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Abstract

Liquid crystals are a unique and complicated class of phases of matter, also called
“mesophases”, which exhibit properties such as solid-like elasticity and anisotropy, and
liquid-like flow. The industrial application of liquid crystals in display technology has rev-
olutionized our lives. Most notably, it has enabled the development of thin light displays
presently found in many portable devices such as digital watches (and smartwatches), cell-
phones, laptops, desktop computer monitors and large screen televisions. With the recent
advances in nanotechnology, liquid crystals have attracted much interest as a medium for
dispersing and organizing nanoparticles, the presence of which also alters the properties of
the liquid crystal host and gives rise to new composite materials. The possible applications
of these new materials reach far beyond displays. However, in order to understand how to
design devices based on liquid crystal-nanoparticle mixtures, it is first essential to under-
stand the structure of the latter at molecular resolution. To this end, computer simulation
can provide invaluable insights.

This thesis presents a study using a pairwise intermolecular potential capable of de-
scribing interactions between liquid crystal molecules and nanoparticles in a liquid crystal-
nanoparticle mixture. The so-called Zewdie-Corner potential is a Lennard-Jones type
anisotropic pairwise potential where strength (energy scale) and range (length scale) pa-
rameters are expanded in terms of an orthogonal basis set of functions with respect to
relative orientation and separation distance. This molecular coarse-grained methodology
has been employed to represent liquid crystal molecules with cylinder-like shapes and
nanoparticles with spherical shapes. Equilibrium structures of domains comprised exclu-
sively of liquid crystal molecules, as well as domains with varying number fractions of
liquid crystal molecules and nanoparticles, have been investigated using the Monte Carlo
simulation technique in the isobaric-isothermal ensemble. Thermodynamic observables
have been calculated and used to draw conclusions as to the molecular-scale structure and
thermodynamics of the simulated liquid crystal-nanoparticle mixtures.
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Chapter 1

Introduction

Liquid crystal (LC) phases have been utilized to develop a wide variety of technology
ranging from displays [I] to tunable lasers [2]. Many different types of LC phases exist
where upon cooling from a disordered liquid phase, a phase-ordering transition is observed
into a liquid crystalline phase which possesses properties that are both liquid-like (flow) and
solid-like (elasticity, anisotropy). Phase-order can involve purely orientational order, called
nematic LC phases, where molecules conform to an average orientational axis. Phase-order
can also include translational order, in addition to orientational order, which include both
smectic and columnar LC phases. Fig. 1.1 shows schematics of molecular order observed in
some of the more common LC phases, also known as mesophases (given this name because
they have properties of both liquids and crystalline solids).

The vast majority of technology applications involving LLC mesophases use precisely
engineered confining geometries and surface interactions that result in macroscopic liquid
crystal structure and dynamics. Recent advances, for example ferroelectric display technol-
ogy [1], involve applications which utilize the inherent nanoscale structure and dynamics
of LC phases. Additionally, recent research advances have attributed the observation of
“memory effects” to the presence of nanoscale structure in LC domains [5]. Thus further
progress, both fundamental and applied, requires the resolution of both nanoscale struc-
ture and dynamics of LC phases. The nanoscale nature of L.Cs poses serious challenges to
direct experimental observation and design of LC phenomena and devices. Subsequently,
simulation-assisted design has played a key role in LC display technology advancements
over the past decade.

Existing simulation-based design of LC devices has predominantly relied on continuum
models, such as the Frank-Oseen director model [6] and the Landau-de Gennes tensor model



Isotropic Nematic Smectic-A

Figure 1.1: Schematics of a (left) disordered liquid, (centre) nematic mesophase, and (right)
smectic mesophase, taken from [3].
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Figure 1.2: Examples of nematic LC simulation results using (left) Frank-Oseen director
theory and (right) Landau-de Gennes tensor theory. Figures courtesy of Anindya Mitra.

[7], which are able to bridge the nano-to-macro scales involved in LC phases (Fig. 1.2).
These models are phenomenological and thus require the measurement and/or estimation
of material properties, many of which are challenging or infeasible to determine through
experimental methods. Furthermore, much of L.C research is focused in areas where the
continuum approximation breaks down, for instance the synthesis of new LC molecules
and mixtures of LCs and other compounds such as surfactants and nanoparticles [3].

In order to address these issues and enable truly predictive simulations, more fine-
grained theory and methods must be used such as quantum mechanical, atomistic [9] (Fig.
1.3), and coarse-grained molecular simulations [9] (Fig. 1.3). These simulations are, in
many cases, truly predictive in nature and able to capture inherently discrete phenomena
such as local polarization of mesogens and the formation of nanoparticle (NP) networks.
With the enhanced predictive capabilities of microscopic models comes additional compu-
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Figure 1.3: Examples of molecular coarse-graining from [10] for (top) rod-like and (bottom)
disk-like mesogens.

tational complexity. This is exacerbated for LC phases in that the length scales on which
they form, specifically the coherence length [7], can be on the order of hundreds of nanome-
tres, which poses significant computational challenges due to the inclusion of hundreds to
thousands of molecules in order to resolve LC phases. Thus the most employed micro-
scopic simulation methods involve coarse-grained molecular simulations where molecules
are treated as individual particles with the assumption of pairwise interactions [J], as
opposed to multi-body interactions. To date, the standard coarse-grained molecular in-
teraction potentials have lacked the flexibility to represent complex molecular interactions

predicted through quantum mechanical and/or atomistic simulations.

1.1 Objectives

The overall objective of this research project is to identify and evaluate a suitable coarse-
grained molecular interaction potential for the simulation of nanoscale LC structure and
phase behaviour. To complete this overall objective, the following specific objectives have
been identified:

1. Identification of a coarse-grained pairwise potential which is formulated using an
expansion of an appropriate orthogonal basis.



2. Determination of a suitable parameter set for the potential for simulation of liquid
crystal-nanoparticle (LC-NP) mixtures.

3. Analysis of the nanoscale structure and phase behaviour of both pure component
LCs and LC-NP mixtures for different thermodynamic conditions and mixture com-
positions.

1.2 Thesis Organization

Chapter 2 provides a brief introduction to LC phases, nanoparticles, and coarse-grained
simulation methods for LCs. Chapter 3 provides a review of recent progress in the develop-
ment of coarse-grained potentials for mesogens and research on LC-NP mixtures. Chapters
4-5 present and discuss the results of the thesis. Chapter 4 presents an appropriate coarse-
grained interaction potential, the Zewdie-Corner potential [11], derives a set of parameters
representing LC-NP interactions, and presents the results of varying mesogen energetic
interactions and formation of LC phases. Chapter 5 presents simulation results for LC-NP
mixtures for various thermodynamic conditions and mixture compositions. Finally, Chap-
ter 6 summarizes the conclusions from this research project and discusses possible future
work.



Chapter 2

Background

This chapter presents the background knowledge one would need to understand the work
conducted in this thesis. We proceed first by discussing what are liquid crystal phases, what
types of them are known to exist and what methods are commonly used to analyze them.
A brief discussion of nanoparticles follows afterwards. It is succeeded by a summary of
common simulation techniques, an outline of how interactions between molecules (isotropic
and anisotropic) are described by pairwise potentials, and a discourse on the foundational
ideas of Monte Carlo.

2.1 Liquid Crystal Phases

Liquid crystals are a unique and complicated type of condensed matter formally classified
as soft matter; rather than being a particular material, they are the fourth phase or state
of matter, in addition to solid, liquid and gas. Liquid crystals are found in a vast array of
physical systems and substances. A diagram of different areas of liquid crystal science has
been presented in figure 2.1.

This fourth phase is thermodynamically stable and it occurs between the transition from
liquid to solid and vice versa [12]. Liquid crystals possess optical activity [12] (i.e. they
interact with light) and the capability of self-assembly [13, 14] (they arrange themselves
in larger functional structures spontaneously). Both of these properties enabled their
application in display technology that revolutionized our world and enabled the creation
of large and small area displays. Figure 2.2 contains a schematic of a “twisted-nematic”
display pixel operation. Because of this combination of properties from liquid and solid
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Figure 2.1: Areas of liquid crystal science [10].

phases, liquid crystal phases are called “mesophases” [12] and the molecules of materials
that exhibit LC phases are called “mesogens” [15].

As already mentioned, LCs have the flow of liquids, but they also exhibit anisotropic
mechanical, optical and electromagnetic properties of solids that arise due to some amount
of order (orientational and even positional) still present in LC phases. However, the latent
heat of transition from LC phase to isotropic (liquid) phase is about 50 times less than
the latent heat of transition from solid to LC [1]; thus, an LC phase contains much less
order than the solid (crystal) phase and is closer to a liquid in this respect. Unlike reg-
ular liquids, LCs are opaque to light and exhibit various textures under a polarized light
microscope (as in figure 2.3). Molecules in an LC phase exhibit a statistically preferred
direction as they self-diffuse through the phase. When the directions of all molecules are
averaged over the entire sample, the unit vector resulting from this calculation is called

6



Figure 2.2: Schematic of a “twisted nematic” (TN) display pixel operation from [17].
When no voltage is applied, the liquid crystal domain has a “twist” due to anchoring of
the mesogens at each cross polarizer, so that the plane polarized light entering the pixel
can be rotated by 90°and exit the pixel, thereby giving the appearance of an “on” state to
the pixel. Application of voltage disrupts the “twist” and prevents plane polarized light
from going through the output cross polarizer, giving the black colour (appearance of an
“off” state) to the pixel.
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Figure 2.3: Typical liquid crystal textures under a polarized light microscope [1%]. From
left to right: texture of a nematic, smectic and cholesteric liquid crystals.



Figure 2.4: The director (a unit vector) of a nematic calamitic liquid crystal is represented
by n [3].

the “director” (schematically represented in figure 2.4). Among those anisotropic prop-
erties are the dependence of viscosity on the direction of applied force with respect to
the director, and birefringence, which is the dependence of refractive index on direction
within the material. A consequence of birefringence is optical retardation - different planes
of polarized light will grow out of phase while they propagate through the LC material.
Additionally, anisotropy in electric and magnetic susceptibility and permittivity, as well as
in polarisation and magnetisation, are exhibited.

Commercialization of materials with LC phases has led to a widespread use of thin
displays, both compact and large-scale. However, rapid development of display technology
and technology using LCs in general creates a demand for greater understanding of LC
phases, especially their molecular structure. Data obtained from computer simulations of
mesophases is invaluable to that end [15], because insight into the arrangement of mesogens

oo



within the material is difficult to obtain from laboratory experiments alone. Once the data
is obtained, order parameters [19] are used in order to gain information about molecular
packing and therefore establish what type of phase was formed by the simulation at the
set temperature and pressure.

2.1.1 Types of Mesogens

As a general rule of thumb, to enable the formation of LC phases, mesogens should possess
anisotropic shapes with a rigid core (e.g. two aromatic rings joined together) and flexible
tails (e.g. alkane chains). Recently it has been shown that LC phases are also exhibited
when a flexible spacer carbohydrate chain is used to connect two rigid units made of two
benzene rings each (cyanobiphenyls, as in [20]). The balance of attractive and repulsive
forces (van der Waals interactions) between the mesogens causes self-assembly to occur,
and at the appropriate ambient temperature anisotropy of the shape causes a preferred
direction to be adopted by the molecules which then form a thermotropic LC phase (note
that when mesogen concentration in a solute plays the key role in forming an LC phase,
the phase is called lyotropic).

There are several major types of mesogens that can form LC phases: calamitic, discotic
and bent-core mesogens, amphiphilic molecules and polymers (linear and branched) with
mesogenic units, as depicted in figures 2.5 and 2.6.

Calamitic mesogens resemble rods by their shapes because one molecular axis is sig-
nificantly longer than the other two equivalent axes. Some of the most popular ones are
5CB (4-cyano-4’-pentylbiphenyl) and 8CB (4 "-n-octyl-4-cyano-biphenyl), shown in figure
2.7. Discotic mesogens are like disks - one molecular axis is significantly shorter than the
other two, which are again equivalent to each other. Both calamitic and discotic mesogens
are called “uniaxial” since only one axis plays a role in generating the peculiar properties
described earlier in this chapter. Polymers with mesogenic units (see figure 2.6) either in
the backbone or in the branches (for branched or grafted polymers) are also capable of
forming LC phases at certain temperature intervals.

Bent-core mesogens have the “banana” or “boomerang” shape (see figure 2.8) and lower
symmetry than cylindrical or disk-like particles [23]; usually the angle of the “bent” core
is 120°. If the mesogen is comprised of a rigid core, the core has to be synthesized such
that the “banana” shape is present due to how the benzene rings in the core are connected.
However, as mentioned a bit earlier, the core can also be a flexible hydrocarbon chain (a
flexible spacer) and the rigid biphenyl units can be attached at its ends, and bent-core
mesogens will be formed nonetheless [20]. All of their three axes are different, but since

9
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Figure 2.5: Chemical structure of common calamitic, discotic and amphiphilic mesogens

[8]. Calamitic thermotropic mesogens are portrayed in a and b, a discotic mesogen is
shown in ¢ and d-g depict amphiphilic mesogens.
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Figure 2.7: Representations of 5CB and 8CB calamitic thermotropic mesogens [15]. 5CB
calamitic thermotropic mesogen is portrayed in (a) and 8CB in (b).

Figure 2.8: Chemical structure of a bent-core mesogen [22].
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the cross product of two vectors yields the third vector, they are called “biaxial” rather
than “triaxial”. These mesogens are of great interest because they have two molecular axes
that interact with light, and the rotation of the shorter axis is up to one order of magnitude
faster than rotation of the longer axis [241]. Therefore, if this behaviour can be understood
and incorporated into commercial devices, a disruptive technological development will be
made. This hope is one of the main driving forces in the ongoing attempts to understand
biaxial phases.

All four of the aforementioned mesogens form LC phases at certain temperatures, and
therefore those phases are called “thermotropic” phases. However, amphiphilic molecules
(see figure 2.5, d-g), most notably those with polar head groups and nonpolar carbohydrate
tails (phospholipids) can also form anisotropic phases with liquid-like flow and solid-like
properties combined. These phases are called lyotropic; the most important biological
example of those is the phospholipid bilayer that comprises the membranes of living cells.

2.1.2 Types of Thermotropic LC Phases

As mentioned just above, when temperature is the key factor for formation of an LC
phase, such a phase is classified as “thermotropic”. Calamitic mesogens can form nematic
and smectic phases depending on their chemical composition and the ambient temperature.
Nematic LC phases possess no positional (translational) order, but only orientational order
(represented by the director).

12



Smectic phases are those that have both positional and various degrees of orientational
order. While orientational order arises due to the statistically preferred molecular direc-
tions, positional order is caused by the variation of the probability of finding molecular
centres of mass along the director. In smectic phases, molecules are arranged into layers
that are perpendicular to the director. The layer thickness tends to be slightly less than the
molecular length due to the interdigitation of layers. For the smectic A phase, molecules are
oriented perpendicular to the layers, while in the smectic C phase the molecules are tilted
with respect to the layers. By geometric argument, as a result of the tilt layer thickness in
the smectic C phase can be less than in the smectic A phase. Figure 2.9 contains simulation
snapshots of different thermotropic liquid crystal phases formed by rod-like mesogens.

Discotic mesogens form nematic and columnar phases. In the former, there is only
orientational order exhibited by the short axes of the molecules. In the latter, molecules
arrange themselves into columns and thus positional order is born as well. In turn, columns
pack in hexagonal arrangements. However, other than being arranged into columns and
having a preferred orientation, there is no correlation of molecular position with respect to
the long axis of the column.

If the mesogens are chiral (i.e. they lack inversion symmetry - their mirror images
cannot be superimposed), then a chiral nematic, also called “cholesteric”, phase will be
formed [1]. In such a phase, the director rotates throughout the sample in a helical fashion
[8]. Figure 2.10 depicts the molecular arrangements of such a phase, while figure 2.3 shows
the texture of such a phase under polarized light microscope.

2.1.3 Types of Anchoring

When a liquid crystal cell is made for research or industrial purposes, the liquid crystal
molecules are aligned with respect to the substrate in one of two ways: homeotropic (per-
pendicular) and planar (parallel). Both are shown in figure 2.11. Homeotropic anchoring
of mesogens towards nanoparticles seems to be the real-world scenario since it is frequently
reported in the publications of experimental work [25, 26, 27].

