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Abstract 

Microgrids are local energy providers that can potentially reduce energy expenses and emissions by 

utilizing distributed energy resources (DERs) and are alternatives to existing centralized systems. This 

thesis investigates the optimal design and planning of such microgrids using a multidisciplinary design 

optimization approach based framework. 

Among a variety of DERs it is widely accepted that renewable resources of energy play an important 

role in providing a sustainable energy supply infrastructure, as they are both inexhaustible and non-

polluting. However the intermittent nature and the uncertainties associated with renewable technologies 

pose sufficient technological and economical challenges for system planners.   

Design of complex engineering systems has evolved into a multidisciplinary field of study. We develop 

a framework for design and planning of complex engineering systems under uncertainty using an 

approach of multidisciplinary design optimization under uncertainty (MDOUU). The framework has 

been designed to be general enough to be applicable to a large variety of complex engineering systems 

while it is simple to apply. MDOUU framework is a three stage planning strategy which allows the 

system planners to consider all aspects ranging from uncertainty in resources, technological feasibility, 

economics, and life cycle impacts of the system and choose an optimal design suited to their localized 

conditions. Motivation behind using MDOUU lies not only in the optimization of the individual 

systems or disciplines but also their interactions between each other. 

Following the modeling of the resources, a deterministic optimization model for planning microgirds 

is developed and results are evaluated using Monte Carlo simulations. Given the obvious limitations of 

the deterministic model in not being able to handle uncertainty efficiently and resulting in an expensive 

design we extended the model to a two stage stochastic programming model which provides a unified 

approach in determining the sizing of microgrids by considering uncertainty implicitly by means of 

scenarios. Probabilistic scenarios are developed using C-vine copulas that model nonlinear dependence. 

We evaluate the significance of the stochastic programming model using standardized metrics 

evaluating benefits of using the stochastic model.  

As any product or service needs to be evaluated for its environmental impacts, MDOUU provisions an 

LCA module that evaluates the environmental impacts and energy demands of the components of the 

system based on extensive literature and databases using openLCA as a tool.  
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The overall system selection involves multiple criteria and interests of different stakeholders. This 

requires a multi-attribute decision system and a comprehensive ranking approach providing a list of 

possible configuration based on their relative importance as denoted by the stakeholders. We use 

Analytical Hierarchical Process (AHP) combined with compromise programming to rank a list of 

configurations based on economic and environmental attributes such as GHG emissions saved, cost of 

energy, annual energy production, net present value (NPV) etc. It allows the planners to make decisions 

considering the interests of a majority of stakeholders.   

The MDOUU framework proposed in this thesis with specific application to the microgrid planning 

problem contributes in helping the planners handle uncertainty of renewable resources of energy and 

environmental impacts in a systematic way. As such there is no method available in the literature which 

considers planning of microgrid using such holistic and multidisciplinary framework. The MDOUU 

framework is a generic tool and is useful for planning problems in a variety of complex systems.  
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Chapter 1 

Introduction 

 

1.1 Motivation and Challenges 

It is evident that the global demand for energy has been increasing rapidly, which imposes a huge 

dependence on existing energy resources (fossil fuels/oil); this leads to increasing pollution and global 

warming [1]. It has been analyzed that in the upcoming 25 years the global energy demand is expected 

to increase by 50 % given the population growth and economic development. In this context renewable 

energy resources appear to be a promising source of clean energy [1]. 

In the past, the defining nature of the world's power supply systems has been of centralization and 

much of which depended on fossil fuels. They have been significant major resources to produce power 

in large generation facilities to provide low-cost electricity to high population densities. Given the 

rapidly increasing cost of extension and maintenance of transmission networks from large central grids, 

many isolated systems have instead adopted distributed generation for local power supply. Renewable 

energy is also an important alternative for such isolated systems (rural/islands) given the high oil prices, 

the cost of transmission expansion, and the high cost of transportation of fuel, along with the desire to 

reduce CO2 emissions. 

Canada is the second leading producer of greenhouse gas (GHG) emissions per capita and one of the 

fastest growing players contributing to energy demand [1]. Although the cost of energy from 

conventional resources is typically lower than that from the renewable energy resources, an optimal 

mix of renewable energy with conventional resources can reduce the overall cost of energy in isolated 

systems, which are often referred to as microgrids. Distributed generation in these systems typically 

range in capacity from 5kW to 10MW, at or near the end-user to provide the electric power needed [2]. 

1.2 Research Objectives and Scope 

Increasing oil and fossil fuel prices, extreme changes in the climatic conditions have motivated us to 

direct ourselves to meet our power needs from renewable resources of energy, away from a centralized 

power system to a more decentralized and hybrid power system. Most of the work done in microgrid 

design has been done using deterministic methods, but a majority of the referenced work acknowledges 
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the stochastic nature of the renewable generation and demand. It has been really challenging to develop 

joint stochastic models for the design of small microgrids with high renewable penetration due to 

multiple disciplines involved and the need to consider both economic and environmental metrics. 

Developing models which incorporate planning and operation considering inability to dispatch and 

uncertainty in renewable resources and demands is usually the prime goal. Planning models incorporate 

a long time horizon with large time intervals while operation models incorporate a short time horizon 

with smaller time intervals and considering both simultaneously is nearly impossible for most real 

world systems. 

Stochastic models have considerable advantage over deterministic models, one of these advantages is 

that the overall cost, namely, the sum of investment and operational costs, is lower than the overall cost 

from its deterministic counterpart and that the stochastic model can meet the requirements for all the 

foreseeable scenarios, something that a deterministic model cannot do [3]. 

Developing stochastic models is just not enough in any problem if risk is not considered explicitly. 

Hence, an optimization model for planning and operation that minimizes risk due to random events is 

needed. The mean-variance Markowitz theory [4] can be applied with an introduction of a single risk 

factor in the objective function to explicitly account for the trade-offs between the mean and variance 

in benefits. 

Markowitz theory has been used extensively in portfolio optimization and has proven useful. In the 

context of microgrid planning and design, we have a portfolio of generation and storage resources and 

costs associated with them. Given various operating, budget and reliability (percent of load unserved) 

constraints, we wish to minimize our costs and the risk of our investment in long term. 

Microgrid planning not only considers the energy needs of the local community but also helps in 

preventing adverse effects to the environment by reducing the CO2 and other GHG emissions. They are 

also helpful in providing local employment. However, it is important to understand that any 

infrastructural set up will involve investment in the form of money and land usage that may have 

otherwise been used for agricultural purpose, etc., an issue that came to be understood in recent days 

from large increase in corn (food/feed crop) prices when used for fuel production [5]. In our planning 

we need to address all these issues together and the framework proposed is expected to help such 

planning. 

Therefore, an important objective of our research is to develop a framework based on the idea of multi-

disciplinary design optimization (MDO) and life cycle analysis. The former takes care of the multiple 
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disciplines which we may have to consider for a robust design while the latter one encompasses the 

cradle to grave analysis of any component involved in the development of the microgrids and their 

effects on the environment whether positive or negative. 

LCA of a microgrid involves a detailed analysis of the individual components of the microgrid ranging 

from the wind turbines, solar panels, batteries, etc. to the system as a single entity. This allows us to 

evaluate the microgrid based on a holistic approach and its impact on the environment. There is 

immense evidence of a broad spectrum of research in the area of LCA useful for renewable energy 

technologies. Most of the research faces difficulty finding accurate data for local regions but recent 

advancements in comprehensive databases have reduced this difficulty manifolds.  

Microgrids can be autonomous or grid-connected, based on the location and future planning. An 

analysis towards the feasibility of establishing a microgrid as compared to connecting it to the main 

grids also plays an important role in the cost and planning analysis [6] . 

 

In summary, the list of goals proposed in this research for building the framework: 

 

¶ Develop statistical models for robust modeling of renewable energy resources and demand given 

uncertainties inherent in them. It is also important to understand the dependence between renewable 

energy resources (solar and wind in our case) for optimal planning decisions of systems utilizing 

such resources. We investigate first order dependence between power generations from renewable 

resources at various locations in proximity.  

¶ Find an optimal configuration of a microgrid fed by renewable energy resources. This is an 

optimization problem which considers the minimization of capital and operational costs subject to 

operational and reliability constraints.  

¶ Develop stochastic optimization model to incorporate the probabilistic uncertainties in supply and 

demand. Stochastic optimization model is more complete as it encompasses various scenarios of 

supply and demand. We use the approach of two-stage stochastic programming with recourse for 

our problem. Markovitz mean-variance model is used to consider risk in investment. 

¶ Microgrids have a diversified impact on the environment and the community. Hence we need to 

analyze its impacts on the environment in detail and the most obvious approach is to undertake 
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LCA of the possible microgrid configurations. Since each configuration has multiple varying 

attributes, we used a Multi-Criteria Decision Analysis (MCDA) method based on compromise 

programming for selecting a configuration, which is made possible by the proposed 

multidisciplinary design optimization under uncertainty based framework. 

1.3 Thesis Outline 

This thesis work is presented in seven chapters. Chapter 2 offers a comprehensive literature review of 

the research contributions in the area of microgrid planning.  

Chapter 3 presents the integration of the models of resource, demand, microgrid planning and LCA. 

We use Multi-disciplinary design optimization to formulate a general framework for the planning of 

micro grids using the MCDA approach using compromise programming. The modeling aspects of our 

work with uncertain resources are explored in Chapter 4. It explains our approach for modeling of wind 

and solar energy using the Kumaraswamy distribution and the copula based C-Vine approach to model 

the dependence.  

We extend the deterministic optimization model into a two-stage stochastic programming model in 

Chapter 5. In addition, we used the Markovitz mean-variance model and extended our two-stage 

stochastic programming model to consider risk explicitly in microgrid planning.  

Chapter 6 presents an approach to do life cycle analysis of the possible microgrid configuration (LCA 

of each resource technology) using the large amount of data available in public data sets. It allows us 

to choose a microgrid that not only is economically profitable but also suitably addresses any adverse 

effects on the environment. We used an open source tool called OpenLCA for performing the LCA of 

our microgrids. 

Chapter 7 presents summary and conclusion of the thesis and highlights the major contributions of the 

thesis. It also lays path for researchers to investigate in newer areas of research. 
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Chapter 2 

Microgrid Planning Problem: Literature Review and Assessment 

2.1 Introduction 

There has been a thrust by UNFCCC (United Nations Framework Convention on Climate Change), to 

prevent climate change and global warming by accelerating research and development to enhance the 

penetration of renewable resources of energy which are capable of replacing fossil fuels. A very precise 

definition of a microgrid has been stated by [7]: A microgrid is a cluster of electricity sources and 

(possibly controllable) loads in one or more locations that may or may not be connected to traditional 

wider power systems, or the grid. The most intriguing feature of a microgrid is its ability for local 

control, allowing it to operate reliably as an island. The success of such distributed microgrids will 

depend heavily on the availability of renewable resource and the economics of the distributed energy 

resources. 

It is quite clear that the early success of small clusters of such mixed technology generation, possibly 

grouped with storage, controllable loads and other microgrid elements will empower such systems to 

succeed. Long term economic, environmental and utility system benefits are evident, policies and 

strategies are required to propel such microgrids to a more widespread audience. There are still some 

technical, economical and regulatory issues which restrict the widespread deployment of renewable 

energy systems (resource is wind and solar, for example) (RES) in any power system. One of the most 

significant issues with their deployment is their uncontrollability and undispatchability. Most of the 

recent designs assume the renewable resources to be dispatchable, which is practically not feasible. 

