process for obtaining a design under certain constraints is reterred t
as design optimization more specificadlgterministic design optimization, the mathematical problem

can be formulated as:

i EQam 38
s
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wherex, is the design variablg,is system constant parameter vecterandw are lower bound and
upper bounds of which defines the boundaries of the search @pdQ is the optimization objective

function and' QO is theconstraints

There are a variety ohathematical models for DOUU suchrabustdesign optimization, Reliability
based design optimization, Tvgtage Stochastic optimizatietc. Dependingmon oneds probl e

data we may choose one paradigm over the others.

1 Robust Design Optimization: It is the methodology to optimize the design which is insensitive

to various variations. The mathematical formulation is stated below

I Efam  "O* am b, o 3-10
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It is considered here that batteandp could be uncertain and and, are the mean and standard
deviation of the original optimization objective functidOa8It is interesting to observe here that by
incorporating, into the objective function, minimization of system sensitivity to uncertainties can be

achieved.

1 Reliability-based design optimation: This kind of optimization deals with obtaining optimal
design and meeting reliability constraints. Hence it is a methodology to optimize the design
which is reliable with small chance of failure under predefined acceptable level. The

mathematical famulation of reliability based design optimization is given below
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Where0 Ois the probability of the condition in the curly brackets to be trueRaisdthe reliability
vecta specified for each constraint.

There has been some work on combining the two methods above and developing methods called as

reliability based robust design optimization (RBRDO).

i Two-stage stochastic programming:
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Where
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HereO is the expectatiom, denotes a scenario apossible outcome with respect to the probability
space mf 8The variables are called the first stage variables, as they have to be decided upon before
the outcome of the stochasvariablg is observed. The variablgsare the second stage variables:
they can be calculated after the outcome @ known.The second stage problem depends on the data

AR Yo where any or all elements can be random. Matii¥aad® are called the technological
and recourse matrices. The second stage problem can be considered as penalty for the violation of the

constraint Q. & @ @ are the equality constraints which are not affected by the random variables
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are a first stage decisis.We shall consider only discrete distributiaofsP for the scenarios, so we

can write;

. . v 3-22

Therefore now we can formulate this as a deterministic optimization problem \@dre 6 Qis

a linear objective function.
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The chain of events in ifhmodel is as follows: first the decision maker implements the first stage
decisions. Then the system will be subjected to the random process describaDbfwhich results

in an outcomg N m Finally the decision maker will execute the second gtagisionsy accordingly.

MDOUU is an approach towards systematic organization of the components involved in the
multidisciplinary design optimization under uncertainty. It is importaninderstand that uncertainty
hasto be modeled at the system lemal at the component level to ensure a reliable and robust system
design. However, arranging these components in a sequence which leads to optimal decision is

challenging given the complex cross coupling between the disciplines.

An intuitive approach to dee the MDOUUis to follow an iterative process. One needs to analyze and
model the uncertainty in the underlying system under consideration (uncertainty may be in the
parameters or design variables in the optimization problem). A systematic and sinapiBtach

towards solvingUlDOUU has been proposgd5] but it lacks the evaluation of alternatives based on

the stake holdeweightage All of the currently available MDOUU models do ransider the cradle

to cradle or cradle to grave based approach when considering the design of any engineering system.
We integrate the MDOUU approach with Life Cycle Analysis using MCDA (Compromise

ProgrammingVIiseKriterijumska Optimizacija | KompromisnBesenjgVIKOR) method) as a tool.
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This ensures that the engineering system design is not only robust and reliable but also economical and

environmental friendly.