2.1.4 Measurements of Liquid Crystal Domain Order

The nematic (orientational) order parameter is defined [I] as the second order Legendre
polynomial dependent upon the dot product (cosf) of the director n (a unit vector) and

13



Isotropic Nematic

Smectic-A Solid

Figure 2.9: Simulation snapshots of thermotropic liquid crystal phases with rod-like meso-
gens [3]. Upon cooling, the liquid crystal transitions from isotropic liquid to the nematic
phase, then to a smectic phase, and eventually freezes into a solid phase. Not all mesogens
exhibit both nematic and smectic phases.
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Figure 2.10: Molecular arrangements in a chiral nematic (“cholesteric”) phase [3] formed
by calamitic (left) and discotic (right) mesogens. Note that the drawing is not to scale - in

a real system the degree of order would be lower and the pitch of helix-like rotation would
be significantly longer.
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Figure 2.11: Schematic of homeotropic and planar anchoring of calamitic mesogens in the
smectic A phase [8], where n is the liquid crystal phase director, while k is the vector
normal to smectic layers. Light would enter perpendicular to one of the substrates. Note
that the drawing is not to scale, in reality smectic layers are about 1000 times thinner than
the distance between substrates.
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each molecule’s orientation vector (also a unit vector):

S = (Py(cosh)) = <gco§9 — %> (2.1)

where the angular brackets represent ensemble averaging.

In order to find the director n, it is necessary to construct and analyze the second-rank

Q tensor [28]:
N

1 3. . I
Q= N Z (5% X u; — 5) (2.2)

i=1
where u; is the orientational unit vector for mesogenic molecule 7, N is the total number
of mesogens, ® is the dyadic product and I is the second-rank unit tensor.

Once the Q tensor is calculated, it has to be diagonalized, and the director n will be
the eigen vector corresponding to the largest eigen value of Q [11].

2.2 Nanoparticles

Nanoparticles are the aggregates of atoms (e.g. metals) or chemical compounds (e.g. metal-

lic oxides) with at least one of their dimensions being on the nano-scale [29]; they can be
covered with various ligands, but are otherwise comprised of familiar materials such as
gold, silver [30], CdTe [31] and others. They can be isotropic [32, 33] and anisotropic

[29, 34, 35, 30]. Figure 2.12 illustrates the structure of an anisotropic gold nanorod.
Nanoparticles are of great research interest because their nano-scale size gives rise to pe-
culiar electronic, chemical and optical properties [37], such as quantized light absorption
spectra.

2.3 Simulations of Liquid Crystals

There are several approaches to simulating LC phases, yet all are performed with one
objective in mind: to calculate thermodynamic observables [38], such as the elastic con-
stants [39, 10, 3] and other bulk properties, and compare to experimental data. In general,
the approaches can be separated into three categories: continuum models, coarse-grained
models and atomistic models (schematically depicted in figure 2.13).

16



I Aul00 flat surface
Z

X

Figure 2.12: Structure and dimensions of an anisotropic gold nanorod [35].

2.3.1 Simulation Scales

Continuum models (e.g. [11]) treat the material as a continuous substance in order to
obtain bulk properties, study defects and circumvent the computational limits where a
limited number of particles can be simulated within a reasonable amount of time [33].
As per Appendix A, display pixels contain on the order of 104 mesogenic molecules -
molecular-scale simulations of such domain sizes remain unfeasible until today; continuum
models are still quite valuable for research and industry.

Coarse-grained models discretize the material and consider it at the molecular scale,
either treating the molecule as a single entity (for single-site potentials, as in [12, 11, 43]
- see also figure 2.14) and keeping track of the molecular centre of mass, or as composed
of several rigid units (for multi-site potentials, as in [11] and [15]). This multi-site coarse-
grained approach seems to be the most reasonable compromise between computational
complexity and realism, since real molecules also have both rigid parts and flexible parts,
and rigid parts can rotate about certain axes. Therefore, such models allow researchers to
simulate not only the temperature-induced transition between phases, but also the effects of
packing efficiency on the density of the material. In contrast, the single-site coarse-grained
approach omits these steric degrees of freedom and treats molecules as rigid units with
static shapes. This simplifies the model and allows for simulation results to be obtained
in a smaller amount of time. Additionally, an argument can be made that though simpler,
this modelling technique would be sufficient for cases where molecules are indeed rigid
units with shapes defined by their average electron densities.

Finally, atomistic models (of liquid crystals: [3]; and even of water: [1(]) keep track
of individual atoms in the simulation; interactions between them and the molecules they
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Figure 2.13: Schematic representation of different simulation scales [3].
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Figure 2.14: Schematic representation of coarse-graining calamitic and discotic mesogens
[10] such that the model particles have a centre of mass and a direction vector (which
corresponds to the long axis of the prolate ellipsoid (top) and to the short axis of the
oblate ellipsoid (bottom)).

comprise are calculated by making use of force fields [3]. Atomistic models tend to rely
very heavily on fitting their parameters to data from the density functional theory [17]
simulations, also known as “DFT”, which take into account actual electron density of
molecules in question. Atomistic models undoubtedly retain the greatest amount of degrees
of freedom, but the timescales that can be simulated are the shortest and domain sizes are
the smallest due to computational complexity of the models. Thus, even though obtained
results may be highly accurate, they will likely not be device-relevant, since a pixel of a
liquid crystal display contains on the order of 10'* molecules or more (calculation provided
in Appendix A) while a simulation of this sort will be limited to a number of molecules
that is many orders of magnitude smaller, resulting in an unrealistically large surface area
to volume ratio and thus unrealistically high boundary effects in the simulation.

2.3.2 “Hard” and “Soft” Particles

Particles in coarse-grained models can be considered either as “hard” [18, 19, 28] or “soft”
[12, 50], with the former ones having only repulsive interactions and only when they come
in contact [10], while the latter, more realistic case, considers particles to have short-range
attractive and repulsive interactions that decay quickly with distance [10, 3, 51]. However,
it is worth mentioning that the term “hard” does not necessarily imply that such particles
are incompressible. Imposing sufficient pressures on domains with “hard” particles would
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Figure 2.15: A 2D representation of a non polar on-lattice calamitic liquid crystal model

[51].

cause them to pack more efficiently, just as in the case of “soft” particles. Depending on
the implementation of repulsive forces between “hard” particles, they may be compressible.

2.3.3 “On-Lattice” and “Off-Lattice” Schemes

Finally, simulations can be conducted according to on-lattice [52, 53, 29] or off-lattice [12]
schemes. In the former, the molecules are assumed to occupy specific sites within a lattice,
which simplifies calculation of neighbors for every particle (since location of sites is fixed
and known). However, this is also highly unrealistic for liquid crystals, since they possess
liquid-like flow and the positional order of different phases varies (but is always less than
in a solid); as a result, off-lattice schemes are used now that computational resources for
finding nearest neighbors of a molecule are no longer an issue (which they were some 40
years ago). Figure 2.15 gives a 2D representation of a non polar on-lattice calamitic liquid
crystal model. Off-lattice representations can be observed in figures 2.9 and 2.19.

2.4 Pairwise Intermolecular Potentials

If, in some cataclysm, all of scientific knowledge were to be destroyed, and
only one sentence passed on to the next generations of creatures, what state-

20



ment would contain the most information in the fewest words? I believe it is
the atomic hypothesis (or the atomic fact, or whatever you wish to call it) that
all things are made of atoms - little particles that move around in perpetual
motion, attracting each other when they are a little distance apart, but re-
pelling upon being squeezed into one another. In that one sentence, you will
see, there is an enormous amount of information about the world, if just a little
imagination and thinking are applied... (Richard Feynman, Siz Easy Pieces,
p.4; emphasis added)

In coarse-grained simulations, particles are treated as single units with centres of mass
and orientation vectors [ 1], or as being comprised of several large units with each having
its own centre of mass and orientation vector [54]. In either case, pairwise potentials are
commonly employed to calculate the energy of interaction (the Hamiltonian) between the
units. Intermolecular energy is directly related to force, where the latter is the spatial
derivative of the former. By convention, negative value of the intermolecular force indi-
cates attraction and positive value of the force represents repulsion between particles. At
short intermolecular distances repulsive forces dominate the attractive forces to reflect the
fact that matter cannot occupy the same space, and that positively charged nuclei and
negatively charged electron clouds repel the nuclei and electron clouds of other molecules.
However, at longer centre-to-centre distances attractive forces dominate to reflect the fact
that positive nuclei of one molecule would attract negatively charged electron clouds of the
other molecule, and vice versa. Both attractive and repulsive forces decay quite quickly
with increasing separation distances.

2.4.1 Isotropic Potential - Lennard-Jones

Among the pairwise potentials currently used for simulating LC phases at the molecular
resolution, it can be said that the vast majority of them has been influenced by the famous
Lennard-Jones potential [55, 56, 57] developed in the 1920’s:

ooy [(2)" - (2] =

in which € is the strength parameter and reflects the strength of bonding, and o is the
range parameter that reflects the sum of the radii of two interacting spherical particles.
Originally this potential was developed to describe the interactions of noble gas atoms, but
its general form has proved to be quite useful in pairwise systems made up of molecules,
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Figure 2.16: A typical plot of a Lennard-Jones interaction taken from [58].

not just atoms. The potential has repulsive and attractive components: the component
raised to the power of 12 represents repulsive forces (that dominate at short distances
and make the potential energy positive as the centre-to-centre distance decreases), while
the component raised to the power of 6 indicates the attractive forces (that dominate the
repulsive forces at longer distances and make the energy negative). The Lennard-Jones
potential is symmetric (interacting particles have to be of the same type) and isotropic
(particles have to be spherical, though they can be of different radii). A typical graph of
a Lennard-Jones interaction can be seen in figure 2.16.

Thus, the only variable in the equation is the separation distance r between two molec-
ular centres of mass. Constants ¢ and €, which are the range and the strength parameters,
are determined by the types of interacting particles. The strength parameter reflects the
strength of the bond between the two particles, minimum value of potential energy is —e.
The larger the value of €, the stronger and more thermodynamically stable is the bond
between the two particles. In practice, values for ¢ come from experiments or tables of
measured values. This equilibrium bond length can be obtained by differentiating equa-
tion 2.3 with respect to r and setting the result to zero, upon which it becomes apparent
that the equilibrium bond length (with energy equal to —e) is v/20.

The range parameter, o, is the sum of the radii of the two interacting spherical particles.
When the centre-to-centre distance is equal to o, the potential energy is zero. It is also
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worth mentioning that o, being the sum of the radii of spherical particles, reflects the
excluded volume between the two particles’ centres of mass because of the centre-to-centre
nature of its derivation (the potential is pairwise, hence o is not based on one particle, but
on two of them in the pair). If one particle is fixed in space and the other one is rotated
around it by 27 radians in all possible planes, the shape of the excluded volume between
the two particles will be spherical. This excluded volume has a radius equal to o (the
sum of the particles’ radii) and thus contains the volume of the “stationary” particle as
its “core” and the radius of the “moving” particle as the “shell” surrounding the “core”;
the shape of the “stationary” particle can be obtained by subtracting the second particle’s
radius from all locations in the excluded volume (effectively “peeling off” the “shell”).

2.4.2 Anisotropic Potential - Gay-Berne

Since the majority of interacting molecules have anisotropic shapes, it became necessary
to develop potentials that would capture those interactions.

Developing on the ideas of the isotropic Lennard-Jones potential, an anisotropic po-
tential would have to exhibit an anisotropic excluded volume, and the location and even
the magnitude of the minimum potential energy would have to also depend on the relative
orientation of the particles.

A step forward in the development of anisotropic potential was the derivation and
tabulation of second virial coefficients for nine approximately cylindrical gases as early as
1948 [59]. However, it was still necessary to incorporate orientation dependence between
two anisotropic particles. Several attempts have been made, but the most successful and
widely used to date was by Gay and Berne [60]:

12 6
PN LA g0 00
U, g, 1) = €(Uy, Ujy Ty —
(83,5 = el B ) [(r_g<ai>ﬁj>fij)+00) (T—U(ﬁi7ﬁj7fij)+00) ]
(2.4)

The Gay-Berne potential is still in the Lennard-Jones form (equation 2.3) in that it has
components raised to powers of 12 and 6, but now its range (o (4;,4;,7;;)) and strength
(€ (u;,uj,7;)) parameters depend on unit vectors of molecular orientations (;,u;) and the
unit vector 7;; which is pointing from the centre of molecule ¢ to the centre of molecule
j. Since the potential itself also depends on the separation distance r between molecular
centres of mass, the intermolecular vector r;; appears in U (i, @;,7,;). The length scaling
unit in this pairwise potential is defined as oy. Typical potential energy curves for the
Gay-Berne potential can be seen in figure 2.17.
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Figure 2.17: Typical potential curves of a Gay-Berne interaction [51]. Pairwise potential

energy U and centre-to-centre separation distance r have been divided by the energy and
length scaling units, respectively, to obtain dimensionless quantities. Relative orientations
of mesogens are depicted by black solid ellipses. The configurations are commonly called,
from left to right, “side-by-side” (this is also the most stable configuration with the lowest
potential energy), “cross”, “T” and “head-to-tail”.
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The range and strength parameters were given by a rather complicated set of expressions
[60]. The strength parameter is a product of two components and uses parametrization
constants v and p as powers of the components:

!

e(ﬁi,&j,ﬁj) = Ey<ﬁi,ﬁj>ﬁu(ﬁi,ﬁj,fij) (25)
The two components are:

PN SN —-1/2
(U, u5) = € (1 - XQ(Ui : Uj)z) / (2.6)

2

with €y being the energy scaling unit.

€ (0, 7) =1 & [mj St hy GF Gt ;aﬂ
1+ X' (@; - ay) 1— (@ - 4y)

The range parameter, which is the centre-to-centre distance at which the pair potential
energy equals to zero, is given as:

L (o 2 (s s Fy )P\
U(ﬂ/l,aj,fw) = 0y <1 . _X ((r] U +Ar] Au]) + (r] (% Ar] Au]) )) (28)
2 1+ x(4; - 4y) 1 —x(4; - 4y)

with oy being the length scaling unit.

The two anisotropy parameters (X,X') that appear in equations 2.6, 2.7 and 2.8 are
defined as:

o2 _ 52
Il 1
X=—5—> (2.9)
aﬁ + 0%
Vp _ 1/p
R — (2.10)

ei/“ + 6é/u

where o) is the length of the major axis of the ellipsoidal mesogen, o is the length of
the minor axis of the ellipsoid, €, is the strength parameter value for the side-by-side
configuration, €. is the value for the end-to-end configuration and p is the parametrization
constant used in equation 2.5. Figure 2.18 contains a schematic representation of the
origin of the Gay-Berne mesogen - the ellipsoid was obtained from an integration over four
joined Lennard-Jones spheres. Figure 2.19 depicts some thermotropic phases formed by
simulations with the Gay-Berne mesogen.

Similar to the Lennard-Jones case, with Gay-Berne the potential energy is zero when
r = 0. Note that the denominators in equation 2.4 are “shifted” - they are constructed in
such a way that when r = ¢ the denominator itself is not zero to preserve mathematical
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Figure 2.18: Schematic representation of the origin of the ellipsoidal Gay-Berne mesogen
[60].
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Figure 2.19: Snapshots of some thermotropic phases obtained with the Gay-Berne mesogen
[15]. Isotropic (liquid) phase is shown in (a), nematic liquid crystal phase in (b) and smectic

liquid crystal phase in (¢). The colour of mesogens indicates the degree of alignment with
the director.
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sense. When implementing the potential in computer code, it is necessary to account for
situations when r — o 4+ 0¢p < 0 with an “if” condition - this situation is not physically
possible even though it is allowed by mathematics, therefore we must enforce a high positive
potential energy when r — o + 0y < 0 occurs. If this is not done, it may be possible for
two particles to occupy the same space with a low potential energy value, thus violating

the fact that matter cannot occupy the same space.

It is now important to note that the shape of the excluded volume can be obtained from
plotting the range function as length from the origin of a coordinate system centred about
one molecule as the other is rotated about it and the range function is recalculated at every
molecular configuration [19]. In the case of Gay-Berne potential, the molecular shape that
is obtained is an ellipsoid. The shape of a single particle can be obtained by “shrinking”
the shape of the excluded volume to the dimensions set for the ellipsoid. An extensive
study was conducted [61] for the purpose of finding out the closest possible distance of
approach between ellipsoids that may not be identical to each other and as a result a new
pair potential was written and compared to Gay-Berne, but clear advantages do not seem
to have been gained. An efficient but non-trivial algorithm for calculating the possible
contact distance has also been proposed in [62].