Electricity is one commodity that is generally consumed almost instantaneously once generated. 

Demands are generally fluctuating hence system planners perform complex, multistage planning 

process that enable the generators to deliver the agreed amount of power and change their output 

promptly or on a short notice. One way to deal with the problem of uncontrollability of RES is to use 

them in conjunction with controllable generators and energy storage. It is quite evident from the 

literature that combinations of RES with controllable generators and storage systems ("Hybrid Power 

Systems", HPS) are considered as feasible alternatives only in rural areas such as villages, islands and 

oases, where it is prohibitively expensive to extend power transmission lines from the main grid to 

serve the loads in these remote areas. 

Recently, the outlook towards installation of such HPS has been changing for two major reasons: 
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¶ RES and storage units are getting bigger and less expensive. 

¶ Decentralization of the grid is taking place, enabling higher penetration of RES and 

distributed generation. 

The traditional centralized power grid which had a three layered architecture (generation, 

transmission and distribution) is transforming into a more modular decentralized architecture with poly-

microgrids with distributed generation and smart communication protocols to enable high renewable 

penetration. In this context, development of an optimal strategy for choosing the right mix of renewable 

resources of energy plays an important role in the planning and operation of the HPS in the microgrid. 

There has been extensive research performed in this domain but the uncertainty of renewable resources 

of energy and pricey storage solutions make the process of technology selection a very challenging 

task.  

2.2 Literature Review 

Global environmental concerns and the ever increasing need for energy, combined with the steady 

progress in renewable energy technologies has provided huge thrust in industry and  academia to 

explore solutions for energy which are cheap, environmental friendly, reliable and self-sustaining. 

Extensive research has been carried out in the past few decades towards design of systems which 

encompass the above mentioned features. Hence in an attempt to design HPS with mainly solar and 

wind power as renewable resources of energy we review literature of techniques for designing self-

sustaining HPS in isolation and with grid connectivity. Large spectrum of mathematical tools have been 

employed in an attempt to find an optimal mix of such resources to develop reliable systems. 

2.3 Modeling of Random Variables (Renewable Energy Resources) 

2.3.1  Wind Energy 

Wind energy is the kinetic energy of wind utilized for the production of electricity. There has been a 

dramatic growth in wind power penetration since the beginning of the 21st century. Total global 

installed capacity of wind power at the end of 2011 was around 238 GW which was significantly large 

than 18 GW at the end of year 2000. Almost 41GW was added in 2011 alone. There has been extensive 

growth in wind power in Asia, overtaking Europe and North America. China, in specific, has become 

the leader in terms of the total installed capacity in a very short span of time, exceeding United States 

in 2010. There have also been a number of recent developments in offshore wind projects. A dozen of 
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European countries have provided their consent for development of an off shore electricity grid in the 

North Sea [1]. 

2.3.1.1 Wind Turbine Model 

The analysis of power generation using any renewable source is an essential component of the planning 

studies. In the context of Wind Turbines (WT), it is not possible to achieve a realistic evaluation of the 

electrical system in question by simply using deterministic analysis. The probability of a given wind 

speed can be estimated if the probability distribution is known. Once the wind speed is known, the 

power injected into the grid can be calculated by means of the WT power curve [8].  

2.3.1.2 Wind Turbine Characteristics 

The output of a wind generator is determined by the average hourly wind speed at the hub height and 

the output characteristics of the wind generator. For evaluating the output power of the wind generator, 

the measured data of average hourly wind speed must be converted to the corresponding values at the 

hub height, using the wind speed at a reference height hr and wind speed at a specific hub height h for 

the chosen location as in Equation 2.1, where v is wind speed in m/s, vhr is wind speed at reference 

height in m/s and ɹ is the power law exponent [9]. 

 

 
ὺ ὺ

Ὤ

Ὤ
 2-1 

In association with the wind speed evaluated in Equation 2.1, the model [9] used to evaluate the wind 

power ὖ ὸ W, generated by the wind turbine is as shown in Equation 2.2 where PR is rated power 

of wind turbine in kW, vci is cut in speed of wind turbine in m/s, vco is cutoff speed and vr is the rated 

speed of the wind turbine in m/s 

 
ὖ

ὥẗὺ ὦẗὖ ὺ ὺ ὺ
ὖ ὺ ὺ ὺ
π έὸὬὩὶύὭίὩ

ύὬὩὶὩὥ
ὖ

ὺ ὺ
ȟὦ

ὺ

ὺ ὺ
 2-2 

 



8 

 

 

Figure 2-1: Power Curve for Whisper 3kW Wind Turbine 

The power curve for the Whisper 3kW (Sothwest Wind Power) [10] wind turbine is developed based 

on the equations above. This is one of the small wind turbines used in a few microgrid projects. The 

power curve and specification are obtained directly from HOMER. The power curve of most of the 

wind turbines in the range of 1kW to 30kW follow a similar shape. But the choice of a specific wind 

turbine is based on the average annual wind speed of the location and economics. Whisper 3kW wind 

turbine was used in similar a microgrid in South Africa [11] and hence we decided to use this wind 

turbine for our case study. 

2.3.1.3 Wind Speed Modeling using Probability Distributions 

Hourly wind speed is considered as a random variable and is modeled using the Weibull Probability 

Distribution (PDF) [12], the mathematical expressions are given by Equation 2-3. This enables planners 

to predict the wind speed at a given location for any specific time. This information is useful for 

predicting accurately wind power available at the site.  
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Where ɜὲ ὲ ρȦ 

where, vmean is the mean speed and ů is the standard deviation of the wind speed for a particular site. 

The Cumulative Distribution Function (CDF) can be represented mathematically by Equation 2-6. 
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2.3.2 Solar Energy 

Photovoltaic (PV) systems generate electricity using energy from the sun. They constitute another 

environmentally friendly alternative way for energy production. They operate quietly without 

emissions and they can be installed quickly. Their long lifetimes and little maintenance requirements 

make them an ideal solution for not only urban but rural deployments when used as autonomous 

systems. PV systems can be located close to the sites where the electricity is to be consumed. Generator 

systems near the end-user can reduce transmission and distribution costs as well as transmission and 

distribution losses. At the moment, the major barrier to the widespread adoption of photovoltaic 

technology is its high cost. 

Within Europe there are several countries with extensive experience with grid-connected systems. 

These include Austria with its 200kW Photovoltaic Rooftop Program [13], Germany with its 1000 

Roofs Program (now 100,000 Roofs Program), which led to the installation of more than 2250 systems 

by 1999, Italy with ENELs 3.3MW PV plant, the Netherlands with an expanding research and 

demonstration program (several MW of PV have been installed, mainly on roofs) and Switzerland with 

its Energy 2000 program. There are also, many experimental PV power stations and demonstration 

projects. Japan with its 70,000 roofs program plans to increase its installed capacity from 10000 systems 

in 1997 to 4600MWp by 2010. In the UK the potential is seen for building integrated PV systems. 

Irradiation or sometimes simply radiation is the radiant energy per unit area on a surface and is 

measured in J/m2 or Wh/m2. Irradiance is the power per unit area on a surface and is measured in W/m2. 

Our prediction of solar radiation at a certain location is based on radiation data from the past. The solar 

radiation data are usually recorded on the horizontal surface. 

The solar radiation on a surface of an arbitrary orientation at any time depends on the angle of the solar 

rays with the surface in question, that is to say, on the relevant position of the surface with respect to 

the sun. This is determined by the surface orientation and the astronomical parameters. PV system 
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modeling requires the knowledge of radiation on the inclined surface of the PV panel which usually 

has to be calculated using the radiation on the horizontal surface. The steps in the radiation conversion 

are as follows: Firstly, the radiation has to be decomposed into the two components; beam and diffuse. 

The next step is the transposition of each onto the inclined plane. The total (global) radiation contains 

a sum of the two components as well as the ground reflected radiation. The key procedure is the 

calculation of diffuse radiation. The key quantity in this calculation is the clearness index which 

expresses the effect of the atmosphere on the extraterrestrial solar radiation. Since most of the 

environmental factors are random and we are aware that solar insolation varies from day to day at the 

same hour we need a technique to model this uncertainty.  

2.3.2.1 PV Panel Characteristics 

The hourly output power of a PV panel can be calculated by several analytical models which define 

the current-voltage relationships based on the electrical characteristics of the PV panel. 

The model presented by [14] is used in all the calculations. It allows for calculating the PV panel current 

(Impp) and voltage (Vmpp) at the maximum power point using a maximum power point tracker (MPPT). 

This model includes the effects of irradiation level and panel temperature on the output power as shown 

in Equations 2.7 ï 2.14, where ISC is short circuit current of solar panel in A, Vmax and Voc are maximum 

voltage of PV panel at the reference operating condition and open circuit voltage of PV panel in Volts, 

respectively, ‘ȟ  is temperature coefficient for open circuit voltage in V/degC, Imax is the maximum 

current of the PV panel at the reference operating conditionȟ‘ȟ  is temperature coefficient for short 

circuit current at reference operating conditions,GT and Gref are hourly irradiance on tilted surface in 

W/m2 and irradiance at reference operating conditions equal to 1000 W/m2, respectively, and Tc and 

Tref are PV panel operating temperature and reference temperature in degree Celsius, respectively. 
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and the PV panel power at the maximum power point Pmpp is expressed as: 
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Tc can be expressed as follows [14] where NOCT is Normal Cell Operating Temperature. 
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where normal operating cell temperature (NOCT) is defined as the cell temperature when the PV panel 

operates under 800 W/m2 of solar irradiation and 20oC of ambient temperature and NOCT is usually 

between 42oC and 46oC. 

Most of the data sources provide only solar irradiation data on a horizontal plane. The power incident 

on a PV module depends not only on the power contained in the sunlight, but also on the angle between 

the module and the sun. When the absorbing surface (PV panel) and the sunlight are perpendicular to 

each other, the power produced is maximum. However, the angle between the sun and a fixed surface 

is continually changing, the power density on a fixed module is hence always less than that of the 

incident sunlight.  

The tilt angle has a major impact on the solar radiation incident on a surface. For a fixed tilt angle, 

the maximum power over the course of a year is obtained when the tilt angle is equal to the latitude of 

the location. However, steeper tilt angles are optimized for large winter loads, while lower title angles 

use a greater fraction of light in the summer and hence accordingly one needs to change the orientation 

of the solar panels. For our study we would restrict to the values of horizontal solar irradiation only. 
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2.3.3 Modeling of Random Variable with non-linear dependence structure 

2.3.3.1 Correlation analysis between renewable generation using Copulas 

Wind power is one of the worldôs largest and most accessible resources of renewable energy. Solar 

power is becoming the second most popular resources of renewable energy. However, intermittency in 

the availability of the renewable resources of energy presents a barrier to the renewable energy based 

systems (mostly wind and solar power) to meet the demand entirely. Wind shows sudden changes, and 

a very high variability. While, solar power is more stable than wind and follows a well-recognized 

pattern but the power output shows high variability with a slight change in solar insolation. Our analysis 

is based on locations in Canada and the United States, although our models are general and can be 

employed to any data set. 