3.3 Multidisciplinary Design Optimization under Uncertainty for Microgrid

Planning

3.3.1 Framework for Microgrid Planning

We provide the microgrid planners and policy makers a tool which is general enough and allows for an
algorithmic approach towards planning of microgrids. It enables the planners to model and analyze the
inputsthatare significant locd and have an impact at a global scale. The mputeal world are
uncertain and we allow for probabilistic modeling of the uncertainties for robust system design. The
framework allows for inputs to be used by design motha&can use the informatido produce results

that are optimal anatonsider risk explicitly Subsequently the planners and policy makers have the
flexibility to modify parameters to suit the local needs and preferences. The framework not only takes
into account economical issue lalso environmental impact of the systems using life cycle analysis.
Eventually, the planner is presented with various options given each has its own pros and cons, for the
criteria most important to the local population. Thus we provide statisticatbhabége useful for such

a planning framework and present a detailed procedure for using them in the most optimal way. The
framework is flexible enough to adapt to varying geographical and social environments. A broad

overview of the framework is shown Figure3-2.
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Figure3-2: Framework for Microgrid Planning using Multidisciplinary Design Optimization: An

Overview

In Figure 3-2, the statistical tools used in each module are listed below. These allow for a robust
modeling of microgrids resulting in ranking of microgrid configurations given preferences and local

regulatory and policy constraints.

In multidisciplinary design dimization under uncertainty, we shall model the uncertainties in each
discipline, followed by simultaneous optimization using stochastic programming approaches, following
which we need to evaluate the solution of the optimization based on certain astegapproaches

such as sensitivity analysis and mualtiteria decision analysis. Subsequently we shall either accept the
solution or reiterate the optimization problem undergoing a parametric modification. Our framework
for MDOUU is as shown ifrigure3-3.
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Figure3-3: MDOUU Framework

As shown in thd-igure 32 andFigure3-2, the framework formulates a generalized modehfiost
design problems where uncertainty in the design variables and parameters cannot be avoided. This
framework ensures a reliable and a robust design and a complete economical and environmental
analysis ranging from modeling of uncertainties in prdisin sense to performing a stochastic
optimization and analyzing the results by undergoing a Life Cycle Analysis of the proposed design and
then choosing the most appropriate one based on a specified set of criteria. In an attempt to simplify
the architeture for planners to execute their design we divided the framework into three phases, which

can be briefly described as below:

Phase | It refers to modeling the uncertainty in the system parameters or design variables in a
probabilistic sense. This enggra more robust modeling approach for producing scenarios for the
purpose of reliable design. We use Kumaraswamy distrib[8@ras a standard tool for modeling all
of our parameters as it is a general distribution equivalent to the beta distri8i}ibat with a simple
analytical form.

Phase II: This acts as an engine of the entire framework whichgbrtogether the modeled
parameters of phase | afor finding an optimal design keeping the design constrained within the
technological, economic and environmental limits (MDO). It is flexible enough and allows the choice
of the stochastic optimizatiorapadigm that suits the problem at hand. The problem can be modeled as

a mathematical optimization problem where we try to minimize/maximize a quantity (such as
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cost/benefits, environmental emissions/life  time) subject to various
technological/economical/gmonmental constraints. Followed by the optimization, we perform a
detailed sensitivity analysis of the outcome to find out the response of the system to variations in
parameters. We can use any of the monolithic or distributed MDO architectures hétaitoan
optimal design. In our work for microgrid planning, we will use the IDF architecture as discussed

previously.

Phase lll: This phase involves comparing various feasible designs obtained from Phase Il based on
certain criteria as set by the systplanners. This completes the framework for system desamot

only ensures technical and economic feasibility but also considers the effect of environmental and social
impacts into the design. To evaluate the impacts on environment and social litedrsystem we use

Life Cycle Analysis (LCA) as a tool to measure and evaluate these more subjective parameters. It has
been known that there is no fixed set of parameters to measure the social benefits or costs and hence it
is left to the system plannen@ experts to choose the set of criteria they want the design to meet. We
use Multicriteria decision analysis (MCDA) approach to finalize the most appropriatdoffen
criteriaaremet, we accept it or else we need to modify the parameters in phaserditerate till we

achieve a feasible result.

In our work for planning for microgrids we utige two-stage stochastic programming algorithm as
a tool to solve a part of the complex MDO problem. &l extend this model to more generalized
model by incoporating risk, and probabilist@onstraints, whiclshall be shown in the later chapters of
this thesisWe use the monolithic architectugéven thatmultiple disciplines can be modeled using a
single optimization problenhowever, as the problem sizerngases a distributed MDO should be used
If we segregate the disciplines involvedmicrogrid planning, they can be categories into three broad

categories:

1 Economic Analysis qost analysis, net presenalue, LCOE(Life Cost of Energy) ROI

(Return on Inestmentktc.)