2.5 Metropolis Monte Carlo

A fairly comprehensive overview of different simulation methods can be found in [38] and
[10]. However, two of the major simulation schemes used in computer experiments involv-
ing liquid crystals are Monte Carlo and Molecular Dynamics. There are vast differences
between the two, most notable ones being that in Monte Carlo the equilibrium behaviour of
the material is simulated, while in Molecular Dynamics, as the name implies, the dynamics
of the system are the point of interest.

The Monte Carlo scheme (published in 1953 by Metropolis and coworkers [63]), relies
on the thermodynamic principle that the system of interest will be found in a state that has
the greatest multiplicity [64]. The scheme has been used in various scenarios since then (to
point out a few: [52, 53, 48, 11, 65, 66]). Despite the fact that applications are and have
been so numerous, the underlying principle has always remained the same: equilibrium
behaviour is found through ensemble average. A system is set up with certain initial
conditions, and it is then perturbed by random displacements of particles by a certain
specified distance (which may be made to vary throughout the simulation if necessary),
the Hamiltonian of the system is computed (using a pairwise potential from section 2.4,
for example) and compared to the Hamiltonian before the perturbation. The probability
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of accepting the new ensemble is dependent upon the ratio of multiplicities between the
old and new states - if the new state is less likely to occur, it is less likely to be accepted
during the simulation. However, it is not impossible for the less likely state to be accepted,
which allows Monte Carlo schemes to overcome local minima of the Hamiltonian in the
phase space and indeed converge to the global minimum given enough time [67]. The
great advantage of the Monte Carlo scheme is the computational simplicity and the ability
to obtain equilibrium behaviour of the system. However, the dynamics are completely
ignored.

In contrast, the Molecular Dynamics scheme [67] (used in [39, 45, 24]) essentially simu-
lates random Brownian motion of particles within the system during the simulation. This
approach relies on calculating forces and torques [51] experienced by each molecule due to

interactions with its neighbors and then using that information to displace particles accord-
ing to Newtonian laws of motion. The Hamiltonian is then computed (using, for example,
a pairwise potential, as described in an earlier section), and the process is repeated until
the simulation converges. As a result of taking dynamics of the system into account, data
about the response of material to an external perturbation can be obtained [21]. However,
computational complexity of the system and the great number of degrees of freedom that
have to be accounted for prevents us from accessing macroscopic time and length scales
during simulations. Consequently, both Molecular Dynamics and Monte Carlo schemes are
used - rather than compete, they complement each other.

As already described, Metropolis Monte Carlo samples the possible domain configu-
rations while entirely ignoring the dynamics of their formation, and includes the more
probable configurations in the calculation of thermodynamic observables based on a sta-
tistical criterion called the Boltzmann factor. In order to understand the rationale behind
the seemingly simple Metropolis Monte Carlo simulation technique, it is necessary to ex-
amine a few concepts from statistical mechanics and thermal physics, such as microstates,
macrostates and the multiplicity of a macrostate. In addition, it is necessary to dwell
upon the concept of the constant-NPT (“isobaric-isothermal” [68, 69, 70, 67]) simulation
ensemble, where the number of particles (N), pressure (P) and temperature (T') are held
constant and the system’s potential energy is allowed to vary.

A microstate of a thermodynamic system is a specific configuration of the system where
the state of every particle (e.g. position and orientation) is known. While microstates are
unique, they can correspond to the same macrostate (potential energy) of the system. The
fundamental assumption of statistical thermodynamics postulates that for an isolated sys-
tem, all accessible microstates are equally likely [64]. While the constant-NPT ensemble
system is closed (number of particles is not exchanged with the surroundings), it is not
isolated (the potential energy is not conserved - it is instead exchanged with the surround-
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ings). However, the NPT system and its surroundings do form an isolated system, hence
the fundamental assumption is still applicable. Even though all microstates are equally
likely, all macrostates are not equally likely because multiple microstates can correspond
to the same macrostate. In fact, one macrostate at a certain temperature tends to be
far more likely than any others because it has the greatest multiplicity of states (i.e. the
number of microstates that correspond to this macrostate is much greater than for any
other macrostate).

However, the greatest multiplicity does not necessarily correspond to the lowest pos-
sible energy of the system under study. For instance, a perfect crystal lattice will have
an enthalpy (assuming simulations in isobaric-isothermal ensemble) value lower than an
isotropic liquid phase because when the pairwise potential is used to calculate the domain
enthalpy, temperature is not included in the calculation and enthalpy depends solely on
particle orientations and separation distances. However, above the melting temperature,
it is the isotropic liquid state that will have the higher multiplicity, not the perfect crystal
lattice. Thus, if the simulation temperature is set to above the melting point, the Monte
Carlo algorithm will find the system state that is most likely to occur at that temperature,
though it may not have the lowest enthalpy when compared to other possible states of the
system.

The Boltzmann factor of a state s (equation 2.11, taken from [(4]) corresponds in
magnitude to the multiplicity of a given macrostate. Note that kp is the Boltzmann
constant (1.3806 x 10*23%)7 T is the temperature and F is the energy of state s;.

Boltzmann factor = exp(—E(s)/kgT) (2.11)

Defining (kgT)~! as 3, equation 2.11 can be rewritten as:

Boltzmann factor = exp(—FE(s)) (2.12)

Using the ratio of Boltzmann factors corresponding to the old and new states as the
Metropolis Monte Carlo acceptance criterion essentially compares the probabilities of exis-
tence of each and shows which of the two is more likely to occur. This is the “importance
sampling” of Metropolis Monte Carlo [67] - microstates that are most probable to occur are
included when sampling the equilibrium ensemble and used when determining the average
macroscopic quantities.

In order to ensure that the Monte Carlo sampling scheme is correct, “detailed bal-
ance” | a sufficient but not necessary condition, should be satisfied. Since the fundamental
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assumption of statistical thermodynamics postulated the equal likelihood of all microstates,
it should be possible to return to the original microstate even after a new microstate has
been accepted (in other words, it should be possible to undo any move, particle or volume,
right after it was successfully accepted). This brings about another important nuance:
the maximum values for particle moves and volume changes should be constant numerical
values, and not be continuously calculated during the simulation. Otherwise, we may find
the maximum allowed moves shrinking or expanding if they are determined based on, say,
a percentage of the current volume of the simulation domain. This would prevent the
Markov chain from remaining symmetric and Metropolis Monte Carlo results from being
valid.

In order to understand the calculation of the probability of acceptance of a new mi-
crostate, let us denote the original positions and orientations of N particles in the domain
as sV and let s’V represent the new positions and orientations after an attempted particle
displacement and reorientation (i.e. “a particle move”). If, after an attempted particle
move, the calculated domain internal energy U(s™) is less than or equal to U(sY), this in-
dicates that the state s’V is either more stable or equivalent to state s, or in other words,
the multiplicity of state s'V is greater than or equal to that of state sV, respectively; thus,
the new state s"V is accepted. In other cases, the new configuration s’V cannot be accepted
automatically. Instead, it is accepted with probability:

exp {8 [U(s™) = U(sM)]} (2.13)

In the constant-NPT ensemble (isobaric-isothermal ensemble) [68, 69, 70, 67], only
volume is allowed to vary to simulate a real experiment performed on a closed system at
atmospheric pressure and ambient temperature. Let us denote the original volume by V'
and the new volume after an attempted perturbation (a “volume move”) as V'. Similar to
the particle moves, if U(s", V") is equal to or less than U(s", V), the new state (s™, V")
of the domain is accepted automatically. However, if the new state is less stable than the
original state, the perturbation to the original state is accepted with probability:

exp{—B [U(s", V') = UGN, V)+ P(V' = V)= N~ " In(V'/V)]} (2.14)

When implementing these acceptance criteria in computer code, the results (i.e. Boltz-
mann factors) calculated using equations 2.13 and 2.14 are compared to a uniform random
number on the interval [0,1) and new states are accepted if the result is greater than the
random number because the probability that the Boltzmann factor is greater than the
uniform random number between 0 and 1 is, in fact, equal to the Boltzmann factor.
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It is important to note that for a volume move, reevaluation of free energy is simple
and recalculating pairwise interactions is not necessary [07], decreasing the computational
expense of this perturbation of the simulation domain. Denoting the original linear dimen-
sions of the system by L and the new dimensions (after the attempted volume move) by
L', the new free energy value U(L') can be obtained by scaling the repulsive (power of 12)
and attractive (power of 6) components of the original free energy as follows:

U(L) = (%)12 Upa(L) — (%)6(]6@) (2.15)

Equation 2.15 has been employed in the NPT simulations performed in this thesis in
order to decrease the computational expense incurred upon perturbing the domain volume.
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Chapter 3

Literature Review

In this chapter an overview of relevant scientific literature is conducted. The review be-
gins by discussing existing pairwise anisotropic potentials employed in the simulation of
liquid crystal phases in section 3.1. Next, current experimental work on liquid crystal-
nanoparticle mixtures is discussed in section 3.2. Finally, current simulation work on
liquid crystal-nanoparticle mixtures is summarized in section 3.3.

3.1 Anisotropic Pairwise Potentials

Incorporation of anisotropy into pairwise potentials (attempted, for example, in 1980’s
[71, 60, 72, 73] and, of course, earlier [74, 75]) and representation of realistic molecular
shapes have been areas of ongoing research for the last 60 years.

Capturing all features of a mesogen at the coarse-grained level is a difficult task. For
instance, quite notable, and perhaps surprising, is the fact that in a liquid crystal it is not
only the phase transition that depends on temperature, but also the shape of mesogens. In
his 2007 review, Wilson wrote that in a real liquid crystal, the change in density at phase
transition from liquid to liquid crystal is around 1 % whereas simulations using Gay-Berne
mesogens exhibit a change of 10 %, which is an unrealistic value [51]. The discrepancy is
attributed to the fact that in Gay-Berne simulations the shape of mesogens is independent
of the temperature, whereas in a real material the shape changes. Muccioli and Zannoni
attempted to account for that in their publication [50], but their work was focused on
cylindrically symmetric particles. Nevertheless, they found that nematic-smectic transi-
tion temperature is dependent on fluctuations in molecular shape, while nematic-isotropic
transition temperature was not sensitive to that.
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Other than Gay-Berne, there are several other notable anisotropic pairwise potentials
that exhibit liquid crystalline behaviour. Two of them are the Weeks-Chandler-Andersen

potential [75] applied in [76, 77] to liquid crystal-nanoparticle mixtures (see section 3.3)
and the Kihara potential [74], studied in [78, 79] (among other works) and applied to binary
mixtures in [30] (see section 3.3).

The Weeks-Chandler-Andersen potential between a pair of particles with indeces ¢ and
j, in its purely repulsive form, was given in [76, 77] as:

12 6
_o0 N (% )\ 1
T;j _Rij T;j _Rij 4

if (r;j —R;;) < /200 and Ui; = 0 otherwise. In the formulation, oy and €y were the length
and energy scales, respectively. The distance between particles was r;;, but the definition
varied based on particle pair: for two spherical particles, rgj was between the centres of
mass; for the rod-sphere pair, ng was the shortest distance between the sphere’s centre of
mass and the axis of the rod-like particle; for the rod-rod pair, r{; was the distance of closest
approach between the rod-like particles. The constant R;; depended on the particle pair
(e.g. rod-rod, rod-sphere). Orientational dependence of the potential energy was included

through 77;, which changed depending on the relative positions of two interacting particles.

Uij = 460 (31>

The Kihara potential, also purely repulsive, was given in [30] as:

Uij 12 Oi]’ 6 1

if d,, < %aij and U;; = 0 otherwise. Particle indeces are given by ¢ and j, d,, is the
minimum distance between particle cores (the axis of the rod-like particle and the centre
of mass of the spherical particle), o;; is the half of the sum of the interacting particles’
diameters and ¢;; is the energy parameter, which may be set to the same constant () for
all particle pairs. The value of d,, for the rod-rod pair had to be computed via a non-trivial
algorithm, defined in [62].

In both the Weeks-Chandler-Andersen and the Kihara potentials, which are quite simi-
lar, the strength parameters €y and ¢;; are independent of the orientation of the interacting
particles. As discussed in section 2.4.2, the Gay-Berne potential accounted for that issue,
but not without imperfections, since it is restricted to ellipsoidal mesogens. The realism of
the ellipsoidal shape has been questioned [11, 81], since ellipsoids may produce too much
interdigitation between the layers of a liquid crystal. The reason why the shape of simu-
lated mesogens is a concern is because liquid crystal phase formation depends on molecular
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shape [22] and packing. Thus, relevance of simulation data to experimental results also
depends on accurate representation of shape.

Attempts have been made to alter the Gay-Berne potential’s range and strength pa-
rameters to reflect more realistic shapes in the works of Zewdie [11, 1] and quite a few
other researchers have built on Zewdie’s approach [32, 10, 19, 83]. In all of those works the
potentials remained in the Gay-Berne form, but the shape and interactions of the meso-
gens have been captured through different range and strength functions, respectively. In
Zewdie’s work [11, 81], a modified version of the Corner potential [59] was employed:

- o - 12 - 6

Uiy, 5, 155) = 4e(ly, Uy, ij) [(T — o (g, 1y, 77) + UO) - (T — o (g, 1y, 75) + 00) ]
(3.3)
with € being the strength parameter, ¢ being the range (or “shape”) parameter, oy being
the contact distance between two rod-like particles in their side-by-side configuration, and r
representing the centre-to-centre separation distance (for homogeneous and heterogeneous
particle pairs). Molecular orientation unit vectors were @; and u;, and the intermolecular
vector from particle i to particle j was r,; with the corresponding unit vector being 7;;. The
range and strength parameters were formulated through expansion in terms of orthogonal
basis “S” functions [$1] (“rotational invariants”, as they are called in [10, 85, 86] and other
publications) dependent upon dot products of molecular orientation unit vectors and the

intermolecular unit vector 7;;:

o (U, Uy, 75) = 0 Z oL, 750,15 (s, Uj, ) (3.4)
LiL;J

e(t;, iy, 745) = €o Z ELiLjJSLiLjJ(@i>@j,fij) (3.5)
Lil;J

where €, is the energy scaling unit. The expansion coefficients were found by fitting to the
calculated values of o and € from other potentials. The approach in [I1] is able to cap-
ture complicated shapes with appropriate expansion coefficients and number of terms in
the expansion, but only cylindrically symmetric particles have been demonstrated to date
(spherocylindrical shapes in [11], disk-like shapes in [¢5] and pear-shaped/“tapered” parti-
cles in [82, 10, 19, 83]). This illustrates that the representation of biaxial (non cylindrically
symmetric) shapes is a rather complicated and challenging task.

The promise behind simulation and development of biaxial liquid crystals lies in pre-
dictions that upon the application of external electric field the response from the rotation
of the minor axis can be up to an order of magnitude faster than the long axis [21], which
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means that displays employing this technology would surpass the image quality of current
products. Equipment for computer networks that utilizes liquid crystals would certainly
benefit from faster switching times as well.

When it comes to modelling biaxial mesogens, the increase in complexity should not be
surprising - just like the simulations of cylindrically symmetric particles are more challeng-
ing than simulations of spherically symmetric particles, simulations of biaxial particles are
more challenging than of cylindrically symmetric particles. In the former case, anisotropy
is added as the complicating factor, while in the latter the dependence of intermolecular in-
teractions on orientation of molecules is even greater than before, since rotating a molecule
about its long axis will no longer create equivalent interactions for a biaxial molecule unlike
for the case of a cylindrically symmetric molecule.

This added complexity notwithstanding, the popular Gay-Berne potential has been
adapted and used for simulations of biaxial molecules. One approach was through joining
two [37] or three [51] ellipsoidal Gay-Berne mesogens together to resemble a bent-core
shape and then simulating the equilibrium behaviour of 1000 of these bent-cores using
Monte Carlo in the isobaric-isothermal ensemble. Other, more ubiquitous approaches
[88, 10, 89, 23, 65, 90, 24, 91], involved altering the ellipsoidal mesogens to remove the
cylindrical symmetry from their shapes; a dipole was frequently added in addition to shape
modification. One unique paper [20] conducted experimental synthesis and analysis work
as well as atomistic simulations of the “twist-bend” nematic bent-core mesogen and found
a new nematic liquid crystal equilibrium symmetry to exist, which is a rare and important
event in liquid crystal science.