Wind speeds in general are non-Gaussian and non-linearly correlated and so are their spatial 

dependencies.  Hence, we utilize the Kumaraswamy distribution to model the wind power. There are 

two reasons for using Kumaraswamy distribution, firstly, itôs a general distribution with similar 

characteristics as the beta distribution and, secondly, it has a very simple analytical formulation that 

allows for fast computations and easy integration with copulas, which will be discussed in detail later. 

There has been existing literature on the possibility of smoothing wind power based on geographical 

dispersion or by interconnecting the existing dispersed systems. Most of the literature refers to wind 

farms. In [15], authors investigate the impact of these arrays of wind turbines of varying sizes. They 

used data from California and concluded that the reliability of the systems increased with increased in 

system size.  Also recently, it has been found that interconnection has a great impact on reliability and 

stability of renewable energy generation (mostly wind power) [16]. 

Dependence is quantified usually using measures of association, such as linear correlation coefficient 

[17]. It has been shown in the literature that the linear correlation coefficient of the power from wind 

power plants tends to decrease with increase in the separation and has opposite behavior for longer 

averaging periods [18].  

The linear correlation coefficients provide general information about dependence; it does not uniquely 

describes the structure of dependence. Unfortunately, it doesnôt translate well into specific, actionable 

information that can be used by system operators or planners. Let us for example assume a system 

planner wishes to know the number of hours in a year the aggregate wind power in the system will be 

above or below some threshold value. It has been demonstrated that the information on linear 

correlation coefficient, even coupled with knowledge of marginal distributions of wind power is not 
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sufficient to determine the actions or specific information. The only possible way to describe the 

dependency structure fully is by using joint distribution functions. On the other hand, no multivariate 

distribution models are available for wind power and moreover no common joint distributions fit wind 

power data accurately.  

There are always options for modeling such scenarios, one possible way studied in the literature is by 

decomposing the assumed correlation matrix using Cholesky decomposition [19]. This approach is only 

suitable if one has linear correlation, and it allows the planner to have no control in utilizing the possible 

nonlinear dependence structure. Hence a more appropriate approach to model non-linear, non-normal, 

and more complex dependency structure is by using Copulas [18, 20-23]. 

Copulas are very widely used in the field of finance [17, 24], and authors possess some unique 

characteristics which make them attractive and appropriate for wind power modeling [23].  The most 

important feature of copulas is their ability to model the dependence structure independently of the 

marginal distributions of the participating variables. This is quite important as output of wind power at 

different locations is often not trivial and therefore finding this dependence independently of their 

behavior is of great advantage for the system planners. The correlation between the locations can be 

estimated from characteristics such as separation distance, averaging period etc [25-27]. Therefore, if 

only basic information is available about the location of the wind turbines, quite accurate model of the 

dependency structure can be produced. The selection of an appropriate copula function is very 

important at this point. Inappropriate selection of the copula can result in unacceptable errors.  

In literature it is most commonly found that the default choice for copula is the Gaussian copula, but it 

has not been rigorously investigated that if this is an appropriate choice for wind power. In [22] wind 

power was modeled using the standard Gaussian copula and their decision to use the Gaussian copula 

was based on the qualitative assessment of the Q-Q plots. While a more comprehensive approach was 

adopted in [27] where they tested a number of standard copulas on wind speed rather than wind power 

and only tested the Archimedean copulas [17].  

The most important usage of modeling wind power using copulas is in the generation of scenarios [28]. 

As it will be demonstrated in this thesis, wind power production scenarios are necessary for stochastic 

programming which is a common decision making tool in power system analysis and planning research. 

For example, [29] utilized Gaussian copulas to generate these scenarios, while Empirical copulas were 

used in [30]  where authors modeled the dependency structure between the wind speed and the wind 

power output. In [31] copulas are used for wind speed forecasting, where they utilized a quantile-copula 

kernel density estimator to improve the probabilistic wind power forecasts.  
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It has been shown in the literature for a quite a long time that wind speed are non-normally distributed 

and recent studies on the evaluation of the dependence structure of the wind speed has confirmed that 

they are non-linearly dependant [18, 22] and many more. 

Hence when the multivariate data is not normally distributed the quantiles of sums of margins may not 

be calculated from sums of variances and covariances. In [18], authors have modeled the univariate 

time series of wind speed using a seasonal ARMA model which was proposed by Benth and Benth [32] 

for each location individually. To model the correlation between the various locations, they analyze the 

correlation between the residuals of the various univariate time series and fit copulas to the residuals 

developing copulas-GARCH models. They have addressed this issue based on daily mean wind speed 

and we feel that a stronger correlation structure underlies the wind power on an hourly basis as wind 

has finite velocity and change in wind velocity at one location is time-lagged correlated to the other 

and the correlation is significant and cannot be neglected.  

 

2.3.4 Microgrid Planning - Deterministic Approaches 

In [33], Ofry et. al. developed a graphical method based on the loss of power supply probability to 

design a stand-alone solar electrical system. The idea adopted by [33] was to minimize a linear cost 

function comprising the cost of battery and solar arrays. The minimum is obtained by finding the 

derivative of the cost function. The linear cost function is shown below, where CC is the total cost of 

the system, ‌ is the cost of a single PV panel, ‍ is the cost of a single battery and  ὅ  is the fixed 

installation cost. All costs are in dollars ($): 

 ὅὅ ‌ὔ  ‍ὔ ὅ  2-15 

In [33], the authors expressed the feasibility of their model using a real world example of a low power 

communication box, which means that extending the idea of such stand-alone systems to large power 

applications was a challenge. 

A very similar approach to [33] was carried out a few years later [34]. An analytical approach was 

adopted with which extensive simulations were performed on meteorological data obtained from 

various places in Italy. The system under study in [34] also consisted of a photovoltaic array, power 

tracker, battery storage, inverter and a controllable load. Given the extensive research being carried out 

in the domain of design of stand-alone systems, a sizing hand-book was published, which summarized 

all the techniques developed till then based on the sizing curves and loss of power supply probability. 

The report [35] extended the work to include seasonal variations in the meteorological data. 
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In [36], the author has presented an analytical technique for the design of standalone solar and battery 

systems. He presents an analogy between the battery storage and reservoir, queues and stocks and 

approached the problem by formulating the energy deficit as Markov process. He discretized the 

probability distribution for the energy deficit and solar power generated and converted them into finite 

states. States were then evaluated using the transition probability matrices.  

Design of HPS for a house was carried out initially by [37]. Authors fixed the number of wind turbines 

and developed a methodology for calculation of an optimal size of a battery bank and the PV array for 

a wind-PV system. Long term hourly meteorological data was used to evaluate average wind power 

and PV power for every hour of a typical day of a month. The load was considered as a typical 

household in the city of Massachusetts. Given the load and desired loss of load probability an optimal 

number of batteries and PV modules were calculated based on minimum cost criteria. 

In [38], design of a HPS without considering the daily variation in the meteorological parameters is 

presented. Instead they consider the monthly variation which prevents over sizing of the system design. 

In their work they do consider the impact of battery storage but do not discuss about the size of the 

battery. It becomes an important parameter in design of HPS to obtain an optimal number of batteries 

or any other storage since it governs an important and significant portion of the systems cost. The work 

in [38] considers the problem of optimal design by a graphical technique by building graphs of PV vs 

Wind and identifying the feasible region. These graphs are usually referred to as sizing curves. Seasonal 

variations in the meteorological information have also been considered as a part of the analysis. 

Interesting conclusion of [38] was that the principal reason for HPS being the cheaper solution than PV 

or wind alone is the fact that the energy generated by the hybrid can be matched more closely to the 

load and prevents over sizing of systems which may be too expensive. 

The work in [39] addresses the design and integration of an isolated HPS. A goal of this work was to 

design a stationary electric power system for Necker Island near California, which allows full operation 

and future expansion of the facility and drastically reducing the environmental impact of the current 

fossil fuel generation. In [39], the power system of Necker Island was redesigned which integrated the 

Island's hot water, electrical and water desalination systems. They formulate the combined optimization 

problem based on the performance and by constraining carbon emissions. Issue of voltage stability is 

also addressed in the context of low voltage grid. They employ the idea of distributed control to enable 

each unit float their frequency to ensure system stability with changing demand and supply profiles. 
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2.3.5 Microgrid Planning - Stochastic Approaches 

Stochastic design approach has been recently adopted by Chandy et. al. [40], where authors discretized 

the battery state and modeled it as a Markov process. They considered the state of energy deficit as an 

absorbing state and hence at any instant, to evaluate the probability of loss of power supply, it was 

obvious to find the probability of the storage to be in the absorbing state. Very similar stochastic models 

have already been used in hydrology to understand and model the reservoir, which have a direct analogy 

to a battery in our case. In [41], Ponnambalam et. al. presented an analysis of a multireservoir system 

based on the development of first and second moment expressions for the stochastic storage state 

variables. The expressions in [41] give explicit consideration to the maximum and minimum storage 

bounds in the reservoir system. Their formulation provided analytical results for various parameters 

such as variance of storage, reliability levels and failure probabilities, which are of significant 

importance to a power system under consideration as well. The ideas of using indicator functions from 

[41] was extended in [42] to analyze the F-P Method from [41] in capacity design of a battery bank in 

renewable energy systems with constant demand and uncertain supply. 

Analytical expressions similar to [34] were obtained for the probability of deficit of the storage system. 

An important inference from [43] and others is that there exists a threshold on array size below which 

no amount of storage capacity will suffice to ensure prescribed system reliability. 

The techniques discussed above reveal one important aspect. The numerical models are accurate in 

estimating the loss of load probability, however they are time consuming and complex. On the other 

hand, all analytical models allow sizing of PV systems in a very simple way by means of 

straightforward calculations. However they lack significant amount of accuracy. In [44], authors 

developed an accurate analytical method for sizing of PV systems based on location specific 

coefficients obtained from the site topography. 

Interest in the community has been developing to increase the penetration of RES and hence methods 

to design HPS have increased. In [45], authors develop a linear programming technique to solve the 

design problem of an integrated electrical distribution system considering variety of loads, electricity 

resources (conventional and renewable) and energy storage. The model developed by [45] determines 

the optimal size and site of all the types of power supply units and connection lines. Their model has 

flexibility to be extended towards considering the expansion of power distribution systems by 

converting it into a multi-stage model. 

In [37], authors develop probability density functions for the wind power (Weibull distribution) and the 

PV power (bimodal distribution). Once the model is set up with the power output from the renewable 
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resources, simulations are performed given the system operational constraints and the charging and 

discharging of the battery bank. Iteratively, optimal number of battery bank and PV modules are 

obtained by minimizing the systems cost. They also used the Equation 2.1 for finding the optimal 

minimal cost combination. 

Demand and supply both have an uncertainties which need to be considered carefully while designing 

any system. The stochastic behavior of both the entities injects substantial degree of complexity into 

the systems design framework. Posadillo et. al. [46] developed a statistical technique for the design of 

stand-alone HPS for an uncertain demand. Sizing methods for HPS depend solely on the distribution 

function of the daily global irradiance. As a standard approach [46] also used the loss of load probability 

as a parameter to characterize the system design and includes information on the standard deviation of 

loss of load probability, annual number of system failures and standard deviation of annual number of 

system failures. The use of a detailed statistical characterization of daily solar radiation is a significant 

contribution of [46].  