1 Environmental and Social Analysis (émnissions, GHG emissiorandusage, mployment,
LCA etc.)

1 Technical Analysis and Feasibilitpdwer demand, renewabtesources available, spinning

reserves, storage efficiency, LOL etc.)
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Limiting the scope of our researdbr the purpose of proof of concepe shall consider specific
parameters in each domaRlanners may wish to add additional parameters as per their need and the
frameworkis expected tgerform equally wellWe consider some spéici parameters from each
discipline for Phase Il where we perform MDOUU. LCA requires a modepih understanding and
expert knowledge as it helps us to analyze not only the technological feasibility but also the social and

environmental impacts follow@a cradle to grave idea.

Therefore possibleconfiguratiors of the microgrids obtained from the MDOUU optimizer in Phase
Il undergo a detailed LCA and the results of LCA analysis are fed into an MOD&i-criteria
decision analsis) to choose a finalanfiguration based on a set of criteria. If none of the configuration
meesthe criteria, we réterate and go to Phase Il. The parameters are tuned and the process continues
until a feasible configuration is obtained.

3.4 Multi Criteria Decision Analysis (MCDA): The Compromise Programming
Approach

Planning of microgrids is a laborious task as it involves huge investments and multiple factors affect
the success of a renewable endrgg microgrid. Multiple factors need to be evaluated and analyzed

in decisionmakingbut also conflicting objectiveseed to be considerdmcause of the increasingly
complex social, economics, technological, and environmental factors that are jpresehtproblems
Different groups of decision makers become involved in the pspaeach group bringing along
different criteria and points of view, which must be resolved within a framework of understuaitting

mutual compromisg[82].

It is quite clear that the traditional single criteria decision making is not able to handle these complex
problems. Therefore, the policy for substitution of fossil fuels by renewable energy needs to be
addressed in a mudtiriteria context. The complexif the energy planning and energy projects make

the multicriteria analysis a valuable tool in decision making process. We use in our work Compromise
Ranking Method, also known as VIKQRethod as an effective tool for muttiiteria decision making

[83].

This method introduces the muttiiteria ranking index based @aparticular measure of closeness to
the ideal solutionThe application of this method in the selexctiof a renewable energy investment

projectis demonstrated iGhaptero.
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In this thesis we usthe Compromise Ranking Method, also known as the VIKOR method, in the
selection of the renewable energy project. The method is enhanced by introduciakjteal
Hierarchy Proces®r assigning the weights of relative importance of attributes. There has been similar
works [84] where the method is applied for material selectioan engineering proceasdin [85]

where the method is applied in the selection of coal suppliers for thermal power enterprises in China.

The microgrid configuration obtained frometiPhase Il of the MDOUU and a detailed LCA is
performed on it enables us to evaluate each configuration based on a fewexjitaiaed laterWe

evaluate each configuration accordingdariteria function, the compromise ranking is done by
comparing tle closeness to the ideal solution. The compromise solution is a feasible solution that is the
closest to the ideal solution and a compromise means an agreement established by mutual consensus

[86]. The multicriteria measure for compromise ranking is developed from themetric used as an

aggregating function in a compromise programming mef86d88]and shown in Equation-36.

0 B ——— ,p n HIQ pifBh 3-26

Hered or0 are used tdormulate the ranking measure. Within the VIKOR method, the various
alternatives are denotegdda & & [ [ &.dor the configuratio & the rating of théh aspect is
denotedby'Q, i.e.”Q is the value of thé&h criterion function for thalternatived &,&nd¢ ds the

number of criteria. Theompromise ranking algorithm VIKOR has the following four steps:

Step 1: Determine the bes€) and the worstQ values of all criteria function& p&E QIf the
function represents a benefit théh | A® and’Q | E'Qhwhile if the @ function represents
acostQ [ ERandQ | Am.