The approach employed in this thesis to simulating rod-rod and rod-sphere interactions
can be extended to biaxial shapes by including other terms in the orthogonal expansions of
the range and strength parameters and fitting the range parameter to a banana-like shape.

To the extent of the knowledge gained after conducting the literature review, there
has been only one published work [$5] that used the S function [341] Corner potential [59)]
(originally proposed by Zewdie [I1]) for studying any kind of mixtures. In [35], eight S
functions (up to fourth order) were used to describe the shapes of two disk-like particles,
one with a protuberance in the centre, another with a depression in the centre. The
coefficients for the range parameter expansion in terms of the S functions were obtained by
fitting to contact distances calculated for eight configurations of the heterogeneous particle
pair and six configurations for the two pairs of identical particles. The coefficients were
the solutions to linear systems built for each particle pair. The strength function was
the same for both disks, but their shapes were different; hence, this study elucidated the
effects of molecular shape on the phases that could be formed by the materials. Four sets

35



of simulations, two with pure substances and two with 2:1 mixtures of the two disk-like
particles, were performed using Monte Carlo in the isobaric-isothermal ensemble, with a
total of 648 and 5184 (8x648) particles in the domain. Variations of temperature by 0.1
(in reduced units) from 2.0 to 3.5 revealed that of the four systems of interest, only one
domain exhibited a discotic nematic liquid crystal phase - it was composed entirely of disks
with protuberance at the centre.

3.2 LC-NP Mixtures Experimental Work

Recently, with the growth of the field of nanotechnology there has been an increasing
amount of interest in adding nanoparticles to liquid crystals in order to improve the existing
or obtain new properties of liquid crystals and enable new technological applications [3].

In their excellent review paper, Lagerwall and Scalia [8] go over a large number of
applications of liquid crystals. According to Lagerwall and Scalia, a possible application of
liquid crystals is to position spherical nanoparticles (inorganic metal particles, for instance)
and order anisotropic nanoparticles, such as carbon nanotubes. Currently, the progress in
controlling the position of nanoparticles using liquid crystals has been slow and these
systems need to be understood in more depth to achieve this goal. Significantly more
success has been achieved in positioning micro-scale particles. When it comes to dispersions
of inorganic nanoparticles in liquid crystals, according to the reviewers, these efforts are
aimed at modifying the properties relevant to the display application of LCs, namely
speeding up the switching time between the “on” and “off” states (“light allowed through”
and “light blocked”, respectively) or changing the type of alignment of the liquid crystal
within a pixel. Dopant nanoparticles have also been used for improving electrooptical,
dielectric and optical properties of the liquid crystal host [26, 92] and even for aligning the
mesogenic molecules with respect to the liquid crystal cell substrate [93].

The inorganic nanoparticles added to liquid crystal hosts are usually metallic or metal
oxides, e.g. Au, Ag, Pd, Pt, and ZnO, with diameters of 30 nm or less in most cases [91].
In addition, semiconducting nanoparticles, such as CdSe and CdTe (also called “quantum
dots”) have been added to liquid crystal hosts [26]. However, experiments utilizing gold
nanoparticles are the most ubiquitous in literature [37, 95, 96, 33, 32, 97, 92, 26, 98, 99,

, 101].

The effect of adding MgO particles (10 nm in size and their concentration being
0.1 wt%) has been reported in [102]. Some of the industrial benefits of adding nanoparticles
to liquid crystals were reported to be the reduced operating voltage and shortened response
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time of Liquid Crystal Display cells due to the disruption of mesogenic alignment by the
nanoparticles [102]. These effects would translate to lower power consumption and less
image “ghosting” (appearance of multiple silhouettes of a moving object on the screen),
especially at lower temperatures.

Similar improvements due to doping by nanoparticles have been reported for polymer-
dispersed liquid crystals (PDLCs) [25]. More specifically, a higher contrast ratio, lower
driving voltage and a reduced time response were obtained. In general, the doping con-
centrations were kept low (under 3 wt%) in order to achieve a more even distribution
of nanoparticles by keeping their inter-particle interaction forces low. Interestingly, in
PDLCs it’s the polymer matrix that is doped with nanoparticles rather than the liquid
crystal droplets dispersed in the polymer, yet the improvements are similar to the direct
doping of liquid crystal domains.

A study by Donnio and coworkers [32] reported on self-organization of ferromagnetic
gold nanoparticles in a thermotropic cubic phase. The nanoparticles had an average di-
ameter of 2.1 nm with a standard deviation of 0.5 nm and were spherical to a first ap-
proximation (actual shape was a polyhedron). Dendritic structures were grafted onto the
Au nanoparticles and an interesting phase diagram was observed. It is important to point
out that in this case a liquid crystal host was not necessary - combination of nanoparticles
with the dendritic structures, which are not mesogenic by nature, caused a mesophase to
assemble. The melting point was reported to be below 0 °C', but an ordered cubic phase
emerged again from isotropic phase at 75+ 5 °C.

Holt and coworkers [33] doped a discotic liquid crystal with 1 wt% of methylbenzene
thiol coated gold nanoparticles. The nanoparticles had a mean diameter of 2.7 nm with
a standard deviation of 0.5 nm. The authors reported an increase in the conductivity
of the liquid crystal material by at least two orders of magnitude from the typical value
on the order of 1073 em?V~!s7! and an even greater increase when an external electric
field was applied, regardless of the phase of the thermotropic liquid crystal (the material
was studied in its crystal, columnar and isotropic phases). Since the dopant concentration
was low but the conductivity improvement was dramatic, it was postulated that the in-
crease in conductivity was due to nanoparticles being organized into chains by the external
field. The authors observed a similar effect when the nanoparticles were dispersed in hex-
adecane (which is not a mesogenic material), but only the LC-NP mixture preserved the
improvement in conductivity upon cooling in the presence of the external field, whereas
hexadecane-NP mixture did not.

Pratibha and coworkers [96] reported stable dispersions of colloidal gold nanoparticles
(with 14 nm diameter) in smectic A phase of the 8CB liquid crystal, more stable in fact than
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in the nematic phase of 8CB due to the layers present in the smectic phase and separation
of nanoparticles from each other by these layers. Agglomeration was not observed in the
study; separations between the nanoparticles remained larger than several nanoparticle
diameters even for high concentrations of dopant in the dispersing medium.

Interesting results have been achieved by Oswald and coworkers [95] in using small
concentrations (0.1 wt%, 0.225 wt% and 0.65 wt%) of gold nanoparticles (4.7 nm average
diameter) to decrease the mobility of edge dislocations that exist between the layers of
smectic A phase of 8CB liquid crystal. The composite material has been hardened in
response to compressions perpendicular to the layers. Decreasing the mobility of these edge
dislocations by using the nanoparticles as a dopant essentially mimicked the conventional
alloy hardening widely used in the field of metallurgy. Oswald and coworkers suggested
the study of aggregate formation and their effect on edge dislocation mobility is a possible
direction for future work on their project.

Milette and various coworkers have reported on a number of experiments involving
gold nanoparticle dispersions in liquid crystals. In [9%], the methods and results of tun-
ing miscibility of gold nanoparticles in a liquid crystal host were published. Using 4-5
nm diameter gold nanoparticles and various capping ligands, the researchers were able to
achieve complete miscibility in the isotropic phase of 5CB liquid crystal with concentra-
tions of up to 25 wt% Au nanoparticles. Miscibility and phase separation of Au NPs were
inferred using Polarized Optical Microscopy and UV-Vis spectroscopy with the observation
of absorption peak locations in the latter, which occurred due to the surface plasmon res-
onance phenomenon of gold nanoparticles. If the peaks shifted at different concentrations,
it indicated a change in nanoparticle spacing, with “red” shifts being indicative of phase
separation. Solubility of the nanoparticles was found to be very sensitive to the length of
the ligands used to cover the nanoparticles. In [100], reversible formation of aggregates of
gold nanoparticles (4.7 nm diameter, 1.0 wt% (0.05 % vol)) within a smectic phase of 8CB
liquid crystal was observed using Polarized Optical Microscopy. Complete dispersion was
observed in the isotropic phase, circular aggregates formed upon cooling to the nematic
phase and linear arrays were formed upon a further decrease of temperature to the smectic
phase with homeotropic boundary conditions (i.e. the mesogens were oriented perpendicu-
lar to the glass substrates confining the liquid crystal). The periodicity of the linear arrays
was at the micron-scale. Cell geometry and boundary conditions were found to influence
the geometry of the arrays formed by the nanoparticles in the smectic phase.

Formation of reversible long-range gold nanoparticle networks within 5CB and 8CB
liquid crystals has been observed by Polarized Optical Microscopy in [99] at nanoparticle
concentrations of 1 wt% and analyzed from a thermodynamic point of view in [L01]. The
nanoparticle diameters were 4-5 nm, and the networks were found to be stable in the ne-
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matic phase of the liquid crystal host in excess of several weeks. The network features
spanned hundreds of microns and the network topology was preserved upon cooling down
to the crystalline state and heating back up to the nematic phase. When the samples were
heated to isotropic state, the nanoparticles completely dispersed. Upon cooling, networks
of gold nanoparticles formed once more. Theoretical analysis in [101] concluded that the
balance of entropic forces and excluded volume effects, in addition to interactions between
nanoparticles, capping ligands and host mesogens, was responsible for the formation of net-
works. In addition, it was postulated that the nematic-to-isotropic transition temperature
decreases with greater concentration of gold nanoparticles in the host.

Based on the conducted literature review of the experimental work, it can be concluded
that gold nanoparticles with diameters under 5 nm (which is comparable to mesogenic
molecules’ dimensions) dispersed at concentrations of up to 25 wt% in 5CB and 8CB hosts
are the most popular and well-studied systems to date. Since experimental work has shown
good dispersion of nanoparticles in nematic and even smectic phases (with some aggregate
formation in the latter) with a proper choice of capping ligands and “survival” of those
phases even at high concentrations of nanoparticles [94], it can be postulated that simula-
tions of LC-NP mixtures may also show good dispersion for at least a few concentrations of
nanoparticles in the LC domain with appropriate settings for LC-NP mixing rules. It can
also be expected that the liquid crystal to isotropic transition temperatures will decrease as
the dopant concentration increases [101]. However, since the simulations in this thesis were
conducted at molecular (“nano”) scales, it is unlikely that nanoparticle network formation
can be captured accurately, since in real samples the networks extended over hundreds of
microns.

3.3 LC-NP Mixtures Simulation Work

The literature review summarized in this section was conducted in order to gain a better un-
derstanding of what simulations have been done in the past with liquid crystal-nanoparticle
mixtures at the molecular scale.

Soulé, Reven and Rey [103] used a mean-field continuum thermodynamic model to study
phase behaviour of thermotropic nematic liquid crystal-nanoparticle mixtures with varying
temperatures and nanoparticle radii. It was found that small nanoparticles (with diameters
on the same order of magnitude as the length of calamitic mesogens) affected the nematic-
isotropic transition temperature significantly by lowering it with increasing nanoparticle
volume fractions. However, systems with large nanoparticles mixed in the liquid crystal
host exhibited phase behaviour very similar to that of the pure liquid crystal. Moreover,
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both small and large nanoparticles were found to be more miscible with the liquid crystal
than those with intermediate sizes due to the balance of entropic and enthalpic effects on
miscibility. However, the existence of homogeneous nematic, isotropic and crystalline states
(and coexistence of any two of the former) was not a simple function of nanoparticle radius,
but a delicate balance of temperature, nanoparticle volume fraction and nanoparticle-
liquid crystal interactions. Soulé, Milette, Reven and Rey [104] have successfully used the
published model [103] to analyze experimental results of dispersing gold nanoparticles in
the 5CB nematic liquid crystal and the phase equilibrium behaviour of the mixtures.

Continuum theories have long been used for understanding L.C phases and designing de-
vices that benefit from the unique properties of LCs. Some have been quite successful even
in predicting the properties of liquid crystal cells doped with nanoparticles [27]. However,
continuum theories may ignore the effects and phenomena present at molecular resolution.
These molecular scale properties may no longer be negligible when nanoparticles (NPs)
are added to LC phases. The growing development of devices that utilize nanotechnology
in general and NPs in particular requires a better understanding of the structure of both
pure LC phases and LC-nanoparticle mixtures at the molecular resolution. [8] To this end,
models that provide molecular resolution of liquid crystal-nanoparticle mixtures can be
quite beneficial, despite the fact that they can capture domains containing significantly
less molecules than would be in a continuum model.

Krasna, Cvetko and Ambrozic [29] used an on-lattice model [52] to study mixtures of
nematic liquid crystals and anisotropic magnetic nanoparticles. Homeotropic anchoring of
liquid crystal molecules towards the nanoparticles was assumed. A domain of 80 x 80 x
80 sites was quenched from an isotropic state with all particles having random directions.
Upon cooling, nematic domains emerged and nanoparticles acted as stabilizers for the
domain orientation patterns. The nanoparticles were also found to cause biaxiality in the
domain orientation.

Tian, Smith and Glaser performed molecular dynamics simulations of nanoparticles in
a nematic liquid crystal host [76]. The simulations were conducted in a cubic simulation
box with periodic boundary conditions using a purely repulsive pairwise Weeks-Chandler-
Andersen potential [75]. The domains consisted of 40000 and for some simulations 120000
soft spherocylinders, with nanoparticle volume fractions below 0.2 % for all but one case
with larger diameter particles in the domain. The authors reported that their nematogens
exhibited a tendency for planar anchoring towards the nanoparticles, while other studies
(which used variations of the Gay-Berne [60] potential) showed a tendency for homeotropic
anchoring [105, |). The researchers also found that the size of nanoparticles strongly
affected the phases that could be formed by the originally nematogenic domain; moreover,
mesogens exhibited a preference for planar anchoring towards larger nanoparticles. Thus,
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the presence of smaller nanoparticles caused a greater disruption of local orientational
order than large nanoparticles since the anchoring preference for smaller nanoparticles
tended to homeotropic rather than planar. Finally, it was reported that the liquid crystal
matrix induced long-range repulsion between the nanoparticles when the diameter of the
nanoparticle was comparable to the length of mesogenic molecules.

Tian and Smith conducted further investigations [77] for the case when nematogen
length was similar to nanoparticle diameter in order to see how the liquid-crystal-matrix-
induced long-range repulsive forces between nanoparticles affected the dispersion of the
dopant in the dense nematic host. The molecular dynamics simulations were conducted in
the NPT ensemble with domains consisting of 10000 soft spherocylinders for investigating
the phase diagram of pure liquid crystal and 120000 soft spherocylinders and 10 to 6000
nanoparticles (nanoparticle volume fractions ranged from 0.0009 to 0.1620) for observing
the effect of dopants on the phase transitions in the composite material. The simulations
revealed that higher pressures resulted in greater domain order, i.e. increasing the pressure
would cause the system to transition from an isotropic phase to the nematic phase. It was
found that dispersion of the nanoparticles was maintained even at high dopant concentra-
tions and phase separation did not occur. This finding was contrary to the expectations
that may have been formed based on observed behaviour for binary mixtures of spheri-
cal particles in nematic hosts with large differences in the sizes of dopants and mesogens.
Moreover, it was found that the addition of nanoparticles to the LC domain required higher
pressures to be imposed on the simulation domain in order to maintain the same value of
the nematic-isotropic transition temperature.

Note that for the above two publications [76, 77] errata have been also been published
[107]. Based on the discovered and corrected errors, it was concluded that the dispersion of
nanoparticles in the isotropic liquid crystal matrix was solely due to short range interactions

[108].

Building upon [76, 77, 107], Xu, Bedrov, Smith and Glaser [108] conducted molecular
dynamics simulations in the isobaric-isothermal (NPT) ensemble with 10000 soft sphero-
cylinders (SSCs) and hard spherical nanoparticles (NPs) where SSC length was equal to
NP diameter. The purpose of the study was to investigate the phase behaviour of the
mixture at varying NP concentrations (from 0 to 500 NPs) with planar or homeotropic LC
anchoring towards the NPs. Pressure was used as the driving force of phase transitions
for a given NP concentration. Low concentrations of NPs did not disturb the nematic
phase and NPs did not aggregate; high concentrations of NPs prevented the formation of
a nematic phase. Some aggregation was observed even with 10 NPs in 10000 SSCs, and
significant aggregation was reported at concentrations with more than 100 NPs in 10000
SSCs. With increasing NP concentrations, the isotropic-nematic transition pressure also
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increased. It was found that with planar LC-NP anchoring (which was naturally preferred
by the model potential due to entropic effects), the nanoparticles were dispersed in the
isotropic SSC matrix, while at higher pressures phase separation into NP-poor nematic
and NP-rich isotropic phases occurred. With homeotropic LC-NP anchoring, aggregation
of NPs was observed even at the lowest concentrations. This was contrary to the expecta-
tion that the strong mid-range LC matrix-induced repulsion between NPs would maintain
the nanoparticles in their dispersed state.