Thermal generation is required for reliable HPS operation with high renewable penetration [47] . The 

authors present the operational aspect of such HPS where a fuzzy logic controller is used for solving 

the thermal unit commitment problem with integrated wind power. Inclusion of battery with wind 

power is essential to compensate the frequency and voltage fluctuations. They try to model the 

uncertainty and imprecision in the wind energy by fuzzification. The traditional unit commitment 

problem is then solved using a modified differential evolution approach. A trivial differential evolution 

approach is modified to embed the mixed-integer nature of the unit commitment problem which needs 

discrete optimization. 

In another approach to handle the uncertainty and unpredictability in renewable resources, [48] applied 

stochastic optimization to identify the size of the storage in wind-diesel isolated grids. Energy storage 

is important in wind-diesel hybrid systems as it is a means for optimizing the energy use and for 

reducing the consumption of the diesel fuel. An important inference of the work is that the storage size 

and cost of delivered energy is dependent on wind penetration levels, storage efficiency and diesel 

operating strategy. Various scenarios for wind and demand profiles are considered. They also employ 

the two-stage stochastic programming technique where the first stage variables being power rating and 

energy rating of the energy storage along with the initial energy storage, whereas the second stage 

variables constitute diesel generator power, dump load, binary variables associated with the diesel 

generator dispatch and energy discharged from the storage at any given instant of time. 
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There have been numerous attempts for the design of microgrids using various open source 

applications, HOMER developed by University of California, Berkeley is one of the most commonly 

used one. It performs techno-economic analysis and prioritizes the solutions based on cost. One of the 

very successful attempts towards microgrid design using HOMER is [6]. Unfortunately, the software 

has many approximations and assumptions which need to be addressed using a detailed mathematical 

formulation to handle the uncertainty and unpredictability in the renewable energy resources and 

demand. 

Inclusion of market impact with the planning of RES and storage is of vital importance given the 

increasing penetration of RES. Muela et. al [49] considers the stochastic nature of the wind power in 

terms of inherent variability and unpredictability even in short term. Including storage of any sort in 

the system has always been an intuitive approach towards complementing wind energy and handling 

positive and negative energy imbalances. The approach adopted by [49] is that of using standard two-

stage stochastic optimization framework including two random variables; wind generation and market 

prices. Joint configuration is modeled and compared with an uncoordinated operation. An economic 

analysis of the inclusion of pumped storage in an islanded system which has abundant renewable energy 

available is performed in [50]. Their model addresses the capacity sizing for the pumped storage using 

a linear programming problem framework. The stochastic nature of load and renewable resources is 

handled using scenarios generated using fuzzy clustering. The model optimizes the unit capacity, 

storage size and operating strategy. 

If more than one microgrids are connected to the main grid then they would start energy exchange at 

the bus. Sarkar et. al [51] addresses this issue of energy exchange by multiple microgrids using the 

concepts from game theory and explicitly compute the condition of Nash Equilibrium and show that it 

is unique. 

 

2.3.6 Microgrid Planning - Global Optimization Approaches 

Optimization has always been a challenging task, and global optimization techniques, such as Genetic 

Algorithms or Evolutionary Algorithms have been employed extensively in the design of HPS. In [52], 

the authors use the genetic algorithmic framework for optimal sizing and operation of a HPS. Given 

the non-linearity in the system model and the system components, it becomes a very difficult and 

challenging optimization problem. In [52], the authors divided the algorithm into two parts: one for the 

optimal sizing and the other for the optimal operation of the HPS. This results in an optimal selection 
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of a HPS configuration and an operating strategy for the given site. Genetic Algorithms have also been 

used in [53] for distributed energy resource selection, sizing and effective coordination. The problem 

was formulated as a mixed integer non-linear problem which minimizes the total capital cost, 

operational and maintenance cost subject to constraints as energy limits, emission limits and loss of 

power supply probability. Simulated Annealing based approach for optimal sizing and siting is used in 

[54]. 

A very similar approach as in [38] and [52] was adopted by [55] towards optimal sizing of the 

generation units for stand-alone and hybrid systems. Authors in [55] consider a location specific 

scenario in a remote area in Montana with a typical residential load. They designed the system using a 

simple numerical approach, later on they compared three major scenarios for economic feasibility: 

setting a new HPS; extending the connection to the main grid; and supplying load with the conventional 

generating units. 

In [56], a more recent algorithm, DIRECT (Dividing Rectangles), was used to solve the horizon 

planning optimization problem for sizing of a wind/PV system. DIRECT was developed by [57], as a 

global optimization method. It is an effective deterministic algorithm [56]. It finds the minimum of a 

Lipschitz continuous function without knowing the Lipschitz constant. In DIRECT an assumption is 

made that the rate-of-change of the objective function and constraints are bounded. In brief, the entire 

search space is divided into a set of rectangles and optimal direction is determined by evaluating the 

objective function at the center points of the subdivided boxes. In this case, they used a few varieties 

of renewable energy resources types and capacities to choose from but it made the search space high 

dimensional. 

A recent work by [58], recommends an optimal design model for designing of an HPS including battery 

banks. The model evaluates optimal system configuration and ensures that the annualized cost of the 

system is minimized while satisfying the custom required loss of load probability. The decision 

variables of their model include the number of PV modules, the PV module slope angle, the number of 

wind turbines, the wind turbine installation height and the battery capacity. The method has been 

applied to a low power telecommunication relay station along the south east coast of China. They 

utilized Genetic Algorithms (GA) for determining the optimal configurations. 

In [59], the authors address more operational issues in a microgrid operating in autonomous or grid-

connected mode. Concept of Particle Swarm Optimization is utilized for finding the optimal parameters 

for the control system. Whereas [60] uses Computational Intelligence technique such as neural 

networks and fuzzy system for microgrid control and operation. 
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2.3.7 Microgrid Planning - Multidisciplinary Design Optimization based Approaches 

Microgirds, as mentioned earlier find extensive application in remote and rural communities. In [61], 

the work is towards the design of a village microgrid with RES and performs evaluation of its economic 

feasibility. They follow a four stage process: initializing based on the natural environment and demand 

analysis, the selection of appropriate distributed renewable energy resources and the electrical network 

design and, power network analysis, and its economic evaluation. A case study of Changwon Dongjeun 

village in Kyoungnam province in China is taken as a case study where the load diversity ranges from 

single family houses, commercial buildings, apartment buildings and a public park. 

An integrated approach is used in [62] to solve the problem of PV-Wind-Diesel-Battery HPS. They 

address the problem as a multi -objective optimization problem with two objectives: minimizing the 

total cost and minimizing the total CO2 emissions, while capping the Expected Unserved Energy. Direct 

and indirect assessments of emissions of all the components are obtained using Life Cycle Assessment 

(LCA) techniques. The approach was applied to a city with 50,000 thousand residents. The results 

obtained from the linear programming model were used to construct the Pareto front, which represented 

the best trade-off between cost and emissions under different reliability conditions. Even in [63], 

authors considered the two objectives but approached the problem using the Mesh Adaptive Direct 

Search (MADS) method. 

Khaparde et. al [64] presents a very sophisticated approach towards solving the complexities involved 

in selection of various distributed generation technologies based on a set of attributes. An approach 

referred to as Multi-Attribute Decision Making (MADM) has been proposed. Important attributes in 

reference to a microgrid are incremental losses, capital costs and percentage time for which demand is 

not served for all users. 

2.4 Literature Analysis 

A detailed review paper on the distributed generation and its realization using the microgrids was done 

recently [65] and [66]. It touches upon various aspects of distributed generation and microgrid design. 

Various distributed energy resources as diesel engines, micro-turbines, fuel cells, photovoltaic, small 

wind turbines etc. and their coordinated operation and control with controllable loads and storage 

devices such as capacitors, flywheels, batteries etc. are main focus of the microgrid design. Operational 
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strategies for microgrids, grid-connected or in an islanded mode. In [66], various case studies of 

microgrids around the world have been discussed.  

It can be seen quite evidently that a lot of research has been done in the past in the area of microgrid 

planning. A large majority of work falls under the category of deterministic algorithms. While in the 

recent past, in the last 5-8 years there has been an increasing trend in the number of papers using a 

variety of stochastic approaches towards planning of microgrids. We can clearly see that there is still a 

need for a more comprehensive research in the development of stochastic approaches which consider 

the inherent uncertainties in supply and demand. 

Lastly, the planning of microgrids or any power system (either micro or large) is seen as a 

multidisciplinary problem, considering not only economics of the system but also the social and 

environmental impacts of the system as a whole. We do see a few papers working in the area of multi-

criteria design analysis in planning of power systems but not a single paper is found using the approach 

of multidisciplinary design optimization and multi-criteria decision analysis (MCDA) together. Our 

work is an attempt to fill the gaps in this area of research. 

2.5 Summary 

A detailed and a comprehensive literature review of the research being carried out on the planning and 

operation of microgrids suggests that the problem although seems quite simple but is challenging. With 

the advancements in the renewable energy technology and thrust from various government agencies 

and worldwide consortiums has led to an increase investments in the research and implementation of 

robust techniques and approaches in power system planning based on renewable resources of energy 

and more towards decentralized power systems. The entire literature survey reveals that the methods 

available currently lack in considering uncertainties in the system design inherently. Also, it is quite 

clear that power system planning at any scale, in this case even a micro-level planning is a complex 

project affecting many domains together ranging from economics, social, and environmental. We have 

proposed methods which fill this gap in the research for planning of microgrids. We not only propose 

a more complete methodology for planning of microgrids based on stochastic programming but also 

incorporate other aspects on environment using a more complete LCA and MCDA based approaches. 
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Chapter 3 

Multidisciplinary Design Optimization (MDO) ï A systems Approach 

3.1 Introduction 

Engineering problems are complex and often multidisciplinary. It is usually desirable to break the 

complex problem into smaller sub-problems defined by disciplines as each discipline may have 

different requirements.. Each sub-problem may involve a discipline dependent system. Multi -

disciplinary design optimization offers us a structured platform to analyze and solve complex 

engineering problems using various optimization and analysis techniques already used by the 

discipline-specific researchers, while considering the overall objective simultaneously. 

3.2 Multidisciplinary Design Optimization 

Multidisciplinary design optimization (MDO) is a new upcoming domain in engineering that focuses 

on the use of the numerical optimization techniques in association with various statistical tools for 

design of systems involving multiple disciplines or systems. 

The motivation behind using MDO based techniques lies not only in the optimization of the individual 

systems or disciplines but also their interactions between each other. Considering these interactions in 

a single optimization problem requires extensive mathematical foundation and is often challenging. 

Therefore MDO based architectures are designed to suit various problem structures and simplify the 

mathematical complexity for the system under consideration. It is still an evolving field but early results 

have been promising enough in reducing the time and cost of the design cycle by making appropriate 

use of computational analysis tools [67]. 

An important challenge one faces in using MDO architectures is to decide how to organize the 

discipline-specific analysis models, approximation models and optimization models, and their various 

interactions.  

There are as many MDO architectures to solve a given problem, as many as there are optimization 

algorithms to solve a given design problem. However, the choice of the architecture has a significant 

impact on the solution time and the final design.  

It involves choosing from the right algorithm to the types of interconnections of disciplines. A simple 

example of such a scenario could be using a global optimization algorithm versus a gradient based 
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algorithm. The former leads to a global optimal solution but may consume a lot of time while on the 

other hand gradient based algorithms are faster but may get stuck in local maxima/minima. Therefore, 

it is a choice a system designer needs to make by understanding the problem and suitable methods in 

detail so as to find the best fit. 