Step 2:Compute the values 6Y and’Y for’Q paby the relations

Y 60 "0 3-27
“Q nQ
.00 0

Y T AS S = 3-28

where0 are the weights of the criteria, expressing the decisiank e r 6 s pr ef erence a:¢
importance dthecriterion.In any renewable energy based project involving multiple stakehdlasrs

act as the decision makers and play a significant role in determining their preferences for weighing the
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importance of different criteria. The weights of relativgortance of the attributes are assigned using

the AHP[84, 89] the steps are stated below:

1. Find out the relative importance of @ifent attributes with respect to the objective. To achieve
that one has to construct a pairwise comparison matrix using a scale of relative importance.
The judgments are entered using the fundamental scale of AHP. An attribute compared with
itself is alwgs assigned the value 1 so the main diagonal entries of theipaicomparison
matrix are al/|l 1. The numbers 3, 5, 7, and
i mportanceo, fAstrong i mportanceo, dAv(@wthy str ol
2, 4, 6, and 8 for compromise between the previous values). Assanaiigbutes, the pair
wise comparison of attribut@vith attribute ields a square matri® 0 whered 6 denotes
the comparative importance of attribli@ith respect tattribute’QIn the matrix,00 6 p,
whenQ "Gand®d o6  pj ©o.
2. We need to know the vectds& @06 hod hod 8 hwod  which indicates the weight
that each criteria is given in paiise comparisomatrix'O 08To recover the vectab from

'O 0 the process is mentioned below:

9 Divide each entry of columifin A by the sum of entries in coluniQWe get a new
matrix calledO 0 (for normalized)in which the sum of all the entries in each

columnis 1.
1 Estimate ofw is the average of the entries in the r@f 'O 0

Once we have obtained the pailse comparison matrix it is necessary to check it for
consistencyWe used the following four step procedure to check for stersty in the decision

makerds compari @desnotEsomumowsomn mate of the
1 Compute O0 w

1 Find the maximum Eigen valuwd weight matrix

p Q'Q¢ 0NdW 329
= € "Q Q¢ 0DN&Ed

1 Compute the Consistency Index (Cl) as follows:
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E W

60 —
= EWp

3-30

The smaller the ClI, the smaller the deviation from the consistency. If Cl is sufficiently
small, te deci si on maker 6s comparisons are pro
estimates for the weights for their objectit#er a perfectly consistent decision maker,

the "@h entry in O0 ® ¢ @ "th entryofc . This implies that a perfdygt

consistent decision maker has Cl = 0.

1 Compare the Consistency Index to the Random Index (RI) for the appropriate value of
¢ ¢ used in decision makinf89]. If CI/RI < 0.10, tke degree of consistency is
satisfactory, but if CI/RI > 0.10, serious inconsistencies may exist, and the AHP may not

give useful results.

Step 3:Compute the values of using the relation below:
0 0QY Y'Y Y p OUQY Y'Y Y 3-31
Where'Y [ ETY:"Y [ Aomy 1 ETY;'Y [ A@ andd '@ introduced as a
weight for the strategy of maximum group utility, whaesep 0 "Qis the weight of the

individual regretwhere normally the value af "6 taken as 0.5. However "@an take any
value from O to 1.

Step 4:The solution obtained by ETYi s wi t h maxi mum group utili:t
the ®lution obtainedby ETYi s wi th a mini mum indi WRantual r e
the alternativeshy sorting the values oMiY and0 in decreasing order. The results are three

ranking lists. Proposed is a compromise solytiomalernatived & 0, which is the best ranked

by the measuré (minimum), if the following two conditions are satisfied:

a. Acceptable advantage) 6 a6 0 6 a6 OO0 whereO0O pfuv p and
O & ois the alternative with second fitien on the ranking list by .
b. Acceptablestability in decisioamaking. The alternative & omust also be ranked by
S and/or R. This compromise solution is stable within a decision making process,

which could be the strategy of maximum group wtiliwhenv "Q 1@ is needed), or
Aby cons@md uoswith eto) 'Q T™® 8
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If one of the above conditions not satisfied, then a set of compromise solutions is

proposed, which consists of:
c. Alternatives 6 & 0and0 & oif only condition above is not satisfied, or

d. Alternatives 6 & ofb & ofd & ofB M a oOif the first condition is not satisfied.
O & ois determined by therelatiand &« 6 0 & & 0 'O Ofor maximumg (the

positions of these alternatives are in closeness.