Cuetos and coworkers [109] have extended the Onsager and Parsons-Lee theories in
order to study binary mixtures of hard spheres (used to model nanoparticles) and hard
spherocylinders (used to represent mesogens). Both theories originally postulated that the
free energy of the system composed of anisotropic spherocylinders depends on the relative
orientation of the spherocylinders to the nematic director. The authors incorporated the
dependence of free energy on the concentration of spherical particles and the excluded
volume between nanoparticles and spherocylinders. The expressions employed in modelling
the system using the Monte Carlo technique were rather complex. The study showed some
differences between the two extended theories, especially the fact that the Onsager theory
was accurate for mesogenic molecules with aspect ratios of 100 or greater while the extended
Parsons-Lee theory remained qualitatively correct for rod-like particles with aspect ratios
between 5 and 20. Among other conclusions, it was found that the extended theories gave
results in harmony, at least qualitatively, with experimental data: introduction of spherical
particles into the domain composed of rod-like mesogens disturbed the nematic order,
larger volume fractions occupied by spheres resulted in phase separation and relative sizes
of rod-like and spherical particles played an important role in uniformity of the mixture.

Peroukidis, Vanakaras and Photinos [I 10] conducted simulations to study nematic and
demixing behaviour in binary mixtures of rods and spheres, plates and spheres, and rods
and plates. For the purposes of this literature review, binary mixtures of rods and spheres
were the most relevant. Rods were represented as linear strings of cubes, while spheres
were represented as 3 X 3 X 3 collection of cubes with the middle cube serving as the
centre of the particle and other 26 cubes being the soft shell of the particle. The entire
domain was represented as a cubic lattice consisting of such rods and spheres. The free
energy of the system was minimized in order to find the phase behaviour as a function of
pressure and concentration of spherical particles. It was found that at low pressures the
system was isotropic, while at higher pressures nematic and smectic phases were formed.
In the smectic phase, the majority of the spheres was found between the smectic layers,
resulting in a “lamellar” phase. The spacing between the layers of mesogens decreased
with higher pressures and higher concentrations of rod-like particles. Higher anisometry of
rod-like particles was found to stabilize the nematic phase. Finally, of the three possible
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thermodynamically stable phases, isotropic, nematic and lamellar, coexistence was found
for all possible combinations of two out of the three phases. The authors suggested that
since the model qualitatively reproduced results from experimental publications despite
the very simple shapes employed in representation of particles, phase behaviour may be
controlled simply by shape anisometry of mesogens and the relative sizes of mesogens and
dopants.

Avendano and coworkers [111] performed Monte Carlo simulations in the NVT en-
semble of binary mixtures of 1020 charged hard spherocylinders and 1020 charged hard
spheres. The Wolf procedure was employed in order to account for long-range Coulombic
interactions within the simulation domain. The spherocylinders had a length-to-diameter
aspect ratio of 5.0, and the diameters of the spheres were two times less than the diameters
of the spherocylinders. Two models were considered, with charges of the spherocylinders
being located at their ends and at their centres. For both models, temperature variations
induced the transition from isotropic to nematic phase. However, for the case where the
charges of the spherocylinders were at their ends, a nematic-smectic A phase transition
was also observed, while for the second model a columnar phase was found in addition to
the nematic phase.

Piedrahita, Cuetos and Martinez-Haya [30] studied the diffusion of spherical particles
through smectic layers of rods using a purely repulsive shifted and truncated Kihara po-
tential and a Brownian Dynamics model. In their study, the algorithm for calculation of
the closest distance of approach [62] between pairs of particles interacting via the Kihara
potential was rather non-trivial for rod-rod and rod-sphere pairs. The diameters of spheres
and rods were set to be equal, but in different studies the rods had varying anisotropies
- length to diameter ratios were 4, 5 and 7. The Monte Carlo technique was employed
in the NPT ensemble to find an equilibrium configuration of the binary mixtures of rods
and spheres (at least 2000 particles in total) with molar fractions of spheres being 0.01,
0.1 and 0.5. The equilibrium phases turned out to be lamellar, with alternating layers of
rods and spheres (which was similar to the results reported in [90]). After the equilib-
rium configurations were established, Brownian Dynamics was applied to study diffusion
of spherical particles through the material. It was found that the transport of spheres was
anisotropic - they accumulated between the smectic layers of rods and diffusion of a sphere
within a layer of spheres was much faster than diffusion across (through) the layers of
rods. Interestingly, when one sphere would penetrate a rod layer, it effectively opened up
a channel and caused collective diffusion of other spheres through the channel. Increasing
the packing fraction or the length of rods caused the transport of spheres to become even
more directional because the diffusion through the smectic layers was diminished.

In this thesis, work has been done on simulating liquid crystal-nanoparticle mixtures
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using the S function [31] Corner potential [79], originally proposed by Zewdie [I1]. To
the extent of the author’s knowledge gained after examining all the literature that cited
the foundational work [84, 11, 81] and some of the work [32, 85, 80] that built upon the
foundation, this potential has not been used until present for simulating liquid crystal-
nanoparticle mixtures.
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Chapter 4

The Development and Behaviour of
the Pairwise Potential

In this chapter, a number of important results are presented. First, there is a thorough
discussion in section 4.1 of the procedure employed in fitting the range and strength pa-
rameters. This discussion finishes by presenting the resulting mesogen shape in figure 4.2
and the potential curves in figure 4.3. Next, sections 4.2.2 and 4.2.3 present and discuss
the results of two studies conducted with the fitted mesogens and potential energy formu-
lation. Both the thermodynamic observables and the domain snapshots are employed in
the discussion of results.

4.1 Fitting of the Range and Strength Parameters

In order to conduct the simulations in this thesis, an approach similar to the one proposed
by Zewdie [1 1, 81] was taken to derive the expressions for the range and strength parameters
of our pairwise potential. However, Zewdie chose the shape anisotropy to be a fixed value,
and did the fit only to one shape. Similarly, Zewdie fit the strength parameter to an existing
parametrization of the Gay-Berne potential [11]. We decided to derive the expression for
the shape symbolically, so that upon the variation of parameter values in the expressions for
expansion coefficients different shape anisotropies could be captured without the need to go
through the fitting procedure again. We followed the same rationale and methodology to
derive an expression for the interaction strengths between different particle pairs in terms
of parameters rather than fixed values.
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4.1.1 Fitting the Range Parameter

In order to find an expansion of the range parameter (general form given in equation 3.4),
we included only those S functions published by Stone [341] that did not change when
the orientation of molecular direction vectors @; and %; and the intermolecular vector 7;
changed by 180°. This selection of S functions was made because the mesogens in this
thesis were taken as nonpolar molecules. When a mesogen is represented by a centre of
mass and an orientation vector, the assignment of direction is mandatory. However, since
the molecules are nonpolar, parallel and antiparallel configurations of the molecules are
absolutely equivalent. In addition, the particles we are considering are axially symmetric,
which means that only the S functions with even indices are appropriate. As a result,
the chosen S functions [¢1] (equations 4.1-4.8) and the expression for the range parameter
scaled by ¢ (equation 4.9) were as follows:

Sooo = 1 (4.1)

Sa02 = %(3(@1« - Fii)? — 1) (4.2)

Sooe = %(3(@ Fij)? — 1) (4.3)

S220 = %(3@1 ;) = 1) (4.4)

Sooy = %0(2 — 31y - 745)? — 3(@; - 745)? — 3(0; - 15)*+ (45)
Oy - 75) (11 - 74g) (5 - 115))

Suos = 5(35(@ i)t = 30(0 - 7iy)° + 3) (4.6)

Soas = i(%(aj i)t = 30(qy - 7i5) + 3) (4.7)

S0 = 2—14(35(@ ~a;)*t = 304 - 47)* + 3) (4.8)

0'(7:1,1‘, ﬂj, 721])
— 2(00005000 + 02025202 + 00225022 + 02205220+

a0 (4.9)
02225922 + 04045404 + 00445044 + 04405440)
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+# Configuration Ui - Wy | ;- Ty | Uy -7y | Value of o(uy, w4, 7:5)/00
1 Cross 0 0 0 2r.

2 side-by-side 1 0 0 2r,

3 T configuration 0 1 0 Ly +r.

4 T configuration 0 0 1 Ly +r.

5 head-to-tail 1 1 1 2L,

6 | cos™!(q; - 7i;) = 60° 1 0.5 0.5 2r./v/1 — 0.52

Table 4.1: Constraints of the range parameter for cylinder-cylinder particle pair obtained
by geometric arguments. For configuration #2 (side-by-side), cos™*(u; - 7;;) = 90°, so
configuration #6 is simply a variation of the side-by-side configuration. Note that two
“T” configurations (#3 and #4) had to be used to ensure that the interactions within
the cylinder-cylinder pair were symmetric and that cylinder “” is interchangeable with
cylinder “5”. Consult figure 4.3 for a visualization of the configurations.

0202 = 0022
0404 = 0044
9 UOOOZ(Lh+Tc)/2

# Constraint
7
8

Table 4.2: Additional constraints for the cylinder-cylinder particle pair. Constraints #7
and #8 were obtained by symmetry argument, while constraint #9 was ad hoc (employed
specifically for this problem in order to obtain a solution).

Representing the calamitic mesogen as a cylinder and taking L, as 1/2 of the full
length of the cylinder and r. as the radius of the cylinder, the values of equation 4.9 (i.e.
the distances between the two cylinders’ centres) were found for specific combinations of
(Q;-0y), (w;-7;) and (4;-7;) (or in other words, specific configurations of the two cylinders)
and recorded in table 4.1.

As one can easily see, table 4.1 contains less configurations than the total number of
unknown o coefficients in equation 4.9, resulting in an underdetermined linear system of
equations. Therefore, it was necessary to impose additional constraints on the system,
summarized in table 4.2.

The following system of linear equations had to be solved for the column vector of o
coefficients (exponent signifies the number (#) of the constraint from tables 4.1 and 4.2):
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1 1 1 1 1 Tin o oa
Sooo 5202 Soaz -+ Sous Saso| | T000 o (Uhujﬂ"ij)/gﬂ
2 2 2 2 2 DY E NN

Sooo Sz02 Soaz -+ Sous Siso| | 0202 o (1, Uj,7i5) /00

9 9 9 9 9 9/ Ao
Sooo Sa02 Soaz -+ Soua Siao 0044 a(ui,uj,mj)/ao

We used a symbolic mathematics library for the Python programming language, called
“SymPy”, to define the symbolic variables with the “symbols” function, form the equations
with the “Eq” function and obtain an algebraic solution [$5, 86] to the system with the
“solve” function. The final expressions for o coefficients on the right hand side of equation
4.9 were obtained in terms of L, and r. and summarized in table 4.3.

Having obtained the solution for the cylinder-cylinder particle pair, we used the same
methodology to find the solutions to expansion coefficients for cylinder-sphere, sphere-
cylinder and sphere-sphere range parameters in terms of Ly, r. and rs, where the latter is
the radius of the spherical particle. In order to get a set of coefficients for the above three
particle pairs that would be consistent with the coefficients for the cylinder-cylinder pair, we
continued using equation 4.9 without any modifications to its form. Consideration of both
sphere-cylinder and cylinder-sphere pairs was essential to ensuring that the interactions
between a sphere and a cylinder-like particle were the same regardless of which of the two
particles corresponded to index ¢ and index j in our formulation.

However, for a sphere, the direction vector is undefined. Consequently, for sphere-
cylinder, cylinder-sphere and sphere-sphere pairs, when an S function depended on the
direction vector that would belong to a sphere, the corresponding expansion coefficient
had to be constrained to zero. The sphere-sphere case was particularly simple - both
particles were isotropic, so only the coefficient corresponding to the isotropic component
of the range parameter expansion (ogg) was allowed to be nonzero, and the interactions
reduced from the Zewdie S function potential (equation 3.3) to the well-known Lennard-
Jones potential (equation 2.3), with the range parameter o(u;, 4;,7;;)/00 set to always be
equal to 2r, because the spherical particles were identical.

Particle configurations and additional constraints on the system of linear equations for
sphere-cylinder and cylinder-sphere pairs are summarized in tables 4.4-4.7 and the final
solutions for the expansion coefficients of range parameters for the remaining three particle
pairs are summarized in tables 4.8-4.10.

Based on these results, it was now possible to visualize the shape of the excluded volume
between all particle pairs. However, only the cylinder-cylinder and cylinder-sphere shapes
were of particular interest, because the excluded volume for sphere-cylinder pair is the
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Coefficient Solution

7000 0.5 x Lh + 0.5 x Te
0202 1.207 x Lh —1.031 x Te
0022 1.207 x Ly, — 1.031 x r.
09220 0.302 x Lh —2.250 x 7,
0929292 0.0

0404 0.914 x Lh — 1.480 x Te
0044 0.914 x L;, — 1.480 x r,
0440 —0.971 x Ly, +7.246 X r,

Table 4.3: Solutions for the expansion coefficients of the range parameter (equation 4.9)
for cylinder-cylinder pair in terms of L; and r..

# Conﬁguration IALZ . fbj @Z . fz'j zlj . fz'j Value of O'(a,‘, zlj, T’Aij)/O'o
1 sphere-at-side undefined | undefined 0 rs + Te

2 sphere-at-end undefined | undefined 1 re + Ly

3 | cos™!(4; - 7;;) = 60° | undefined | undefined | 0.5 (rs +7e)/v/1—0.52

Table 4.4: Constraints of the range parameter for sphere-cylinder particle pair obtained
by geometric arguments. Particle ¢ corresponds to a sphere with radius r,, particle 5 to
a cylinder with radius r. and half length L,. Consult figure 4.3 for a visualization of
the configurations. Additionally, consult section 2.1.3 and figure 2.11 of this thesis, since
the “sphere-at-side” configuration corresponds to planar anchoring of mesogens towards
nanoparticles and “sphere-at-end” corresponds to homeotropic anchoring. Note that con-
figuration #3 represents a modification to configuration #1, where in the latter the sphere
was exactly at the side of the cylinder-like particle.
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Coefficient | Value
09202 0.0
0990 0.0
0929292 0.0
0404 0.0
0440 0.0

Table 4.5: Additional constraints for the sphere-cylinder particle pair. These had to be
imposed because here the sphere corresponded to particle index ¢; thus, the S functions
complementary to the coefficients in this table would depend on molecular orientation
vector w;, which is undefined for a sphere.

+# Configuration U - U U - i Uj - Tij Value of o(u;,u;,7ij)/00
1 sphere-at-side undefined 0 undefined rs + Te

2 sphere-at-end undefined 1 undefined re + Ly,

3 | cos™(iy - 74;) = 60° | undefined | 0.5 | undefined (rs +7e)/v/1—0.52

Table 4.6: Constraints of the range parameter for cylinder-sphere particle pair obtained by
geometric arguments. Particle ¢ corresponds to a cylinder with radius r. and half length
Ly, particle j corresponds to a sphere with radius r,. Consult figure 4.3 for a visualization
of the configurations.

Coefficient | Value
09220 0.0
0022 0.0
092292 0.0
0440 0.0
0044 0.0

Table 4.7: Additional constraints for the cylinder-sphere particle pair. These had to be
imposed because here the sphere corresponded to particle index j; thus the S functions
complementary to the coefficients in this table would depend on molecular orientation
vector 4, which is undefined for a sphere.

20



Coefficient Solution
0000 0.156 x L, +0.954 x r, + 1.110 x r,
0202 0.0
0022 1.207 x Ly, — 1.031 x r. + 0.176 X ry
09220 0.0
092292 0.0
0404 0.0
0044 0.914 x Lj, — 1.480 x r, — 0.566 X r,
0440 0.0

Table 4.8: Solutions for the expansion coefficients of the range parameter (equation 4.9)
for the sphere-cylinder pair in terms of Lj, r., and r.