It is important to consider if the calculations in a given architecture can be computed in parallel then, 

then one can use it to efficiently perform calculations. In most cases, a distributed architecture with 

support for parallel processing is preferred over monolithic architectures. In general, careful 

consideration of the human and computing environments, the available algorithms, and the design 

problem at hand is important in deciding an appropriate MDO architecture [68]. 

In our work, we primarily focus on methods for solving MDO problems with a single objective function 

and continuous design variables. We assume that the optimality of a design corresponds to the 

satisfaction of the Karush-Kuhn-Tucker (KKT) optimality conditions [69] . These conditions are 

necessary for local optimality; hence it is necessary for functions to be differentiable and continuous to 

be able to obtain optimal points. Although there has been a wide variety of work done in the context of 

MDO using global optimization approaches, such techniques are not the focus of this thesis and hence 

shall not be discussed. 

In a recent review on various architectures for multidisciplinary design optimization techniques two 

main categories of MDO architectures have been listed as monolithic and distributed architectures [70]. 

Our work uses the monolithic architecture given the structure and nature of our problem.  

3.2.1 MDO Problem Formulation 

Like traditional optimization problems, MDO problems can be represented by a fundamental problem 

formulation which describes the goals of the optimization. This fundamental formulation is comprised 

of a set of six things: 

1. Local design variables 

2. Global design variables 

3. Objective(s) 

4. Constraints 

5. Coupling variable pairs 

6. Analysis components 
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We shall introduce the various terms and nomenclature used commonly in the MDO literature. A design 

variable is a quantity in the MDO problem that is always under the explicit control of the optimizer. 

The design variables may be local or they may be shared by multiple disciplines. Another important 

aspect in MDO is discipline analysis; it refers to the analysis of simulation that models the behavior of 

one aspect of a multidisciplinary system resulting in the state variables as responses of the disciplines. 

In MDO, most disciplines exchange coupling variables to model the interactions of the entire system. 

In many MDO based design, multiple copies of coupling variables is made to allow independent 

discipline analysis and concurrently. As mentioned in [70] these copies of variables function as design 

variables in the problem formulation and are often referred to as the target variables.  

3.2.2 Architecture Diagram 

It is important to understand that reformulation of a given problem into the MDO framework allows us 

to analyze and solve the problem in a comprehensive manner with a more in depth understanding. The 

idea behind the MDO architecture is to reformulate the problem using the standardized notation. 

Unfortunately, describing the entire chain of operations required in implementing the model poses 

significant challenge for the system planners [70].  

In an attempt to coherently describe our exposition we adapted the approach referred as the extended 

design structure matrix (XDSM) [71]. As the name suggests, XDSM is based on the DSM (Design 

Structure Matrix), a commonly used approach in systems engineering [72]. It is used in systems 

engineering to visualize the interconnections among components of complex systems. The traditional 

DSM shows the components and the connections between the components but the meaning of the 

connections is left ambiguous. This problem was addressed in the XDSM architecture. For most of the 

MDO problems, one needs to represent two types of connections: data dependency and process flow. 

XDSM amalgamates the two dependencies very neatly in a single diagram. More details on XDSM can 

be found in the work by [71]. 

 

Monolithic IDF (Individual Discipline Feasible) Architecture 

This is one of the simplest architectures. It uses a single optimizer to drive the whole process. The 

XDSM for IDF is shown in Figure 3-1. The main reason for the choice of IDF architecture was primarily 

due to its computational efficiency [73] and ease of managing the coupling variable along with 

individual discipline feasibility. The problem formulation based on the IDF architecture used in this 

thesis is described by Equations 3-1 to 3-4 in their most general forms. The IDF formulation provides 
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a way to avoid a complete multidisciplinary design analysis at optimization [74]. It maintains the 

individual discipline feasibility, while allowing the optimizer to drive the individual disciplines to 

multidisciplinary feasibility and optimality by controlling the interdisciplinary coupling variables. In 

IDF, the specific analysis variables that represent communication, or coupling, between disciplines are 

treated as a part of the optimization design variables and are in fact indistinguishable from the design 

variables from the point of view of single discipline analysis.  

In the above formulation the equality constraints also contain the interdisciplinary constraints. The 

XDSM framework for the IDF formulation is shown in the Figure 3-1. Here the ὼ is a vector of design 

variables, ώ is a vector of coupling variables or outputs from other disciplines or analysis, ώ is a vector 

of coupling variable target or in some sense input to the discipline based analysis, Ὢ is the objective 

function and Ὣ  are the constraints, ὔὨ denotes the number of disciplines,   indicates variables 

shared by the more than one disciplines,   is for individual discipline constraints and   relates to 

the constraints consisting of coupling variables.  

 

 ÍÉÎ
ȟ
Ὢὼȟώὼ  3-1 

s.t. 

 Ὣ ὼȟώὼ π 3-2 

 Ὣ ὼȟώὼ π, for Ὥɴ ρȣὔὨ 3-3 

 Ὣ ὼȟώὼ  Ù ώὼ πȟὪέὶ Ὥɴ ρȣὔὨ 3-4 

      

XDSM for Individual Discipline Feasible (IDF) architecture is shown in Figure 3-1. XDSM diagrams 

describe both data flow and process flow, so they provide a complete description of the algorithm. The 

thin-black lines in the diagram describe process flow, indicating what order the blocks get executed in. 

The thick-grey lines describe the movement of data, with vertical lines indicating inputs to a given 

block and horizontal lines indicating outputs. All of the parallelogram blocks are data-blocks, 

representing variables. All other blocks represent components or drivers in the analysis. When any 

given block is shown stacked up, and has an Ὥ in the title (e.g. Analysis Ὥ), that indicates that ὲ such 

blocks could exist and could be run in parallel if desired. Each step in the process is given a numeric 
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label (the first step in the process is always 0), which applies to both process flows and data flows. For 

a process flow, the labels are used to indicate loops (e.g. solver loops, optimizations). For example in 

Figure 3-1 the optimization loop is given the label ñ0, 3 Ÿ1ò. This indicates that starting at 0, you 

follow the path through from 1 to 2 to 3 and then step 3 loops back through step 1 until an optimum is 

reached. The numeric labels in data-blocks indicate during which step the data is either input to or 

output from the block. 

 

 

Figure 3-1: XDSM for IDF Framework 

 

3.2.3 Multidisciplinary Design Optimization under Uncertainty (MDOUU) 

In traditional deterministic designs, to account for uncertainties, the constraints were generally 

reformulated based on some predefined factors instead of the ideal ones. This ideology was based on 

the philosophy of marginal design, which was used to maintain redundancy of the system in face of 

uncertainties [75]. It is obvious that with this approach the designs and optimization are prone to reach 

solutions which are too conservative and over redundant, resulting in excessive cost and size penalty. 

This is quite revealing and convincing that these traditional methods of implicitly and roughly dealing 

with uncertainty are far from enough to economically improve systems performance, robustness and 

reliability. 

This challenges us to develop more advanced and accurate analytical approaches based on a deeper 

mathematical foundation for uncertainty analysis and modeling. It would enable us to tackle 

uncertainties systematically and rationally. 
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Design optimization under uncertainty (DOUU) has been a research field for quite some time [76]. The 

major application of the methodologies developed in DOUU have been observed in aerospace 

engineering and civil engineering which have stringent regulation towards system reliability and 

robustness [77, 78]. 

DOUU has recently penetrated more formally in the domain of MDO [79].  It has been observed that 

DOUU can greatly improve design of systems by making use of the coupling between the disciplines 

and enabling collaborative optimization, and meanwhile enhancing the reliability and robustness. 

As part of this work our intention is to introduce the concepts of DOUU in MDO framework in the 

context of microgrid planning, although these concepts are general enough and can be applied for other 

more complex design problems. As we refer to uncertainty throughout this thesis we would like to 

clarify that we refer to uncertainty in the probabilistic sense. We shall define a few terminologies for 

understanding design optimization under Uncertainty. 

¶ Uncertainty: The incompleteness in knowledge and the inherent probabilistic or statistical 

variability of the system and its environment (also referred to as óaleatoric uncertaintyô). 

¶ Robustness: The degree of tolerance of the system to be insensitive to variations in both the 

system itself and the environment. 

¶ Reliability: The likelihood that a component (or system) will perform its intended function 

without failure for a specified period of time under stated operating conditions.  

In design optimization theory, the process for obtaining a design under certain constraints is referred to 

as design optimization more specifically deterministic design optimization, the mathematical problem 

can be formulated as: 

 

 ÍÉÎὪὼȟὴ 3-8 

ÓȢÔȢ 

 Ὣὼȟὴ π 3-9 

 ὼ ὼ ὼ  
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where x, is the design variable, p is system constant parameter vector, ὼ and ὼ  are lower bound and 

upper bounds of x which defines the boundaries of the search space, ὪϽ is the optimization objective 

function and ὫϽ is the constraints. 

There are a variety of mathematical models for DOUU such as robust design optimization, Reliability-

based design optimization, Two-Stage Stochastic optimization etc. Depending upon oneôs problem and 

data we may choose one paradigm over the others. 

¶ Robust Design Optimization: It is the methodology to optimize the design which is insensitive 

to various variations. The mathematical formulation is stated below 

 ÍÉÎὪὼȟὴ Ὂ‘ ὼȟὴȟ„ ὼȟὴ  3-10 

ÓȢÔȢ 

 Ὣὼȟὴ π 3-11 

 ὼ ὼ ὼ  3-12 

 

 

It is considered here that both x and p could be uncertain and  ‘ and „ are the mean and standard 

deviation of the original optimization objective function ὪϽȢ It is interesting to observe here that by 

incorporating „ into the objective function, minimization of system sensitivity to uncertainties can be 

achieved. 

¶ Reliability-based design optimization: This kind of optimization deals with obtaining optimal 

design and meeting reliability constraints. Hence it is a methodology to optimize the design 

which is reliable with small chance of failure under predefined acceptable level. The 

mathematical formulation of reliability based design optimization is given below 

 ÍÉÎὪὼȟὴ ‘ ὼȟὴ 3-13 

ÓȢÔȢ 

 ὖὫὼȟὴ π Ὑ 3-14 

 ὼ ὼ ὼ  3-15 
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Where ὖϽis the probability of the condition in the curly brackets to be true and R is the reliability 

vector specified for each constraint.  

There has been some work on combining the two methods above and developing methods called as 

reliability based robust design optimization (RBRDO). 

¶ Two-stage stochastic programming:   

 ÍÉÎὪὼȟὴ Ὁὗὼȟ‫  3-16 

ÓȢÔ. 

 Ὣὼȟὴ π 3-17 

 ὼ ὼ ὼ  3-18 

 

Where 

 ὗὼȟ‫  ÍÉÎὨώ 3-19 

ÓȢÔȢ 

 Ὕὼ ὡ ώ Ὤ  ᶅ 3-20 ‫ 

 ώ π 3-21 

 

Here Ὁ is the expectation, denotes a scenario or a possible outcome with respect to the probability ‫ 

space ɱȟὖ Ȣ The variables x are called the first stage variables, as they have to be decided upon before 

the outcome of the stochastic variable :is observed. The variables y are the second stage variables ‫ 

they can be calculated after the outcome of is known. The second stage problem depends on the data ‫ 

ήȟὬȟὝȟὡ  where any or all elements can be random. Matrices Ὕ and ὡ are called the technological 

and recourse matrices. The second stage problem can be considered as penalty for the violation of the 

constraint  Ὤ . ὃὼ  ὦ, are the equality constraints which are not affected by the random variables 
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are a first stage decisions. We shall consider only discrete distributions of P for the scenarios, so we 

can write: 

 Ὁὗὼȟ‫ ὴ‫ὗὼȟ‫

ᶰ

 
3-22 

 

Therefore now we can formulate this as a deterministic optimization problem where Ὢὼȟὴ ὅὢ is 

a linear objective function. 