Ranking of alternatives by VIKOR method/Compromise Programing gives us, as a compromise
solution for all the values af consideregdwhich acts asraaid to the planners and decision makers.

3.5 Summary

This chapteintroduces improvements currentMDO modelsby introducing MCDA and LCA as a

part of the architecturdultidisciplinary Design Optimization is a new field of research only about a
decade old. This has been mostly used in the field of aerospace engigien the complex nature

of the problem. It has been observed that using the MDOUU framework leads to a systematic design
of systems in clear steps. It uses the foundations from various domains such as statistics and
optimization theory for developingbust mathematical model for solving the problem. We observed

that these frameworks could be very useful in systematic planning of any engineering thestefiore

we developed these systems further to develop a generalized framework which considetg not
uncertainty in the design process but also the opinion of stake holders as they are the ones who shall be

using the system.

Environmental concerns are tremendous given the extreme weather conditions asdfeiffebal
warming. It becomes our prienduty as system planners to ensure our systems are environmentally
friendly, which drives us to bring in the idea of LCA in the framewde use MCDA tools of
compromise programming to conclude to a final design choice based on the constraints and the
restrictions of various stake holdefdext chapter shall focus mainly on Phase | of our MDOUU

framework towards modeling of uncertainty in the parameters.
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Chapter 4
Mi croBlrannWingd andReSsooduarrce Model i ng

4.1 Introduction

In this chapter we will introgce mathematical models favind and solabased renewablesources

of energy which are utilized in the productioretéctricalenergy. We will investigate the mathematical
models for understanding and analyzing the characteristics of these renesalinlees of energy to
enables ugplan and design microgrids more reliably. Novel approaches using copulas have been
investigated to understand tdependencécorrelation)between renewable energgsourcesin the

spatial domainSince these correlations ageterministic andhence not considering thelead us to

over or under designed systeM¢hereasconsidering this correlation allows us to desigmpropriate
systems with higher reliability.

4.2 PV/Solar Energy and Wind Energy modeling using Probability Distributions

It has been observed in the literature that solar irradiation is quite precisely modeled using the Hollands
and Huggets distribution which can be closely approximated using a Gamma DistrjBQjidnind

speed is considered as a random variable and is modeled using the Weibull Probability Distribution
(PDF)[12]. However, weused the Kumaraswamy distributionmagntioned earlier as a general tool to
model all our parametefsr the reasons described nékfe obtain the parameters for each hour of the

day and for three seasons in the year (Fall, Winter and Spring). This ensures that both hourly and

seasonal variains are embodied into the distribution.

4.2.1 Kumaraswamy Distribution: A generalized tool to model parameters

The Kumaraswamy distribiain is given by the EquationsMand 4¢hwheref(x) is the PDF andF(x)
is the CDF.
N Ow p 4-1

wherea O , 19> 0 andx f[0,1]

Ow p p 4-2
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Kumaraswamy distribution is useda general tool to model renewable resource for two main reasons,
firstly we are interested in energy/power ehis a noHdinear transformation of the resouraed ease

to integratewith copulasand hence a more general tool is required. Secondly, Kumaraswamy
distributionis equivalent tahe Beta distributiof81], a most general distributiobut hasa much

simple analytical formthan the Beta distribution making it also computationally. fiass important

to note here that we used Kumaraswamy distribution not only for our resource mduelaigo the
demandUtilizing the knowledge about the geographical location we weVine Copulas to model

the dependency structuj@l, 92] It is important to note here that the copulas are used here to model
the dependency structure of the wind power and not wind sphigth is a unique approachion

linearity and normonotonicity of the power curve inhilthis approach to be directly applied to wind
speed in general. Wind power is what system planners are more interested rather than just the wind
speed. We chose three sets of locations, Pittsburgh area in the USA, Toronto area in Ontario Canada
and one othe remote sites in Canada in northern Alberta. We took data from RET $&3¢ér the
available sites