Coefficient Solution
T000 0.156 x Lj, + 0.954 x 7, + 1.110 x 7,
0202 1.207 x Lp — 1.031 x 7. 4+ 0.176 X 74
0022 0.0
02920 0.0
0929 0.0
0404 0.914 x Lj, — 1.480 x r. — 0.566 x 7
0044 0.0
0440 0.0

Table 4.9: Solutions for the expansion coefficients of the range parameter (equation 4.9)
for the cylinder-sphere pair in terms of Ly, r., and r.
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Coefficient | Solution
7000 2 X,
09202 0.0
0022 0.0
09220 0.0
0992 0.0
0404 0.0
0044 0.0
0440 0.0

Table 4.10: Solutions for the expansion coefficients of the range parameter (equation 4.9)
for the sphere-sphere pair in terms of r,.

same as for cylinder-sphere pair, while the shape of the excluded volume between the two
spheres was simply a sphere.

Figure 4.1 depicts the shape of the xy plane cross section of the excluded volume
between the centres of cylinder-cylinder and cylinder-sphere particle pairs for L, = 2.5,
r. = 0.5 and ry = 0.5. To create that figure, the centre of particle i (cylinder) was fixed at
the origin and its axis was oriented parallel to the 2z axis, and the second particle in the
pair (cylinder or sphere) was rotated around the cylinder-like particle in the zy plane. In
the case of cylinder-cylinder pair (blue line of figure 4.1), both cylinders were at all times
oriented parallel to the z axis (directions of 4; and u; were fixed). In the case of cylinder-
sphere pair, the sphere did not have a direction (and thus all the terms of equation 4.9
that required @; were eliminated by setting appropriate coefficients to zero, as per table
4.9). The rotation in the zy plane was accomplished by rotating the intermolecular vector
7i; in the zy plane for both particle pairs, since that was the only vector whose direction
was allowed to vary. For each configuration of cylinder-cylinder and cylinder-sphere pairs
(i.e. for each 7;; vector), the value of o(4;, 4 ,7;;) /0o was calculated using equation 4.9 and
coefficients of tables 4.3 and 4.9, respectively. Finally, for each configuration the length
of the unit vector 7;; was multiplied by the value of o(;,4;,7;;)/00 and the = and y
coordinates of the points to which the resulting vectors were pointing have been plotted in
figure 4.1 as blue and red lines for cylinder-cylinder and cylinder-sphere pairs, respectively.
Thus, when examining the lines plotted in figure 4.1, one should be mindful that the centre
of one cylindrical particle is always at the origin in the figure and the centre of the other
particle, whether a cylinder or a sphere, is located at any point on the blue (for cylinder-
cylinder pair) and red (cylinder-sphere) lines. The reason why mesogens with smaller
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Figure 4.1: Cross section in the zy plane of the excluded volumes between cylinder-cylinder
and cylinder-sphere particle pairs for L, = 2.5, r. = 0.5 and r;, = 0.5

L, values have not been shown in this thesis is because during preliminary simulations
conducted with mesogens of lower shape anisotropies (2L, /2r. = 3.0 and 2L;/2r. = 3.5)
no mesophase formation was observed.

Figure 4.2 was derived from figure 4.1 and it shows the shape of the cylinder-like particle
(L, = 2.5, r. = 0.5) obtained by subtracting the contribution of particle j (cylinder with
L, = 2.5 and r. = 0.5 or sphere with r; = 0.5) from the excluded volume between the
centres of mass of the two particles in the ij pair. For the cylinder-cylinder case, dividing
every calculated value of o(4;,u;,7;;)/00 by 2 before obtaining the x and y coordinates
of the points and plotting them in the same way as described for figure 4.1 (i.e. through
scaling the unit vector 7;; by o(d;, 4j,7;;)/200) was all that was necessary to obtain the
shape of the cylinder fixed at the origin (particle 7), because the shape of the excluded
volume between two identical cylinders is directly related to the shape of one cylinder-
like molecule (through shrinking the former by a factor of 2 one can obtain the latter).
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For the cylinder-sphere case, it was required first to subtract the radius of the sphere
(rs = 0.5) from every calculated o(t;,1;,7;)/0¢ and then find the x and y coordinates
(through scaling the unit vector 7; by the (o (t;, u;,7;;) /00 — 1) value) and plot the results
as described in figure 4.1. This result for cylinder-sphere was the same for different values
of ry as long as Ly and r. values were kept constant.

Figure 4.2 made it apparent that the resulting particle was cylinder-like with L, = 2.5
and 7. = 0.5 and had a dumbbell shape (and it was very similar to Zewdie’s results [I 1]
except that Zewdie used a shape anisotropy of 3 and we had it equal to 5). However,
as in [11], the particle was not exactly a spherocylinder (a spherocylinder is a cylinder
capped with a hemisphere at each of its ends), being wider than the specified diameter
of (2r. = 1.0) in most points along the long axis. These imperfections in the fit can be
attributed to the small number of terms included in the range parameter expansion; more
terms would be necessary to obtain a more accurate representation of a spherocylinder.
We considered the number of terms in the expansion and the result sufficient for the time
being, similar to the path taken in [11, 81, 85].

Figure 4.2 also showed that there was a slight discrepancy between the cylinder-like
particle’s shape when it was deduced from cylinder-cylinder and cylinder-sphere particle

pairs. When verifying Zewdie’s results [| 1] in preparation for conducting the work described
herein, the same methodology as proposed for creating figure 4.2 was used to plot the shape
of the rod-like particle reported in [ 1], and a very similar discrepancy was found. Since

we already imposed a sufficient number of constraints to solve the linear system composed
of different values of S functions and o(4;, 4;,7;) /00, we attribute the discrepancy to an
insufficient number of terms in the expansion. Finally, since the excluded volumes between
different particles will also be different, and since the definition of shape at the nanoscale
is not the same as what it would be at the macroscale, perhaps it should not be surprising
that the shape of particle ¢ “seen” by different particles 7 would change slightly depending
on the type of the probing particle j. The study of matter at the nanoscale, whether
by experiment or simulation, is notorious for convoluting the properties of the observed
system with the properties of the probe.
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Figure 4.2: Cross section in the xy plane of the shape of the cylinder-like particle (L;, = 2.5,
r. = 0.5) obtained from the cylinder-cylinder and cylinder-sphere pairs.
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4.1.2 Fitting the Strength Parameter

Using an isotropic strength parameter independent of cylinder-like particles’ relative ori-
entations did not result in formation of liquid crystal phases during preliminary runs of
domains composed entirely of cylinder-like particles. Thus, it became apparent that it was
necessary to fit the strength parameter to a set of values that depended on the relative
orientation of the anisotropic mesogens.

Moreover, in order to increase the stability range of nematic phases, it is necessary
to differentiate between “side-by-side” and “head-to-tail” configurations (see figure 4.3) of
cylinder-like particles: the “side-by-side” configuration should be more made more stable
than the “head-to-tail” configuration. This is common practice in literature [60, 11, 82 3,

| and was therefore implemented in this work. Additionally, in literature it is common
practice to have the “T” and “cross” configurations less stable than the “side-by-side”
configuration. Taking all of the above into account, we decided to use ¢ and €, as the
variables in terms of which to derive the strength parameter expansion coefficients. Since
in “side-by-side” and “head-to-tail” configurations the particles are parallel to each other,
we used €| as the variable for these pairs’ interaction strengths. Similarly, we used €
for “cross” and “T” configurations, since the particles there are perpendicular to each
other. Again, doing the parametric fit allowed us to arrive at different strength parameter
expansion coefficients without performing the fitting procedure - changing the values of ¢
and e¢; was sufficient.

For simplicity, we decided to include terms of only up to second order in the proposed
expression for the strength parameter expansion 4.10. The S functions were again chosen
such that rotating the vectors ;, i; and 7;; by 180° would not affect the results since the
mesogens were considered to be nonpolar.

E(’&Z’, ﬁj, fl]) _ (

. €0005000 + €2025202 + €0225022 + €2209220 + €2225222) (4.10)
0

The chosen constraints for equation 4.10 and the resulting solutions are summarized in
tables 4.11 and 4.12, respectively. At this stage in our research, it was not deemed necessary
to have the strength of interactions between cylinder-like and spherical particles depend on
the orientation of the cylinder-like particle and the intermolecular vector. We postulated
that the arrangement of spherical particles around the mesogens (or vice versa) would
be controlled through the anisotropy of the excluded volume between them, somewhat
similar to the reasoning employed in [35], where the same strength parameter was used
to study disk-like particles of different shapes and the shapes alone had a profound effect
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# | Configuration | ;- u; | @; - 74 | u; - 7;; | Value of e(u;, u;,7:;)/¢€o
1 side-by-side 1 0 0 €|

2 head-to-tail 1 1 1 0.25¢,

3 Cross 0 0 0 €1

4 | T configuration 0 1 0 0.5e;

5 | T configuration 0 0 1 0.5¢,

Table 4.11: Constraints of the strength parameter (equation 4.10) for the cylinder-cylinder
particle pair. Note the usage of two “T” configurations once again, due to the same
rationale as when deriving the range parameter expansion coefficients for this particle pair
(to ensure that the cylinder-like particles are interchangeable - see table 4.1).

Coefficient cylinder-cylinder other pairs
€000 0.25 x €] +0.444 x €, 1.0
€202 —0.373 X €] —0.248 X €. 0.0
€022 —0.373 X €] — 0.248 x €. 0.0
€290 1.118 % €| — 0.994 x €1 0.0
€999 —0.697 x €l + 0.930 x €] 0.0

Table 4.12: Solutions for the expansion coefficients of the strength parameter (equation
4.10) for all four particle pairs in terms of ¢ and €,. Note that “other pairs” denotes
sphere-cylinder, cylinder-sphere and sphere-sphere particle pairs. Interaction strengths for
these three pairs were chosen to be identical.

on mesophase formation. Thus, in table 4.12 the last column represents solutions for
all of the remaining particle pairs. Experiments [25, 26, 27] show that mesogens tend to
orient themselves homeotropically with respect to the dopant nanoparticles, but conducting
investigations into this matter via simulations was left outside the scope of this thesis due
to time constraints.

At this point, having obtained solutions for the range and strength parameter expansion
coefficients for all particle pairs, it was possible to visualize the potential energy curves
between them, similar to how it has been done in figure 2.17. Figure 4.3 contains these
results.
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Figure 4.3: These curves represent the potential energy between different particle pairs and
particle configurations at varying separation distances. The curves and the corresponding
particle pairs have been portrayed using the same colours. Half-length L, of the cylinder-
like particle was set to 2.5, radius r. of the cylinder-like particle was set to 0.5 and radius
rs of the spherical particle was also set to 0.5 (similar to one of the cases studied in [30]).
In order to mimic the relative potential well depths of the Gay-Berne potential depicted
in figure 3a of [3] and figure 3 of [51] (which is figure 2.17 of this thesis), | was set to 2.0
and €, was set to 1.0
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4.2 Simulation Studies of Pure LC Domains

4.2.1 Simulation Conditions

To mitigate the issue of introducing a truncation error into simulations by using a cutoff
radius for the pair potential, the cutoff was chosen to be sufficiently large so that the
potential energy at that separation would be very close to zero (the same approach has
been taken in [82], as indicated in figure 2 of that paper). Thus, the cutoff radius of 7.00¢
was chosen for the simulations described in this thesis since it satisfied the aforementioned
requirement, as can be observed in figure 4.3 (when /0y = 7.0, U/¢y is essentially zero).
However, having the cutoff radius of 7.00( implied that the smallest possible simulation
domain size at any point in the simulation (and not only at the start, since the isobaric-
isothermal NPT ensemble allows domain volume to vary) would need to be greater than
14.00¢ in every dimension in order for us to be able to use periodic boundary conditions
and avoid infinite summations [07].

The initial simulation domain needed to be fully occupied by the particles since a non-
optimal fill would result in a gap between the particles and at least one of the faces of
the cubic domain, and using periodic boundary conditions would cause the gap to also be
periodic. Such an initial configuration would not be physical and had to be avoided. Since
the rod-like particles had the length 2L, = 5.00y and the diameter 2r. = 1.00(, simulation
domain size in every dimension had to be a multiple of 5.00( (and greater than 14.00¢). To
make sure that the domain, even if it decreased in volume, would never become smaller than
14.00g x 14.00¢ x 14.00(, a domain with dimensions of 25.0c¢ x 25.00¢ x 25.007 was used,
with N = 3125 particles (25 x 25 x 5 particles, all initially arranged on a perfect lattice and
oriented in the z direction, in order to achieve the optimal fill). Throughout all simulations
presented in this thesis the domain was kept cubic and the maximum change in domain
volume that was accepted or rejected via the Monte Carlo algorithm (described in section
2.5) was 781.2503, which comprised 5% of the initial domain volume. Every simulation
presented herein was started from this perfect crystal arrangement and “melted” to find
an equilibrium configuration at the preset temperature.

On every domain sweep, N + 1 attempts were made to alter the domain, where N is the
number of particles. On every attempt, a random integer greater than zero and less than
or equal to N 4+ 1 was obtained and if it was between 1 and N, inclusive, it was used as
the index of the particle that was subsequently displaced and reoriented in the attempted
Monte Carlo move. If the integer was N + 1, a domain volume perturbation was performed
as described above (and domain energy was rescaled as per equation 2.15). Making the

29



choice of the type of move (volume or particle) and the particle index random allowed our
simulations to obey the “detailed balance” condition (discussed in section 2.5).

Verlet lists [07] were utilized in order to keep track of each particle’s neighbours in
the pairwise potential energy calculation. In particle moves, particles could be displaced
by up to 0.25 in each of x,y, z directions, and their orientations were perturbed by /8
radians in a random direction. The latter restriction on reorientation was implemented
in an attempt to increase the low acceptance ratio by preventing large overlaps between
cylinder-like particles from occurring due solely to reorientation.

The equilibrium of the NPT Metropolis Monte Carlo simulations performed herein was
ensured through a visual inspection of the energy, volume and nematic order parameter
evolution plots. All of those plots exhibited asymptotic convergence behaviour, and after
the simulation has been running for a sufficiently long time (a few days to a week) and
the plateau regions were reached on all of the aforementioned plots, the simulations were
stopped and their results were processed. The code was set to print out simulation data
(domain energy and volume values, as well as domain configuration snapshots) after every
1000 domain sweeps (the sweeps were described earlier). The energy value at a certain
temperature and pressure was calculated by taking the last 5 data points printed out by
the simulation and averaging them. The same procedure was applied to find the domain
volume at a certain temperature and pressure. For the nematic order parameter, the
last 5 domain snapshots were analyzed separately and nematic order parameters were
calculated for them separately, after which these 5 values were averaged and reported as
the order parameter at a given temperature and pressure. When the simulation domain
was comprised of a mixture of mesogens and spherical particles, only the mesogens were
considered when calculating the nematic order parameter value.

One of the challenges that has not been truly overcome in this work (even with the
restricted rotation of particles) was the low acceptance ratio of particle moves, which
extended the CPU time needed to obtain results. The ratio varied from 0.7 % to 10 %
for pure mesogenic domain, increasing at higher temperatures (indicative of a less ordered
phase existing at those conditions than at lower temperatures). However, in all simulations
having approximately 9x 10 accepted particle moves for N = 3125 was more than sufficient
to observe the convergence of the domain enthalpy (i.e. domain energy at constant pressure
and variable volume calculated using the pair potential), domain volume and domain order
parameter values.

In order to define the values for reduced temperature and pressure at which to conduct
the simulations, length and energy scaling parameters had to be decided upon. Length
scaling of 0g = 5.0 x 1071% m was chosen, as in [32] and [91], since it is to a good approxima-
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tion the diameter of the benzene rings in the rigid core of calamitic mesogens such as 5CB
and 8CB. The diameter of the benzene ring corresponds to the diameter of the cylinder-like
shape used to represent these mesogens when performing coarse-graining. Energy scaling
of € = 4.0 x 107! J was used in the simulations presented in this thesis. It is on the
same order of magnitude as in [$2, 91] and other published work, and it also allowed us to
arrive at reasonable physical values that would correspond to the reduced temperature and
pressure (the discussion in Appendix B contains more information regarding this matter).
Based on these chosen scaling units, reduced pressure of 0.003125 corresponded to 1 bar
as per equation B.1 in Appendix B. Reduced temperature T* = 0.7 corresponded to real
temperature 7" = 202.8 K (—70.3 °C), 1.4 to 405.6 K (132.5 °C), and 1.7 to 492.5 K
(219.4 °C), as per equation B.2 in Appendix B. The first study (section 4.2.2) was done
with a domain comprised purely of 3125 mesogens at reduced temperatures ranging from
0.7 to 1.4, inclusive, in increments of 0.05. The second study (section 4.2.3) was conducted
with 3125 mesogens at the reduced temperatures between 0.7 and 1.7, inclusive, again in
increments of 0.05. The temperature range was extended for the latter study because a
liquid crystal to isotropic liquid transition was not clearly observed in the former study.