 ÍÉÎ
ȟ
ὅὢ  ὴ‫Ὠώ  

3-23 

ÓȢÔȢ 

 ὃὼ ὄ 3-24 

 Ὕ ὡ ώ Ὤȟ ᶅ ὼ ,‫ πȟώ π 3-25 

The chain of events in this model is as follows: first the decision maker implements the first stage 

decisions x. Then the system will be subjected to the random process described by ɱȟὖȟ which results 

in an outcome .‫ᶰɱ. Finally the decision maker will execute the second stage decisions y accordingly 

MDOUU is an approach towards systematic organization of the components involved in the 

multidisciplinary design optimization under uncertainty.  It is important to understand that uncertainty 

has to be modeled at the system level and at the component level to ensure a reliable and robust system 

design. However, arranging these components in a sequence which leads to optimal decision is 

challenging given the complex cross coupling between the disciplines. 

An intuitive approach to solve the MDOUU is to follow an iterative process. One needs to analyze and 

model the uncertainty in the underlying system under consideration (uncertainty may be in the 

parameters or design variables in the optimization problem). A systematic and simplistic approach 

towards solving MDOUU has been proposed [75] but it lacks the evaluation of alternatives based on 

the stake holder weightage. All of the currently available MDOUU models do not consider the cradle 

to cradle or cradle to grave based approach when considering the design of any engineering system. 

We integrate the MDOUU approach with Life Cycle Analysis using MCDA (Compromise 

Programming/VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method) as a tool. 
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This ensures that the engineering system design is not only robust and reliable but also economical and 

environmental friendly. 

3.3 Multidisciplinary Design Optimization under Uncertainty for Microgrid 

Planning  

3.3.1 Framework for Microgrid Planning 

We provide the microgrid planners and policy makers a tool which is general enough and allows for an 

algorithmic approach towards planning of microgrids. It enables the planners to model and analyze the 

inputs that are significant locally and have an impact at a global scale. The inputs in real world are 

uncertain and we allow for probabilistic modeling of the uncertainties for robust system design. The 

framework allows for inputs to be used by design module that can use the information to produce results 

that are optimal and consider risk explicitly. Subsequently the planners and policy makers have the 

flexibility to modify parameters to suit the local needs and preferences. The framework not only takes 

into account economical issue but also environmental impact of the systems using life cycle analysis. 

Eventually, the planner is presented with various options given each has its own pros and cons, for the 

criteria most important to the local population. Thus we provide statistical tools that are useful for such 

a planning framework and present a detailed procedure for using them in the most optimal way. The 

framework is flexible enough to adapt to varying geographical and social environments. A broad 

overview of the framework is shown in Figure 3-2. 
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Figure 3-2: Framework for Microgrid Planning using Multidisciplinary Design Optimization: An 

Overview 

In Figure 3-2, the statistical tools used in each module are listed below. These allow for a robust 

modeling of microgrids resulting in ranking of microgrid configurations given preferences and local 

regulatory and policy constraints. 

In multidisciplinary design optimization under uncertainty, we shall model the uncertainties in each 

discipline, followed by simultaneous optimization using stochastic programming approaches, following 

which we need to evaluate the solution of the optimization based on certain criteria using approaches 

such as sensitivity analysis and multi-criteria decision analysis. Subsequently we shall either accept the 

solution or reiterate the optimization problem undergoing a parametric modification. Our framework 

for MDOUU is as shown in Figure 3-3. 
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Figure 3-3: MDOUU Framework 

As shown in the Figure 3-2 and Figure 3-2, the framework formulates a generalized model for most 

design problems where uncertainty in the design variables and parameters cannot be avoided. This 

framework ensures a reliable and a robust design and a complete economical and environmental 

analysis ranging from modeling of uncertainties in probabilistic sense to performing a stochastic 

optimization and analyzing the results by undergoing a Life Cycle Analysis of the proposed design and 

then choosing the most appropriate one based on a specified set of criteria. In an attempt to simplify 

the architecture for planners to execute their design we divided the framework into three phases, which 

can be briefly described as below: 

Phase I: It refers to modeling the uncertainty in the system parameters or design variables in a 

probabilistic sense. This ensures a more robust modeling approach for producing scenarios for the 

purpose of reliable design. We use Kumaraswamy distribution [80] as a standard tool for modeling all 

of our parameters as it is a general distribution equivalent to the beta distribution[81] but with a simple 

analytical form. 

Phase II: This acts as an engine of the entire framework which brings together the modeled 

parameters of phase I and for finding an optimal design keeping the design constrained within the 

technological, economic and environmental limits (MDO). It is flexible enough and allows the choice 

of the stochastic optimization paradigm that suits the problem at hand. The problem can be modeled as 

a mathematical optimization problem where we try to minimize/maximize a quantity (such as 
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cost/benefits, environmental emissions/life time) subject to various 

technological/economical/environmental constraints. Followed by the optimization, we perform a 

detailed sensitivity analysis of the outcome to find out the response of the system to variations in 

parameters. We can use any of the monolithic or distributed MDO architectures here to obtain an 

optimal design. In our work for microgrid planning, we will use the IDF architecture as discussed 

previously. 

Phase III:  This phase involves comparing various feasible designs obtained from Phase II based on 

certain criteria as set by the system planners. This completes the framework for system design that not 

only ensures technical and economic feasibility but also considers the effect of environmental and social 

impacts into the design. To evaluate the impacts on environment and social life from the system we use 

Life Cycle Analysis (LCA) as a tool to measure and evaluate these more subjective parameters. It has 

been known that there is no fixed set of parameters to measure the social benefits or costs and hence it 

is left to the system planner and experts to choose the set of criteria they want the design to meet. We 

use Multi-criteria decision analysis (MCDA) approach to finalize the most appropriate. If chosen 

criteria are met, we accept it or else we need to modify the parameters in phase II and reiterate till we 

achieve a feasible result. 

In our work for planning for microgrids we use the two-stage stochastic programming algorithm as 

a tool to solve a part of the complex MDO problem. We also extend this model to more generalized 

model by incorporating risk, and probabilistic constraints, which shall be shown in the later chapters of 

this thesis. We use the monolithic architecture given that multiple disciplines can be modeled using a 

single optimization problem, however, as the problem size increases a distributed MDO should be used. 

If we segregate the disciplines involved in microgrid planning, they can be categories into three broad 

categories: 

¶ Economic Analysis (cost analysis, net present value, LCOE (Life Cost of Energy), ROI 

(Return on Investment) etc.) 

¶ Environmental and Social Analysis (CO2 emissions, GHG emissions, land usage, employment, 

LCA etc.)  

¶ Technical Analysis and Feasibility (power demand, renewable resources available, spinning 

reserves, storage efficiency, LOL etc.) 
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Limiting the scope of our research for the purpose of proof of concept we shall consider specific 

parameters in each domain. Planners may wish to add additional parameters as per their need and the 

framework is expected to perform equally well. We consider some specific parameters from each 

discipline for Phase II where we perform MDOUU. LCA requires a more in depth understanding and 

expert knowledge as it helps us to analyze not only the technological feasibility but also the social and 

environmental impacts following a cradle to grave idea.  

Therefore, possible configurations of the microgrids obtained from the MDOUU optimizer in Phase 

II undergo a detailed LCA and the results of LCA analysis are fed into an MCDA (Multi -criteria 

decision analysis) to choose a final configuration based on a set of criteria. If none of the configuration 

meets the criteria, we re-iterate and go to Phase II. The parameters are tuned and the process continues 

until a feasible configuration is obtained. 

3.4 Multi Criteria Decision Analysis (MCDA): The Compromise Programming 

Approach 

Planning of microgrids is a laborious task as it involves huge investments and multiple factors affect 

the success of a renewable energy in a microgrid. Multiple factors need to be evaluated and analyzed 

in decision making but also conflicting objectives need to be considered because of the increasingly 

complex social, economics, technological, and environmental factors that are present in such problems. 

Different groups of decision makers become involved in the process, each group bringing along 

different criteria and points of view, which must be resolved within a framework of understanding with 

mutual compromises [82].  

It is quite clear that the traditional single criteria decision making is not able to handle these complex 

problems. Therefore, the policy for substitution of fossil fuels by renewable energy needs to be 

addressed in a multi-criteria context. The complexity of the energy planning and energy projects make 

the multi-criteria analysis a valuable tool in decision making process. We use in our work Compromise 

Ranking Method, also known as VIKOR method as an effective tool for multi-criteria decision making 

[83].  

This method introduces the multi-criteria ranking index based on a particular measure of closeness to 

the ideal solution. The application of this method in the selection of a renewable energy investment 

project is demonstrated in Chapter 6.  
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In this thesis we use the Compromise Ranking Method, also known as the VIKOR method, in the 

selection of the renewable energy project. The method is enhanced by introducing the Analytical 

Hierarchy Process for assigning the weights of relative importance of attributes. There has been similar 

works [84] where the method is applied for material selection in an engineering process and in [85] 

where the method is applied in the selection of coal suppliers for thermal power enterprises in China.  

The microgrid configuration obtained from the Phase II of the MDOUU and a detailed LCA is 

performed on it enables us to evaluate each configuration based on a few criteria explained later. We 

evaluate each configuration according to a criteria function, the compromise ranking is done by 

comparing the closeness to the ideal solution. The compromise solution is a feasible solution that is the 

closest to the ideal solution and a compromise means an agreement established by mutual consensus 

[86]. The multi-criteria measure for compromise ranking is developed from the ὒ metric used as an 

aggregating function in a compromise programming method [87, 88] and shown in Equation 3-26. 

 
ὒȟ В

ᶻ

ᶻ ,  ρ ὴ ЊȟὮ ρȟςȟȣȟὐ 3-26 

Here ὒ  or ὒ  are used to formulate the ranking measure. Within the VIKOR method, the various ὐ 

alternatives are denoted as ὃὰὸȟὃὰὸȟȣȟὃὰὸ. For the configuration ὃὰὸ the rating of the Ὥth aspect is 

denoted byὪ, i.e. Ὢ is the value of the Ὥth criterion function for the alternative ὃὰὸ, and ὲὧ is the 

number of criteria. The compromise ranking algorithm VIKOR has the following four steps: 

Step 1: Determine the best Ὢᶻ and the worst Ὢ  values of all criteria functions, Ὥ ρȢȢὲὧ. If the Ὥth 

function represents a benefit then Ὢᶻ ÍÁØὪ and Ὢ ÍÉÎὪȟ while if the Ὥth function represents 

a cost Ὢᶻ ÍÉÎὪ andὪ ÍÁØὪ. 