In our model we try to find the parametric best fit for the wiodi@r generated at each location based
on standard benchmark wind turbine (3kW Turbine based on HOJgER Given the general nature
andsimplistic analytical form of the double bounded Kumaraswamy distrib{8i@rwe fit the wind
power to the distribution. Once we obtain the marginal for each location,wbeestablish the

dependence structure using the pair copula construction (PCC) also known as Vine [Qapai]s

Since the dependence of wind power at different locations is highhgrom s si a n, itds n
completely by correlation measures. Although an exact multivariate dependence model is possible
using copula functions, unfortunately the feausg&n nature and the high dimensionality of our data
complicates the finding of an adequate copula function. The only solution to this problem is PCC. We
used rank correlation because it is robust tc@anssian datg5].

4.2.2 A brief theory of Copulas

Copulas have become popufar modeling dependenci&s random variablesThe wordcopulais a

Latin noun whi ch mean O6a | inkd and [1%&®6 97 sed f
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Mathematically, copulas are functions which allow us to combine univariate distributions to obtain a
joint distribution with a particular dependence structure.

Most simplistic demonstration afcopula is derived from how distributions are used. To demonstrate
how copulas are used, one needs to recall how a cumulative density function (CDF) of a distsibutio
used to generate a random sample: most commonly to draw a value from a distribution one would start
by sampling from a uniform distributiofY Tip 8Subsequently, this observation is treated as an
observation of your variable’'s CDF, one can obtaiarapge from a PDF as explained [@4] and

shown inFigure4-1.

1. Sample
uniform U(0.1)

2. Transform to univariate sample by
inverting the CDF

Figure4-1: Obtaining a random s#ple from a CDF

Copul as extend this method to two or [b7p97]ef di st ri
copulaswhich states thaffor a given joint multivariate distribution function and relevant marginal

distributions, there exists a copula function that relates them.

423Skl ard6s theorem

Let Fybe a joint distribution with marginsxand F, Then there exists a functidrg,mip © 7ip
such that
O o 6 '0OwHO ® 4-3

If X and Y are continuous, then C is unigue; otherwise, C is uniquely determined on the (range of X)
(range of Y).

Conversely if C is a copula and Bnd F, are distribution functions then the functiog, Befined by
Eqn4.3is ajoint distribution with margins,fand F,.

The proof of the above theorem can be found ) and [96].

C must be a function of particular type with certain properties as descrij@d]@and explained well
in[17].
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Cisacopulaitdrp © rip and

a. 6 1o 60 hm

b. 6 pho 60 Ip 6

c. 66 66 66 66 nfor all O <0 ,
0 <O

d. If Cis differentiable once in its first argument and once in its second then, c. is equivalent

to, —® QD nforall <0 ,6 <06

This definition simply states that a copula is itself a distribution function, defing@jigAwith uniform
marginal. Each of the marginal distributions produces a probability of tndiorensional events. The
copula function takes these probabilities and maps them to a joint probability, enforcing a relationship
on the probabilities.

Therefore, using copulas to build multivariate distributions is a very flexible and powerful technique
as it separates choice of dependence from the choiarginal[17, 20, 96]

S k | #heofem establishes one of the easiest ways of constructing ascapthés case, iFx and

Fy.are the marginalistributiors, thencopula is given by the formulation as shown in Equadion

86 O 0 6 KO ¥ 4-4

4.2.4 Choosing the right Copula

The most important aspect in modeling any data using distributions is making the rightfehtiee
selection of the distributiorAs we have a large variety of dibutions available walsohave a large

range of copulas to choose from. Quite often the choice of the copulas is based on the familiarity and
analytical tractability. It is quite evident from the literature that Gumbel copula is used for extreme
distributions, the Gaussian copula for linear correlations and the Archimedean copula acokthia t

for the dependence in tajlnd so orf17, %].

As the name suggests, the Gaussian copula is obtained from the normal distribution, various other
geometrical and definition based methods are used to generate a wide range of copulas.
If we want to generate a copula given the marginal distribsitioi or t he t wo vari abl es

a Kumaraswamy distributiof30] with parametera andb and other with lognormal distribution with
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parameters O and G, then we can use a copul a
following Equationd.5 by substituting the relevant distribution functions and hence we generate a new
joint distribution.The Kumaraswamy distribution for statistical design centering of integsatstems

was done using copulas to formulate the dependence between the pari@8cdSis
. . P. . Q p Q P
00 h - £ -
1 P Q p

Here the parameterdetermines the level of dependence between the marginals.