4.2.2 The Behaviour Exhibited by the Potential Upon Variation
of the Strength Parameter Expansion Coefficients

The study conducted in this section was performed in order to observe the phases that could
be exhibited by the potential we have developed. The results of these simulations would
also be highly beneficial for selecting a set of parameters at which to conduct simulations
of liquid crystal-nanoparticle (LC-NP) mixtures.

Of particular interest was the effect of the strength parameter on the phases exhibited
by the potential. In order to examine the effect, e, was fixed to 1.0 and ¢|/e, ratio was
varied from 1.0 to 2.0 in increments of 0.25. The strength parameter expansion coefficients
were calculated as summarized in table 4.12 for each ¢ /e, ratio. Please refer to figure 4.3
for potential energy plots between cylinder-like particles when ¢/e, ratio = 2.00 and to
figures C.1-C.4 in Appendix C for the cases when ¢| /e, ratios are between 1.00 and 1.75,
inclusive.

Figures 4.4-4.6 summarize the results obtained from conducting the simulations. The
domain energy calculated between all particle pairs using the pair potential in its dimen-
sionless form (i.e. equation 3.3 divided by €y) was averaged between the last 5 ensembles
and divided by the number of mesogens (N) in the domain to arrive at a quantity referred
to hereafter as “enthalpy per particle” (h*). The number density p* was calculated by
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dividing N by the ensemble-averaged domain volume V*, where the average was again
taken between the last 5 ensembles (note that the asterisk indicates reduced units and di-
mensionless quantities). Finally, the nematic order parameter s was calculated according
to equation 2.1 for the last 5 ensembles of each simulation and averaged.

In general terms, the trends in h* (figure 4.4), p* (figure 4.5) and s (figure 4.6) were as
expected. Enthalpy per particle became less negative with greater temperatures, indicating
a less stable phase. The number density diminished with rising temperature. Nematic or-
der decreased with greater temperature, as expected for liquid crystals. However, because
of the fluctuations in s it was not clear at which temperature the nematic-isotropic tran-
sition occurred. Also, the number density decreased linearly with increasing temperature,
exhibiting a behaviour resembling a gas rather than a liquid.

In addition, it can be observed from all three figures that increasing the € /¢, ratio has
a stabilizing effect on the simulated substance. At higher ratios enthalpy is more negative,
number density decreases to a lesser extent (indicating greater intermolecular attraction)
and the order parameter has higher values at low temperatures (showing that orientational
ordering is preferred to disorder). The value of s for greater ¢ /e, ratios also continues to
be higher than for lesser ¢|/e, ratios as temperature rises.

The simulations with € /e, ratio of 2.0 exhibited a behaviour in p* and s that appeared
to differ from other simulation sets. The drop in the number density was the smallest
for € /e, = 2.0, with p* staying fairly constant up to 7% = 0.9 in figure 4.5 and then
proceeding to decline at a steady rate. T = 0.9 was also the point after which in figure
4.6 the decline in s became less rapid at subsequent temperatures for the data set with
€/eL = 2.0.

Based on the aforementioned observations, it was decided to use the potential with
€|/€L = 2.0 as the basis for conducting simulations of LC-NP mixtures. It appeared that
this €/, ratio exhibited a phase transition on the selected temperature range because
it had the greatest decrease in the nematic order parameter and a peculiar behaviour
of number density switching from being constant up to 7% = 0.9 to steadily decreasing
afterwards.

It is worth mentioning that € /e, = 2.0 yielded a potential that is quite similar in
appearance to a commonly reported parametrization of the Gay-Berne potential (compare
figure 4.3 to figure 2.17).
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Figure 4.4: The effect of varying €| /e, ratio and temperature on the enthalpy per particle
for pure LC domain (L, = 2.5, r. = 0.5, N = 3125, P = 0.003125)
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Figure 4.5: The effect of varying €| /e, ratio and temperature on the number density for
pure LC domain (L, = 2.5, r. = 0.5, N = 3125, P = 0.003125)
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Figure 4.6: The effect of varying ¢| /e, ratio and temperature on the nematic order param-
eter s for pure LC domain (L, = 2.5, r. = 0.5, N = 3125, P = 0.003125)

4.2.3 The Behaviour of the Pairwise Potential with €| = 2.0 and
¢, = 1.0 Upon T* Variation

The potential with ¢ /e, = 2.0 was used to conduct simulations of pure LC on an expanded
temperature range from 0.7 to 1.7, inclusive, and the resulting data was analyzed in greater
detail with the intention of observing the possible phase transitions. Enthalpy per parti-
cle h* was once again calculated according to the same ensemble averaging procedure as
described in sections 4.2.1 and 4.2.2, but now for temperatures of up to 1.7 (in reduced
units). The trend of h* becoming less negative with rising 7™ continued, as can be seen
from figure 4.7. However, no sudden changes in enthalpy per particle were observed except
for a very small jump between T* = 0.85 and 7% = 0.9, showing that a phase transition
likely did not occur.

The statement about peculiar domain behaviour at 7" = 0.9 is supported by the
behaviour of p* in figure 4.8 (note the change at 7% = 0.9 from a plateau to a steady
decline) and the change in behaviour of s in figure 4.10 (the decline in s seems to have
become less rapid after 7* = 0.9), but this is not evidence enough to conclude that a phase
transition occurred at that temperature.
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Additionally, by inspecting snapshots in figures 4.11 (taken at 7% = 0.85) and 4.12
(taken at T = 1.1) it can be observed qualitatively that there is a decrease in orientational
order from the former figure to the latter, since there are more particles out of alignment
with the director (indicated by darker colours) in figure 4.12. Clearly, the order in the
domain decreases with temperature, but there was no temperature that triggered a sudden
transition. Instead, a gradual decline has been found. Moreover, the radial distribution
function plot (figure 4.9) also exhibits a change because of the presence of sharp peaks
at 7 =~ 1.0, r = 3.0 and » ~ 10.0 prior to 7" = 0.9 and somewhat less pronounced
peaks at those locations at higher temperatures. Interestingly, the first peak location
approximately corresponds to 2r. (contact distance for two cylinder-like particles in the
“side-by-side” configuration), the second peak is roughly 7. + L; (the contact distance in
a “T” configuration) and the last peak corresponds to 2(2Ly), which is twice the length
of the cylinder-like mesogen. The fact that the peaks at these values of r, especially at
r ~ 1.0 and r = 10.0, are quite pronounced at lower temperatures is strong indication of
long-range order and thus the possible formation of a smectic phase at those temperatures.

It is notable that even at the temperature of 1.7 there are weak peaks in the radial
distribution function (figure 4.9) at r ~ 3.0 and r ~ 10.0. This indicates that even at this
relatively high temperature the domain is not in a completely isotropic phase regardless of
the fact that the orientational order parameter s (figure 4.10) has decreased substantially
from its maximum value. Increasing the temperature further is necessary to make the
domain fully isotropic, but it was not done in this study due to time limitations.

Finally, the nematic order parameter s was expected to provide deeper insight into
the phase transitions, but unfortunately it did not give clear indication of the former.
The orientational order parameter s was calculated according to the equation 2.1 and the
ensemble averaging procedure described in sections 4.2.1 and 4.2.2. It can be observed that
the order parameter s fluctuated with rising temperature (figure 4.10). These fluctuations
are indicative of finite size effects; in fact, s cannot be zero even when the domain is in the
isotropic phase because of finite size effects [35]. Another possible cause for fluctuations
of s may be due to how the simulations were conducted: instead of finding an equilibrium
configuration at a particular temperature and then using it as an initial condition for a
simulation at a successive temperature, each simulation was started from a perfect crystal
that “melted” due to the imposed ambient temperature. It would likely be beneficial to
use the successive heating or cooling approach instead of starting from the perfect crystal
to the end of obtaining data with lower fluctuations of s.
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Figure 4.7: The effect of varying simulation temperature on the enthalpy per particle for
pure LC domain (Lj = 2.5, r. = 0.5, N = 3125, ¢ /e, = 2.0, P = 0.003125)

0.55
R
* *x * *
~_ ‘*.
*_ 050 | \
S X,
g *w
TX
[}
3 0.45 *
o N
() *ex
o) .
g x
=] N
g 040 *,
x
.*'
*.
*
035 I I L I I
0.8 1.0 1.2 1.4 1.6 1.8

temperature (7*)

Figure 4.8: The effect of varying simulation temperature on the number density for pure
LC domain (Lj = 2.5, 7. = 0.5, N = 3125, ¢ /e, = 2.0, P = 0.003125)

66



— =07 T =105 T =14
— =075 =11 T* =145
20 — 17 =08 T+ =115 T =15
— 7=085 7"=12 — T* =155
— T =09 v =125 — T =16
— =095 =13 — T =165
— T =10 " =13 — T*=17
1.5}
—
©
~—
S0t
0.5 |
0.0 1 L L 1 |
0 b} 10 15 20 25

distance between molecules ()
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Figure 4.11: Snapshot of pure LC domain at T* = 0.85 (L, = 2.5, 7. = 0.5, N = 3125,
€|/eL = 2.0, P =0.003125)

A

Figure 4.12: Snapshot of pure LC domain at 7% = 1.1 (L, = 2.5, r. = 0.5, N = 3125,
€|/eL = 2.0, P =0.003125)
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Figure 4.13: Snapshot of pure LC domain at 7% = 1.7 (L, = 2.5, r. = 0.5, N = 3125,
€|/eL = 2.0, P =0.003125)
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Chapter 5

Simulations of LC-NP Mixtures

In this chapter the results of the studies of liquid crystal-nanoparticle mixtures are pre-
sented and discussed. Section 5.1 examines the phase diagram with the nematic order
parameter calculated at various temperatures and nanoparticle number fractions. Section
5.2 examines the heterogeneous radial distribution function plots and the corresponding
snapshots for the same simulation data as discussed in section 5.1.

5.1 The Resulting Phase Diagrams

Using the same simulation conditions as for the pure LC domain studied in section 4.2.3
and the potential energy formulation as shown in figure 4.3, simulations were conducted
where spherical particles with r, = 0.5 were substituted for the cylinder-like particles in
the domain of 3125 total particles. For each simulation, the initial configuration of the
domain consisted of cylinder-like particles arranged in a perfect lattice with their long axes
oriented along the z direction, with the spherical particles dispersed randomly throughout
the domain. The number fractions (f) of spheres (simulated nanoparticles, “NPs” for
short) ranged from 0.0 to 0.65 in increments of 0.05 between simulation sets.

A phase diagram has been constructed using colour to represent the values of the order
parameter s. For the phase diagram, the order parameter s has been multiplied by the
number density of mesogens (Npc/V*, where V* is the ensemble averaged domain volume
in reduced units) to account for the fact that a domain with a lower number fraction of
mesogens will exhibit less overall order than a pure LC domain.
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Figure 5.1: The effect of varying simulation temperature 7" and nanoparticle number
fraction f on (Npc/V*) x s for LC-NP mixture (L, = 2.5, r. = 0.5, r; = 0.5, N = 3125,
€|/eL = 2.0, P =0.003125).

Construction of the nematic phase diagram (figure 5.1) revealed an interesting aspect
of these LC-NP mixtures: even though higher NP number fractions serve to decrease
orientational order in general, there appears to be some stabilizing effect on the nematic
order at 7™ ranging from 0.85 to 0.9 and f between 0.05 and 0.25, inclusive. If one were
to fix the T™ value at 0.85 or 0.9 and follow on figure 5.1 in the direction of increasing
f, it appears that there is an increase in s before it eventually decreases at f > 0.25. A
possible explanation of this is formation of clusters with strong orientational order due to
micro phase separation between mesogens and nanoparticles.
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5.2 The Resulting Radial Distribution Functions and
Domain Snapshots

In an attempt to further elucidate the behaviour of LC-NP mixtures, “heterogeneous”
RDF plots were constructed between only mesogens (LC-LC), mesogens and nanoparticles
(LC-NP), and only nanoparticles (NP-NP), similar to the ideas presented in [77, ].
It was hypothesized that multiple peaks in the LC-LC radial distribution function (g(r))
would imply smectic layering of the liquid crystal. It was also put forth that multiple peaks
in the NP-NP ¢(r) would indicate phase separation and agglomeration of NPs at certain
distances within the domain.

Indeed, figures 5.2, 5.4 and 5.6 indicate multiple peaks in each of LC-LC, LC-NP and
NP-NP curves. Interestingly, it seems that the peaks and valleys in the three curves of
each plot complement each other. When one curve has a depression, another exhibits a
peak, indicating that where space has been vacated by, for instance, mesogens, it has been
filled by nanoparticles (and vice versa).

It appears that all LC-NP curves have a smaller peak at r ~ 2.5 and a larger peak
at r = 6.0. The location of these peaks does not seem to be influenced by f or 7™,
possibly indicating preferred locations of clusters of spheres around the mesogens within
the domain. Since f does not shift the location of the peaks, though it does alter their
shape by widening the peaks at higher f values, it may be indicative of nanoparticle cluster
growth at the same locations.

Based on observations of domain snapshots in figures 5.3, 5.5 and 5.7, the hypothesis
that NPs were not mixing with the mesogens was corroborated by qualitative appearance
of the domains. An explanation of this behaviour can be found in figure 4.3. It appears
that this phase separation occurs because the mesogens are much more stable when close
to each other in a side-by-side configuration than in any other configuration with each
other or with a spherical nanoparticle. Consequently, in order to increase the solubility of
nanoparticles in the liquid crystal it would be necessary to increase the €ggg coefficient of
the strength parameter expansion for sphere-cylinder, cylinder-sphere and sphere-sphere
pairs from 1.0 as it is in table 4.12 to a greater value, for instance 2.0, to match the stability
of cylinder-cylinder pair in the side-by-side configuration.

Keeping in mind that the domain size is quite small when compared to macroscopic
scales (see Appendix A for a more in-depth discussion), it can only be concluded that
micro phase separation has been observed. If the domain were simply duplicated to match
macroscopic scales, most likely it would appear as a uniform mixture of mesogens and
nanoparticles without any macro scale phase separation.
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Figure 5.2: Heterogeneous radial distribution function for LC-NP domain at T = 0.85
and f =0.05 (L, =2.5,r.=0.5,7,=0.5, ¢ /e, =2.0, N = 3125, P = 0.003125)

A

Figure 5.3: Snapshot of LC-NP domain at 7% = 0.85 and f = 0.05 (L, = 2.5, r. = 0.5,
rs = 0.5, /e =2.0, N = 3125, P =0.003125)
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Figure 5.4: Heterogeneous radial distribution function for LC-NP domain at 7" = 0.9 and
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Figure 5.5: Snapshot of LC-NP domain at 7* = 0.9 and f = 0.25 (L, = 2.5, . = 0.5,
rs = 0.5, ¢ /e =2.0, N = 3125, P =0.003125)
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Figure 5.6: Heterogeneous radial distribution function for LC-NP domain at 7" = 1.7 and
[ =065 (L,=25,1.=0.51r,=0.5, ¢/e. =2.0, N=3125 P = 0.003125)
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Figure 5.7: Snapshot of LC-NP domain at 7* = 1.7 and f = 0.65 (L, = 2.5, . = 0.5,
rs = 0.5, ¢ /e =2.0, N = 3125, P =0.003125)
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

In this work an anisotropic Lennard-Jones type molecular interaction potential, the so-
called Zewdie-Corner potential [ 1], was used in conjuction with the Metropolis Monte
Carlo (MMC) method to simulate liquid crystal phases and liquid crystal/nanoparticle
mixtures. This molecular coarse-grained interaction potential has significant advantages
compared to past approaches in that it expresses range (length scale) and strength (energy
scale) parameters as expansions of an appropriate orthogonal basis set of functions in
order to capture mesogen-mesogen and mesogen-nanoparticle interactions. The overall
conclusions are:

1. MMC simulations showed promising results for both pure nematic and nematic/
nanoparticle mixtures with both orientational order (nematics), and in some cases,
translational order (smectics).

2. The usage of simulation conditions from past published research was found to result
in unphysical pressure values which, in turn, explained simulation results of seem-
ingly second order nematic transitions and linear variation of density with respect to
temperature.