Step 2: Compute the values of Ὓ and Ὑ for Ὦ ρȢȢὐ by the relations 

 
Ὓ

ύ Ὢᶻ Ὢ

Ὢᶻ Ὢ
 3-27 
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ύ Ὢᶻ Ὢ

Ὢᶻ Ὢ
 3-28 

where ύ are the weights of the criteria, expressing the decision-makerôs preference as the relative 

importance of the criterion. In any renewable energy based project involving multiple stakeholders they 

act as the decision makers and play a significant role in determining their preferences for weighing the 
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importance of different criteria. The weights of relative importance of the attributes are assigned using 

the AHP [84, 89], the steps are stated below: 

1. Find out the relative importance of different attributes with respect to the objective. To achieve 

that, one has to construct a pairwise comparison matrix using a scale of relative importance. 

The judgments are entered using the fundamental scale of AHP. An attribute compared with 

itself is always assigned the value 1 so the main diagonal entries of the pair-wise comparison 

matrix are all 1. The numbers 3, 5, 7, and 9 correspond to the verbal judgments ñmoderate 

importanceò, ñstrong importanceò, ñvery strong importanceò, and ñabsolute importanceò (with 

2, 4, 6, and 8 for compromise between the previous values). Assuming ὲ attributes, the pair-

wise comparison of attribute Ὥ with attribute Ὦ yields a square matrix Ὀὓ where ὥὸ denotes 

the comparative importance of attribute Ὥ with respect to attribute Ὦ. In the matrix, ὥὸ ρ, 

when Ὥ Ὦ and ὥὸ ρὥὸϳ . 

2. We need to know the vector ὡὃ ὡὃȟὡὃȟὡὃȣȟὡὃ which indicates the weight 

that each criteria is given in pair-wise comparison matrix ὈὓȢ To recover the vector ὡ from 

Ὀὓ the process is mentioned below: 

¶ Divide each entry of column Ὥ in A by the sum of entries in column Ὥ. We get a new 

matrix called Ὀὓ (for normalized) in which the sum of all the entries in each 

column is 1.  

¶ Estimate of ὡ  is the average of the entries in the row Ὥ of Ὀὓ . 

Once we have obtained the pair-wise comparison matrix it is necessary to check it for 

consistency. We used the following four step procedure to check for consistency in the decision 

makerôs comparisons. From now on, ὡ denotes our estimate of the decision makerôs weight. 

¶ Compute Ὀὓὡ  

¶  Find the maximum Eigen value of weight matrix 

¶ Compute the Consistency Index (CI) as follows:  

 
‗

ρ

ὲ

Ὥ Ὡὲὸὶώ Ὥὲ ὃὡ

Ὥ Ὡὲὸὶώ Ὥὲ ὡ
 3-29 
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 ὅὍ ‗
ὲὧ

ὲὧρ
 3-30 

The smaller the CI, the smaller the deviation from the consistency. If CI is sufficiently 

small, the decision makerôs comparisons are probably consistent enough to give useful 

estimates for the weights for their objective. For a perfectly consistent decision maker, 

the Ὥth entry in Ὀὓὡ ὲὧ Ὥth entry of ὡ . This implies that a perfectly 

consistent decision maker has CI = 0. 

¶ Compare the Consistency Index to the Random Index (RI) for the appropriate value of 

ὲὧ,  used in decision making [89]. If CI/RI < 0.10, the degree of consistency is 

satisfactory, but if CI/RI > 0.10, serious inconsistencies may exist, and the AHP may not 

give useful results. 

Step 3: Compute the values of ὗ using the relation below: 

 ὗ ὺὪὛ Ὓᶻ Ὓ Ὓᶻ ρ ὺὪϳ Ὑ Ὑᶻ Ὑ Ὑᶻϳ  3-31 

Where Ὓᶻ ÍÉÎὛ; Ὓ ÍÁØὛȠὙᶻ ÍÉÎὙ; Ὑ ÍÁØὙ and ὺὪ is introduced as a 

weight for the strategy of maximum group utility, whereas ρ ὺὪ is the weight of the 

individual regret where normally the value of ὺὪ is taken as 0.5. However ὺὪ can take any 

value from 0 to 1. 

Step 4: The solution obtained by ÍÉÎὛ is with maximum group utility (ñmajority ruleò), and 

the solution obtained by ÍÉÎὙ is with a minimum individual regret of the ñopponentò. Rank 

the alternatives, by sorting the values of ὛȟὙ and ὗ in decreasing order. The results are three 

ranking lists. Proposed is a compromise solution, the alternative ὃὰὸ, which is the best ranked 

by the measure ὗ(minimum), if the following two conditions are satisfied: 

a. Acceptable advantage, ὗὃὰὸ  ὗὃὰὸ Ὀὗ, where Ὀὗ ρȾὐ ρ and 

ὃὰὸis the alternative with second position on the ranking list by ὗ. 

b. Acceptable stability in decision-making. The alternative ὃὰὸmust also be ranked by 

S and/or R. This compromise solution is stable within a decision making process, 

which could be the strategy of maximum group utility (when ὺὪ πȢυ is needed), or 

ñby consensusò (ὺὪ πȢυ, or with veto (ὺὪ πȢυȢ 
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If one of the above conditions is not satisfied, then a set of compromise solutions is 

proposed, which consists of: 

c. Alternatives   ὃὰὸ and ὃὰὸ if only condition above is not satisfied, or  

d. Alternatives ὃὰὸȟὃὰὸȟὃὰὸȟȣȟὃὰὸif the first condition is not satisfied. 

ὃὰὸis determined by the relation ὗὃὰὸ ὗὃὰὸ Ὀὗ for maximum ὲ (the 

positions of these alternatives are in closeness. 

Ranking of alternatives by VIKOR method/Compromise Programing gives us, as a compromise 

solution for all the values of ὺ considered, which acts as an aid to the planners and decision makers.  

3.5 Summary 

This chapter introduces improvements to current MDO models by introducing MCDA and LCA as a 

part of the architecture. Multidisciplinary Design Optimization is a new field of research only about a 

decade old. This has been mostly used in the field of aerospace engineering given the complex nature 

of the problem. It has been observed that using the MDOUU framework leads to a systematic design 

of systems in clear steps. It uses the foundations from various domains such as statistics and 

optimization theory for developing robust mathematical model for solving the problem. We observed 

that these frameworks could be very useful in systematic planning of any engineering system, therefore 

we developed these systems further to develop a generalized framework which considers not only 

uncertainty in the design process but also the opinion of stake holders as they are the ones who shall be 

using the system.  

Environmental concerns are tremendous given the extreme weather conditions and effects of global 

warming. It becomes our prime duty as system planners to ensure our systems are environmentally 

friendly, which drives us to bring in the idea of LCA in the framework. We use MCDA tools of 

compromise programming to conclude to a final design choice based on the constraints and the 

restrictions of various stake holders. Next chapter shall focus mainly on Phase I of our MDOUU 

framework towards modeling of uncertainty in the parameters. 
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Chapter 4 

Microgrid Planning: Wind and Solar Resource Modeling  

 

4.1 Introduction 

In this chapter we will introduce mathematical models for wind and solar based renewable resources 

of energy which are utilized in the production of electrical energy. We will investigate the mathematical 

models for understanding and analyzing the characteristics of these renewable resources of energy to 

enables us plan and design microgrids more reliably. Novel approaches using copulas have been 

investigated to understand the dependence (correlation) between renewable energy resources in the 

spatial domain. Since these correlations are deterministic and hence not considering them lead us to 

over or under designed systems. Whereas, considering this correlation allows us to design appropriate 

systems with higher reliability. 

4.2 PV/Solar Energy and Wind Energy modeling using Probability Distributions 

It has been observed in the literature that solar irradiation is quite precisely modeled using the Hollands 

and Huggets distribution which can be closely approximated using a Gamma Distribution [90]. Wind 

speed is considered as a random variable and is modeled using the Weibull Probability Distribution 

(PDF) [12]. However, we used the Kumaraswamy distribution as mentioned earlier as a general tool to 

model all our parameters for the reasons described next. We obtain the parameters for each hour of the 

day and for three seasons in the year (Fall, Winter and Spring). This ensures that both hourly and 

seasonal variations are embodied into the distribution. 

4.2.1 Kumaraswamy Distribution: A generalized tool to model parameters 

The Kumaraswamy distribution is given by the Equations 4-1 and 4-ςȟ where f(x) is the PDF and F(x) 

is the CDF.  

 Ὢὼ ὥὦὼ ρ ὼ  4-1 

 

where a Ó 0, b > 0 and x ⱦ[0,1] 

 Ὂὼ ρ ρ ὼ  4-2 
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Kumaraswamy distribution is used as a general tool to model renewable resource for two main reasons, 

firstly we are interested in energy/power which is a non-linear transformation of the resource and ease 

to integrate with copulas and hence a more general tool is required. Secondly, Kumaraswamy 

distribution is equivalent to the Beta distribution [81], a most general distribution, but has a much 

simpler analytical form than the Beta distribution making it also computationally fast. It is important 

to note here that we used Kumaraswamy distribution not only for our resource modeling but also the 

demand. Utilizing the knowledge about the geographical location we will use Vine Copulas to model 

the dependency structure [91, 92]. It is important to note here that the copulas are used here to model 

the dependency structure of the wind power and not wind speed which is a unique approach. Non-

linearity and non-monotonicity of the power curve inhibit this approach to be directly applied to wind 

speed in general. Wind power is what system planners are more interested rather than just the wind 

speed. We chose three sets of locations, Pittsburgh area in the USA, Toronto area in Ontario Canada 

and one of the remote sites in Canada in northern Alberta. We took data from RETScreen [93] for the 

available sites. 

 

In our model we try to find the parametric best fit for the wind power generated at each location based 

on standard benchmark wind turbine (3kW Turbine based on HOMER [94]). Given the general nature 

and simplistic analytical form of the double bounded Kumaraswamy distribution [80] we fit the wind 

power to the distribution. Once we obtain the marginal for each location, then we establish the 

dependence structure using the pair copula construction (PCC) also known as Vine Copulas [91, 92]. 

 

Since the dependence of wind power at different locations is highly non-gaussian, itôs not captured 

completely by correlation measures. Although an exact multivariate dependence model is possible 

using copula functions, unfortunately the non-Gaussian nature and the high dimensionality of our data 

complicates the finding of an adequate copula function. The only solution to this problem is PCC. We 

used rank correlation because it is robust to non-Gaussian data [95]. 

 

4.2.2 A brief theory of Copulas 

Copulas have become popular for modeling dependencies in random variables. The word copula is a 

Latin noun which mean óa linkô and was used first by a mathematician Abe Sklar [17, 96, 97]. 
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Mathematically, copulas are functions which allow us to combine univariate distributions to obtain a 

joint distribution with a particular dependence structure.  

Most simplistic demonstration of a copula is derived from how distributions are used. To demonstrate 

how copulas are used, one needs to recall how a cumulative density function (CDF) of a distribution is 

used to generate a random sample: most commonly to draw a value from a distribution one would start 

by sampling from a uniform distribution ὟπȟρȢ Subsequently, this observation is treated as an 

observation of your variable`s CDF, one can obtain a sample from a PDF as explained in [24] and 

shown in Figure 4-1.  

 

Figure 4-1: Obtaining a random sample from a CDF 

Copulas extend this method to two or more distributions. Sklarôs theorem is the foundation [17, 97] of 

copulas which states that, for a given joint multivariate distribution function and relevant marginal 

distributions, there exists a copula function that relates them. 

4.2.3 Sklarôs theorem 

Let Fxy be a joint distribution with margins Fx and Fy. Then there exists a function ὅȡπȟρ  O πȟρ 

such that 

 Ὂ ὼȟώ ὅὊ ὼȟὊ ώ  4-3 

 

If X and Y are continuous, then C is unique; otherwise, C is uniquely determined on the (range of X) X 

(range of Y). 