There has been a lot of work already done in obtaining thegimahrdistributions[100]. Various
approaches have proven to be good in various situationsaseither using the empirical distribution

or using the parametric best. fusually the approach adopted is to start with an empirical distribution
but due to discrete nature one may agpilyic splines or kernel smoothing technitmebtain a smooth
curve.

Similarly another copula used for modeling tails-topulg also knavn as thestudent {copulg as
presentedn Equatior4-6.

j

. p 0 ¢ 0Ow

6r 0 M P Qi Q 46

The tcopula allows for joint fat tails and an increased probability of joint extreme events compared

with Gaussian Copulayhere” and] are the parameters of the copula, andis the inverse of the
standard univariatedopula witlf degrees of freedn, expectation 0 and varianee— [96].

The St uddpendénéesstrutture introduces an additional parameter comptréde Gaussian
copula, namely the degrees of freedanincreasing the value af decreases the tendency to exhibit
extreme cemovements.

The other copula utilized in our work is tB@imbel copulalThe Gumbel copula is also an asymmetric
copula, but it exhib#greater dependence in the positive tail thatiénnegative. This copula is given
by Equatiord.7 wherg is the parameter controlling the dependg®&.

6 0 h Agb 1 16C iioc i 4-7
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The last copula explored in this work is the BB8 copula which isFjaek Copula. This ia two
parameter family of Archimedean copula. The copula CDF is given by Eqdaion
p 10 P

6pro0M 1 p p - p p 10 I
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Where

andt 6 P 4-9

- P P

We simulate data based on the model above and use it for simulating theatfimizodel discussed

below.

4.3 Results and discussions

This section presents detailed results of each of the model presented in this chapter.

4.3.1 Renewable Energy Source: Wind and Solar
As mentioned in Section 4.2, we modeled Wind and Solar power using Kumanasligtribution as

described by Equations¥and 42 (the pdf and cdf of the distribution function are shown).

We tried fitting various distributions to sample data for the city of Waterloo, Ontario, Canada and found
that the Weibull Distribution fits thbest. InFigure4-2 (b) empirical CDF for wind speed is compared
with others.

Empirical Distribution of Wind Speed

= W aterloo Wind Speed ]
Weibull
Kumaraswamy

Curnulative probability

I i i
0 5 10 15
‘Wind Speed in m/s

(@)

Figure4-2: In the figure it is evident that Weibull Distributi@md Kunaraswamy distributiofits the empirical

wind speed distribution well
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TheTable4-1al so shows the comparison of the Akai kebs

distributions which confirm our visual notion. @lis defined as shown below in Equati®n

0 06¢cQ ¢l 1 4-10

Wherek is the number of parameters in the distribution latitle maximized value of the likelihood

function. The minimum value &IC is chasen to be the best {it01].

Distribution AIC
Weibull 40914.8
Kumaraswamy 41079.8
Exponential | 45722.4
Lognormal | 42156.2

Table4-1: AIC for various distributions fit to Wind Speed

As a system planner, considering the efficiency of the wind turbine we are interested in the wind
power generated and hence to analyze the wind power ¢ghesang the Whisper 500 wind turbine.

We tried to fit the power generated to various distributions as shokiguie4-3.

Distributions fit to Wind Power for Waterloo

Empirical CDF for Power Ouput of Whisper 500 WT for Waterloo
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Figure4-3: Empirical distibution and distribution fitting to Wind Power generated from Whisper 500 3kW
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It is quite evident that no specific distribution fits the power generated quite well. We chose the
Kumaraswamy Distribution (given by Equatiorl 4nd 42) which sems to fit the wind power the
best. It is one of the 4 parameter distribution and hence it is not surprising that it represents the data

better than the others but its form is simple.
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We tried fitting a few probability distribution functions for solariedin but concluded that a good
fit is not really obtained using the Gamma distribufi®@] which has been used so in the literature;

again, Kumaraswamy distribution has a good stetikfit as can be seen figure4-4.

Empirical CDF for Waterloo Solar Radiation Distribution fit to Solar Radiation for Waterloo
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Figure4-4: Distributions fit to solar radiation and solar power data of Waterloo, ON
From the aove analysis Kumaraswamy distribution was chosen as the most appropriate choice for
modeling solar and wind powaiNe modeled for each hour and three seasons independently resulting
in overall24 hours, 3 seasons and 4 parameters for each distributidotad of 288 parameters for
wind power. Whereas for solar power which is available for 12 hours in a day we have approximately

144 parameters for the Kumaraswamy distribution.
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4.3.2 Spatial dependence between renewable resources of energy

In Section4.2.3,we discussed about the correlation and dependence between the renesmblees

of energy.lt is found that modeling wind power just using marginal distributions is good but adding
the spatial domain to it increases the accuracy substanfMsly, this pol (copulas) is general and

gives us flexibility to model wind powen places withhighly nonlinear dependence dai#e chose

12 locations with 3 sites, each having 4 locations. Two sites are in Canada and one in the United States.
It was important tanalyze the 3 sites independently given they were spatially very far off and their
impact on each other would be negligible. The idea of choosing these three locations was to investigate
the nature and typical correlation structure present among neastiptowhich may possibly be part

of the same microgrid or the grifligure4-5 shows the histogram for wirghergygeneratiorof each

location using a 3kW wind turbinEigure4-6 shown the geographical locations of the sites chosen for

study.
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Figure4-5: Histogram for the 12 Locations, the data represented in the histograms is the wind power generated by a <
wind turbine with 3kW rating
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Figure4-6: Spatial distribution of the four sites in each location is shown (a) in the northern communities starting from
the left (KirkLand Lake, Rouyn, RouynA andaMOr Airport) (b) in Greater Toronto Area (Buttonville, Toronto,
Billybishop Airport and Pearson) (c) in the United States of America in the Pittsburgh area (Algheny, WheelingCounty,
Pittsburgh and Washington)
In Figure 4-6 (a) this location was chosen more specifically because the objective is to allocate the
power in remote communities which are stand alone and we wish to have a stable power profile from
the renewable energy based systefigure 4-6 (b) site was chosen in the middle of the province of
Ontario, Canada. The area nearby city of Toronto, it has a very unique location given the proximity to
alargewater body, the lake Ontariand also its association withetimain grid. The electricity demand
in this location is very high and critical. Therefore achigwstable power is of great importance.
Increase in penetration of the renewable energy based systerasspecifically wind powemay lead
to instability inthe power on the gridkigure4-6 (c) Lastly we chose the area in and around Pittsburgh

in USA given its central location. It is not close tlaaewater body and also is connected to the.grid

We analyzed theorrelation between the winehergyat each of these siteBased on the varying
correlation coefficients in the three zoméshe dataset it is confirmed that th@relationis nonlinear

and data being neBaussian we chose Kendall rank correlatiothaschoice of correlation parameter.

In Figure4-7 (a), it can be seen that in Site 1 that correlation between Kirkland and other locations is
highly nonlinear while otherstiappeardinearbut in fact it is nodinear as we performed some more
detailed analysis by segregating the dataset into three halves and evaluating the correlation in them. It
reveals that although the overall exploratory analysis of data may show linear correlation but it is
actually nonlinear (the numbers in red in thigure4-7 are the correlation coefficients of the three-sub
segments of the datajigure4-7 (b) if we observe similar data at a site €lde a water body it is

observed that the dependence structure between the locations is méireaoand norGaussian,
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which shows the Greater Toronto Area. This cannot be generalized and geography of the location plays
a very important role we can sieeFigure4-7 (¢) that the dependence is not the same as others.
Therefore, as there is no standard way of defining the correlation stranthitbe correlation is nen

linearwe need more generalized tools etce Copulaeseem to be a perfect choice for this purpose.
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Cross-Correlation between various sites(KirkLand Lake, Rouyn, RouynA and ValdOr Airport)












































































































































































