Conversely if C is a copula and Fx and Fy are distribution functions then the function Fxy defined by 

Eqn.4.3 is a joint distribution with margins Fx and Fy. 

The proof of the above theorem can be found in [17] and [96].  

C must be a function of particular type with certain properties as described by [97] and explained well 

in [17]. 
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C is a copula if ὅȡπȟρ  O πȟρ and  

a. ὅπȟό   ὅὺȟπ  π 

b. ὅρȟό   ὅό ȟρ  ό  

c. ὅό ȟὺ  ὅό ȟὺ  ὅό ȟὺ  ὅό ȟὺ π for all ὺ <ὺ , 

ό <ό  

d. If C is differentiable once in its first argument and once in its second then, c. is equivalent 

to ᷿ ᷿ Ὠό Ὠὺ  π for allὺ <ὺ , ό <ό  

. 

This definition simply states that a copula is itself a distribution function, defined on [0,1] 2 with uniform 

marginal. Each of the marginal distributions produces a probability of the one dimensional events. The 

copula function takes these probabilities and maps them to a joint probability, enforcing a relationship 

on the probabilities. 

Therefore, using copulas to build multivariate distributions is a very flexible and powerful technique 

as it separates choice of dependence from the choice of marginal [17, 20, 96].  

Sklarôs theorem establishes one of the easiest ways of constructing a copulas. In this case, if Fx and 

Fy.are the marginal distributions, then copula is given by the formulation as shown in Equation 4-. 

 

 ὅό ȟὺ Ὂ Ὂ ό ȟὊ ὺ  4-4 

 

4.2.4 Choosing the right Copula 

The most important aspect in modeling any data using distributions is making the right choice for the 

selection of the distribution. As we have a large variety of distributions available we also have a large 

range of copulas to choose from. Quite often the choice of the copulas is based on the familiarity and 

analytical tractability. It is quite evident from the literature that Gumbel copula is used for extreme 

distributions, the Gaussian copula for linear correlations and the Archimedean copula and the t-copula 

for the dependence in tails, and so on [17, 96].  

 

As the name suggests, the Gaussian copula is obtained from the normal distribution, various other 

geometrical and definition based methods are used to generate a wide range of copulas.  

If we want to generate a copula given the marginal distributions for the two variables, letôs say one with 

a Kumaraswamy distribution [80] with parameters a and b and other with lognormal distribution with 
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parameters Õ and ů, then we can use a copula from a member of the Frank family which is given by the 

following Equation 4.5 by substituting the relevant distribution functions and hence we generate a new 

joint distribution. The Kumaraswamy distribution for statistical design centering of integrated systems 

was done using copulas to formulate the dependence between the parameters [98, 99].  

 
ὅό ȟὺ

ρ

‏
ὰὲρ

Ὡ ρ Ὡ ρ

Ὡ ρ
 4-5 

 

Here the parameter ‏ determines the level of dependence between the marginals.  

There has been a lot of work already done in obtaining the marginal distributions [100]. Various 

approaches have proven to be good in various situations, such as either using the empirical distribution 

or using the parametric best fit. Usually the approach adopted is to start with an empirical distribution 

but due to discrete nature one may apply cubic splines or kernel smoothing technique to obtain a smooth 

curve. 

Similarly another copula used for modeling tails is t-copula, also known as the student t-copula, as 

presented in Equation 4-6. 

 
ὅȟ ό ȟὺ

ρ

ς“ρ ” Ⱦ
ρ
ὼ ς”ὼώώ

ρ‮ ”

ϳ

ὨίὨὸ 4-6 

 

The t-copula allows for joint fat tails and an increased probability of joint extreme events compared 

with Gaussian Copula, where ” and ὸ dna ,alupoc eht fo sretemarap eht era ‮  is the inverse of the 

standard univariate t-copula with .[69]    ecnairav dna 0 noitatcepxe ,modeerf fo seerged ‮ 

The Studentôs t-dependence structure introduces an additional parameter compared with the Gaussian 

copula, namely the degrees of freedom ὺ. Increasing the value of ὺ decreases the tendency to exhibit 

extreme co-movements.  

The other copula utilized in our work is the Gumbel copula. The Gumbel copula is also an asymmetric 

copula, but it exhibits greater dependence in the positive tail than in the negative. This copula is given 

by Equation 4.7 where ‏ is the parameter controlling the dependence [96].   

 

 ὅ ό ȟὺ ÅØÐ ÌÏÇό ÌÏÇὺ ϳ  4-7 
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The last copula explored in this work is the BB8 copula which is Joe-Frank Copula. This is a two 

parameter family of Archimedean copula. The copula CDF is given by Equation 4-8. 

 ὅȟ ό ȟὺ ‏  ρ ρ – ρ ρ ό‏ ρ ρ ὺ‏ ϳ , 

 ‮ ρȟπ ‏ ρ   
4-8 

 

Where 

 – ρ ρ ‏  and π ό ȟὺ ρ 4-9 

We simulate data based on the model above and use it for simulating the optimization model discussed 

below. 

4.3 Results and discussions 

This section presents detailed results of each of the model presented in this chapter. 

4.3.1 Renewable Energy Source: Wind and Solar 

As mentioned in Section 4.2, we modeled Wind and Solar power using Kumaraswamy distribution as 

described by Equations 4-1and 4-2 (the pdf and cdf of the distribution function are shown).  

We tried fitting various distributions to sample data for the city of Waterloo, Ontario, Canada and found 

that the Weibull Distribution fits the best. In Figure 4-2 (b) empirical CDF for wind speed is compared 

with others. 

 

(a) 

 

(b) 

Figure 4-2: In the figure it is evident that Weibull Distribution and Kumaraswamy distribution fits the empirical 

wind speed distribution well 
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The Table 4-1 also shows the comparison of the Akaikeôs Information Criteria (AIC) for various 

distributions which confirm our visual notion. AIC is defined as shown below in Equation 4- 

 

 ὃὍὅςὯ ςÌÎ ὒ 4-10 

Where k is the number of parameters in the distribution and L the maximized value of the likelihood 

function. The minimum value of AIC is chosen to be the best fit [101].  

Distribution AIC 

Weibull 40914.8 

Kumaraswamy 41079.8 

Exponential 45722.4 

Lognormal 42156.2 

Table 4-1: AIC for various distributions fit to Wind Speed 

As a system planner, considering the efficiency of the wind turbine we are interested in the wind 

power generated and hence to analyze the wind power generated using the Whisper 500 wind turbine. 

We tried to fit the power generated to various distributions as shown in Figure 4-3. 

 

(a) 

 

 (b) 

Figure 4-3: Empirical distribution and distribution fitting to Wind Power generated from Whisper 500 3kW 

wind turbine 

It is quite evident that no specific distribution fits the power generated quite well. We chose the 

Kumaraswamy Distribution (given by Equation 4.1 and 4.2) which seems to fit the wind power the 

best. It is one of the 4 parameter distribution and hence it is not surprising that it represents the data 

better than the others but its form is simple.  
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We tried fitting a few probability distribution functions for solar radiation but concluded that a good 

fit is not really obtained using the Gamma distribution [90] which has been used so in the literature; 

again, Kumaraswamy distribution has a good statistical fit as can be seen in Figure 4-4. 

 

 

From the above analysis Kumaraswamy distribution was chosen as the most appropriate choice for 

modeling solar and wind power. We modeled for each hour and three seasons independently resulting 

in overall 24 hours, 3 seasons and 4 parameters for each distribution to a total of 288 parameters for 

wind power. Whereas for solar power which is available for 12 hours in a day we have approximately 

144 parameters for the Kumaraswamy distribution.  

  

(a) 

  

(b) 

 

 

(c) 

Figure 4-4: Distributions fit to solar radiation and solar power data of Waterloo, ON 

Canada 
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4.3.2 Spatial dependence between renewable resources of energy 

In Section 4.2.3, we discussed about the correlation and dependence between the renewable resources 

of energy. It is found that modeling wind power just using marginal distributions is good but adding 

the spatial domain to it increases the accuracy substantially. Also, this tool (copulas) is general and 

gives us flexibility to model wind power in places with highly non-linear dependence  data. We chose 

12 locations with 3 sites, each having 4 locations. Two sites are in Canada and one in the United States. 

It was important to analyze the 3 sites independently given they were spatially very far off and their 

impact on each other would be negligible. The idea of choosing these three locations was to investigate 

the nature and typical correlation structure present among nearby location which may possibly be part 

of the same microgrid or the grid. Figure 4-5 shows the histogram for wind energy generation of each 

location using a 3kW wind turbine. Figure 4-6 shown the geographical locations of the sites chosen for 

study. 

Figure 4-5: Histogram for the 12 Locations, the data represented in the histograms is the wind power generated by a standard 

wind turbine with 3kW rating 
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(a) (b) (c) 

Figure 4-6: Spatial distribution of the four sites in each location is shown (a) in the northern communities starting from 

the left (KirkLand Lake, Rouyn, RouynA and ValdOr Airport) (b) in Greater Toronto Area (Buttonville, Toronto, 

Billybishop Airport and Pearson) (c) in the United States of America in the Pittsburgh area (Algheny, WheelingCounty, 

Pittsburgh and Washington) 

In Figure 4-6 (a) this location was chosen more specifically because the objective is to allocate the 

power in remote communities which are stand alone and we wish to have a stable power profile from 

the renewable energy based systems. Figure 4-6 (b) site was chosen in the middle of the province of 

Ontario, Canada. The area nearby city of Toronto, it has a very unique location given the proximity to 

a large water body, the lake Ontario, and also its association with the main grid. The electricity demand 

in this location is very high and critical. Therefore achieving stable power is of great importance. 

Increase in penetration of the renewable energy based systems, more specifically wind power, may lead 

to instability in the power on the grid. Figure 4-6 (c) Lastly we chose the area in and around Pittsburgh 

in USA given its central location. It is not close to a large water body and also is connected to the grid. 

 

We analyzed the correlation between the wind energy at each of these sites. Based on the varying 

correlation coefficients in the three zones of the dataset it is confirmed that the correlation is non-linear 

and data being non-Gaussian we chose Kendall rank correlation as the choice of correlation parameter. 

 

In Figure 4-7 (a), it can be seen that in Site 1 that correlation between Kirkland and other locations is 

highly non-linear while others it appears linear but in fact it is non-linear as we performed some more 

detailed analysis by segregating the dataset into three halves and evaluating the correlation in them. It 

reveals that although the overall exploratory analysis of data may show linear correlation but it is 

actually non-linear (the numbers in red in the Figure 4-7 are the correlation coefficients of the three sub-

segments of the data). Figure 4-7 (b) if we observe similar data at a site close to a water body it is 

observed that the dependence structure between the locations is more non-linear and non-Gaussian, 
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which shows the Greater Toronto Area. This cannot be generalized and geography of the location plays 

a very important role we can see in Figure 4-7 (c) that the dependence is not the same as others. 

Therefore, as there is no standard way of defining the correlation structure and the correlation is non-

linear we need more generalized tools and hence Copulae seem to be a perfect choice for this purpose. 
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Cross-Correlation between various sites  (KirkLand Lake, Rouyn, RouynA and ValdOr Airport)

 

 (a)  








































































































