3. Increasing the number density of nanoparticles in LC /nanoparticle mixtures resulted
in an overall decrease in orientational order throughout the domain at higher nanopar-
ticle number fractions, as expected. For a narrow range of temperatures and number
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fractions the presence of nanoparticles seems to have stabilized nematic ordering due
to micro phase separation and formation of well-ordered clusters of mesogens.

4. Finite size effects seemed to be difficult to avoid for simulation domains with compu-
tationally feasible numbers of molecules, for example, with a domain with N = 3125
finite size effects where still present, to a small degree, in calculations of the nematic
order parameter s.

6.2 Recommendations

1. Given the difficulties in identifying LC phases and transitions from simulation data,
future work should implement additional methods for quantifying LC order, specif-
ically smectic order, and the presence of phase transitions. Implementing the cal-
culation of structure factors as in [I11] would be one beneficial approach towards
distinguishing between smectic and nematic phases.

2. In order to accurately capture translational ordering, allowing the simulation domain
scale and shape (e.g. cubic to parallelepiped) to change should be implemented, but
if nematic phases are of interest where positional order exists, this is not important.

3. The properties of LC/nanoparticle mixtures is an area of current interest; many
experimental results could be better understood through the usage of the presented
method in the simulation of several experimentally observed phenomena:

(a) For LC/nanoparticle mixtures with larger nanoparticles (> 10nm), simulation
studies could be conducted with preferred homeotropic alignment of the meso-
genic molecules at the interface with the nanoparticles. This scenario has been
reported in recent experimental studies [25, 26, 27].

(b) Performing simulations with nanoparticle diameters on the order of the mesogen
length should also be considered. The effect of varying nanoparticle diameter
on phase separation would then be studied, similar to the work in [76, 77] and

[32, 33].

(c) Nanoparticle shape should also be varied; in some experimental studies cubic
and polyhedron shapes have been used [29, 31, 35, 30].

4. Finally, optimization and acceleration of the developed code would enable simulation
of larger domains and shorter simulation times:
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(a)

Implementation of a combined Cell and Verlet list [67] neighbour solver would
significantly decrease the computational expense involved in tracking particle
neighbours and computing the interaction energy. Alternatively, linked lists
may be used instead, since in [35] it is claimed that this method is better suited
for larger domains than the Verlet list algorithm.

Optimization of the evaluation of Zewdie-Corner pairwise potential is another
area that would benefit from significant optimization, especially given the like-
lihood of including higher order terms in future work. Complex high-order
expressions can be pre-tabulated and evaluated in constant time as is done with
special functions in math libraries.

The use of NPT simulations, while needed to determine correct volumes initially,
is not needed for repeated simulations using the same conditions. Once the
thermodynamically stable density is known, less computationally complex NVT
simulations could be used to speed up computation.
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Appendix A

Approximating the Number of
Mesogenic Molecules in a Pixel of a
Liquid Crystal Display

In order to approximate the number of mesogenic molecules in a pixel, it is necessary to
know the density of mesogens and the volume of the pixel.

An example of a typical mesogen is E7, a biphenyl with the chemical formula Ci5Hig.

per = 1.04 g/em?
Mpg; = 154.21 g/mol
LEL — 674 x 1073 moL
E7 cm
LEL 5 Ny = 6.74 x 1073 29 x 6.02 x 1023 molecules — 4 ()6 x 12! molecyles
Mg cm

lec
mol cm

Now, assuming a pixel density of 220 pixels per inch (which was almost the state-of-
the-art for a laptop display in spring 2014) and display thickness of 5 pm:

. 2 ‘
(%) x5 x 107 em = 1.50 x 107 22

Therefore,

21 l le
4.06x102! melecyles

m — 14 molecules
1.50x107 Piels T 2.71 x 10 pizel
cm

80



Obviously, the obtained result is a very large number approximately equal to 100 trillion.
Thus, it becomes apparent why it is not feasible to use coarse-grained Molecular Dynamics
or Monte Carlo simulations to simulate domains with as many mesogens as there would
be in a real pixel. Consequently, continuum models continue to be useful for industrial
applications. However, while these statements are true in the year 2015 they may not
remain such forever, considering the enormous increase in scientific knowledge even in the
last 100 years.

81



Appendix B

Reduced Units for Pressure and
Temperature Employed in Some
Scientific Publications

Conversion to reduced (“dimensionless”) values for pressure and temperature are given in
literature [32, 85, 54, 108] as:

3
p— Lo (B.1)
€o
kgT
T = 252 (B.2)
€o

where ¢ is the energy scaling unit, oy is the length scaling unit and kg is the Boltzmann
constant (1.3806 x 1072 ).

Note that in [91] there appears to be a typo in the formula for conversion to reduced
pressure (equation B.1 in this thesis), since the factor multiplying P (i.e. o3e;") is incor-
rectly written in its inverted form in that published work.

Values accepted as reasonable for ¢y and o for low molecular mass mesogens are on the
order of 107! J and 107! m, respectively. In [32], ¢g = 1.85x1072! J and 0y = 5x 1071 m.
In [91], g = 1.4x 1072 J and 0y = 5x 107° m. It is interesting to note that 5x 10719 m is
the diameter of a benzene ring. Since calamitic mesogens usually have at least two benzene
rings as their rigid cores, using this value for oy is reasonable - it would be the diameter
of the rod-like shape that approximates coarse-grained mesogens.
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In [82] P* =8 and T* € [1.5,3.5]; these values for reduced pressure and temperature
translate to

Pfeg 8x1.85x1072tJ 1 atm
P = T = X
op (5 x 10710 m)3 101325 Pa

Trey 15x 1.85x 1072 J
(T =15) =~ = X L~ 20100 K = —72.15 °C (B.4)
5 1.3806 x 102 L

T 3.5 x 1.85x 1072 J
T(T*=35) = — 0 = 222 S X 2 469.00 K = 195.85 °C (B.5)

= 1168.5 atm (B.3)

The mesogens studied in [$2] are tapered rod-like particles. Therefore, we can compare
the temperatures used in [32] for investigating the existence of liquid crystal phases to
those reported for real calamitic mesogens in textbooks such as [I]. The temperature

range of the simulation, though apparently quite wide (as shown by equations B.4 and
B.5), is reasonable. The upper bound for temperature (7 = 3.5, T"= 195.85 °C') is on the
same order of magnitude as the higher values reported for liquid crystal-isotropic transition
temperature of various calamitic mesogens (see chapter 3, section 3.2 of [1]), and the lower
bound (7% = 1.5, T' = —72.15 °C) is below the minimum temperature at which nematic
phases exist for different calamitic mesogens (which can be as low as —25 °C' - see, for
instance, page 56, Figure 3.8 in [1]). However, P* = 8 in reduced units corresponding to
P =1168.5 atm in real units is a very high value that does not appear physical.

In [91], reduced pressure P* was also set to 8 and reduced temperature T* range was
[2.6,3.6]. Using the energy and length scaling units given in this paper, we can obtain the
following physical values for pressure and temperature:

Py 8x14x10721J 1 atm
= X
o8 (5% 1070 m)3 101325 Pa
Treo  26x14x 1072 J
(T =26) =0 =222 2% 2 796365 K =—950°C  (B.7)
ks 13806 x 102 L
T ¢  3.6x14x1072"J

ks 1.3806 x 10723 £

pP—

= 884.3 atm (B.6)

T(T* =3.6) = =365.06 K =91.91 °C (B.8)
Based on the argument above, the reduced temperature range is fairly reasonable, but
once again the chosen value for reduced pressure is quite high compared to physical values.
Hence, for the simulations conducted in this thesis the value for reduced pressure was
chosen such that when translated into physical units using the appropriate scaling factors
(described in section 4.2.1) it would be equivalent to 1 bar (approximately 1 atm).
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Appendix C

Plots of Other Potentials Employed
in Section 4.2.2

Attached are the plots complementary to section 4.2.2 and figure 4.3. The plots depict
potential energy curves between cylinder-like particles with €| /e, ratios between 1.00 and
1.75, inclusive, with a step of 0.25. Note the simultaneous increase in the stability of “side-
by-side” configurations (red curves) and “head-to-tail” configurations (blue curves) upon
the increase in € /e, ratios.
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Figure C.1: Cylinder-cylinder potential energy curves with ¢)/e; = 1.00, L, = 2.5 and
r. = 0.5. Note that the “side-by-side” (red) and “cross” (purple) curves overlap completely.
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Figure C.2: Cylinder-cylinder potential energy curves with ¢|/e, = 1.25, L;, = 2.5 and
r. = 0.5. Note the simultaneous change in the stability of “side-by-side” (red) and “head-
to-tail” (blue) configurations upon the increase of ¢ /e, as compared to figure C.1.
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Figure C.3: Cylinder-cylinder potential energy curves with ¢)/e; = 1.50, L, = 2.5 and

r. = 0.5
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Figure C.4: Cylinder-cylinder potential energy curves with ¢)/e; =

r. = 0.5

86

1.75, L, = 2.5 and



References

1]

[10]

Peter J. Collings and Michael Hird. Introduction to Liquid Crystals: Chemistry and
Physics. Taylor & Francis, 1997.

H. Finkelmann, A. Greve, and M. Warner. The elastic anisotropy of nematic elas-
tomers. The FEuropean Physical Journal E - Soft Matter, 5(3):281-293, 2001.

Mark Richard Wilson. Progress in computer simulations of liquid crystals. Interna-
tional Reviews in Physical Chemistry, 24(3-4):421-455, July 2005.

J. W. G. Goodby. Ferroelectric liquid crystals: principles, properties, and applica-
tions. Taylor & Francis, 1991.

Francesca Serra, Marco Buscaglia, and Tommaso Bellini. The emergence of memory
in liquid crystals. Materials Today, 14(10):488 — 494, 2011.

S. Kralj and S. Zumer. Saddle-splay elasticity of nematic structures confined to a
cylindrical capillary. Physical Review F, 51(1):366-379, January 1995.

P.G. de Gennes and J Prost. The Physics of Liquid Crystals. Oxford University
Press, New York, second edition, 1995.

Jan P. F. Lagerwall and Giusy Scalia. A new era for liquid crystal research : Appli-
cations of liquid crystals in soft matter nano- , bio- and microtechnology. Current
Applied Physics, 12(6):1387-1412, 2012.

Daan Frenkel and Berend Smit. Understanding Molecular Simulation From Algo-
rithms to Applications. Academic Press, San Diego, California, 2nd edition, 2002.

Claudio Zannoni. Molecular design and computer simulations of novel mesophases.
Journal of Materials Chemistry, 11:2637-2646, 2001.

87



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

H. Zewdie. Computer simulation studies of liquid crystals: A new corner potential
for cylindrically symmetric particles. The Journal of Chemical Physics, 108:2117,
1998.

J. W. Goodby. Optical Activity and Ferroelectricity in Liquid Crystals. Science,
231(4736):350-355, 1986.

Takashi Kato. Self-Assembly of Phase-Segregated Liquid Crystal Structures. Science,
295(5564):2414-2418, 2002.

Takashi Kato, Norihiro Mizoshita, and Kenji Kishimoto. Functional liquid-crystalline
assemblies: self-organized soft materials. Angewandte Chemie (International ed. in
English), 45(1):38-68, December 2005.

C. M. Care and D. J. Cleaver. Computer simulation of liquid crystals. Reports on
Progress in Physics, 68(11):2665-2700, November 2005.

Alejandro D. Rey and Edtson E. Herrera-Valencia. Liquid Crystal Models of Biolog-
ical Materials and Silk Spinning. Biopolymers, 97(6):374-396, 2011.

Mirko Cestari. Atomistic modelling of liquid crystal materials properties: a theoretical
and computational methodology. PhD thesis, University of Padova, 2008.

Valery Petrovich Shibaev. Liquid Crystals - the “Centaurs” of Nature. Priroda, 1,
2012.

Claudio Zannoni. Distribution Functions and Order Parameters. In The Molecular
Physics of Liquid Crystals, pages 51-83. 1979.

Dong Chen, Jan H. Porada, Justin B. Hooper, Arthur Klittnick, Yongqiang Shen,
Michael R. Tuchband, Eva Korblova, Dmitry Bedrov, David M. Walba, Matthew A.
Glaser, Joseph E. Maclennan, and Noel A. Clark. Chiral heliconical ground state of
nanoscale pitch in a nematic liquid crystal of achiral molecular dimers. Proceedings
of the National Academy of Sciences of the United States of America, 110(40):15931—
15936, October 2013.

Claudine Noél and Patrick Navard. Liquid Crystal Polymers. Progress in Polymer
Science, 16:55-110, 1991.

J. W. Goodby. Mesogenic molecular crystalline materials. Current Opinion in Solid
State and Materials Science, 4(4):361-368, August 1999.

38



23]

[24]

[25]

[26]

A. G. Vanakaras, M. A. Bates, and D. J. Photinos. Theory and simulation of biaxial
nematic and orthogonal smectic phases formed by mixtures of board-like molecules.
Physical Chemistry Chemical Physics, 5:3700-3706, July 2003.

Roberto Berardi, Luca Muccioli, and Claudio Zannoni. Field response and switching
times in biaxial nematics. The Journal of Chemical Physics, 128(2):024905, January
2008.

M. Jamil, Farzana Ahmad, J. T. Rhee, and Y. J. Jeon. Nanoparticle-doped polymer-
dispersed liquid crystal display. Current Science, 101(12):1544-1552, December 2011.

Javad Mirzaei, Martin Urbanski, Heinz-S. Kitzerow, and Torsten Hegmann. Synthesis
of Liquid Crystal Silane-Functionalized Gold Nanoparticles and Their Effects on
the Optical and Electro-Optic Properties of a Structurally Related Nematic Liquid
Crystal. ChemPhysChem, 15:1381-1394, 2014.

Martin Urbanski, Javad Mirzaei, Torsten Hegmann, and Heinz-S. Kitzerow.
Nanoparticle Doping in Nematic Liquid Crystals: Distinction between Surface and
Bulk Effects by Numerical Simulations. ChemPhysChem, 15:1395-1404, 2014.

Guadalupe Jiménez-Serratos, Carlos Avendano, Alejandro Gil-Villegas, and Enrique
Gonzalez-Tovar. Computer simulation of charged hard spherocylinders at low tem-
peratures. Molecular Physics, 109(1):27-36, January 2011.

Marjan Krasna, Matej Cvetko, and Milan Ambrozic. Symmetry breaking and struc-
ture of a mixture of nematic liquid crystals and anisotropic nanoparticles. Beilstein
Journal of Organic Chemistry, 6(74), July 2010.

Elisa Spinozzi and Alessandro Ciattoni. Ultrathin optical switch based on a liquid

crystal/silver nanoparticles mixture as a tunable indefinite medium. Optical Materi-
als Ezpress, 1(4):732-741, July 2011.

A. Sinyagin, A. Belov, and N. Kotov. Monte Carlo simulation of linear aggregate
formation from CdTe nanoparticles. Modelling and Simulation in Materials Science
and Engineering, 13:389-399, March 2005.

Bertrand Donnio, Patricia Garcia-Vazquez, Jean-Louis Gallani, Daniel Guillon, and
Emmanuel Terazzi. Dendronized Ferromagnetic Gold Nanoparticles Self-Organized
in a Thermotropic Cubic Phase. Advanced Materials, 19:3534-3539, 2007.

89



[33]

[34]

[40]

[41]

[42]

Lucy A. Holt, Richard J. Bushby, Stephen D. Evans, Andrew Burgess, and Gor-
don Seeley. A 10%-fold enhancement in the conductivity of a discotic liquid crystal
doped with only 1 % ( w / w ) gold nanoparticles. Journal of Applied Physics,
103(6):063712:1-7, 2008.

Vlad Popa-Nita, Matej Cvetko, and Samo Kralj. Electronic  Properties
of Carbon Nanotubes, chapter Liquid Crystal - Anisotropic Nanoparti-
cles Mixtures, pages 645—664. InTech, 1 edition, July 2011. Available
from: http://www.intechopen.com/books/electronic-properties-of-carbon-
nanotubes/liquid- crystal-anisotropic-nanoparticles-mixtures.

Hang Hu, Linda Reven, and Alejandro Rey. First-Principles Density Functional
Theory (DFT) Study of Gold Nanorod and Its Interaction with Alkanethiol Ligands.
The Journal of Physical Chemistry, 117:12625-12631, October 2013.

Héloise Thérien-Aubin, Ariella Lukach, Natalie Pitch, and Eugenia Kumacheva.
Coassembly of Nanorods and Nanospheres in Suspensions and in Stratified Films.
Angewandte Chemie International Edition, 54:5618-5622, 2015.

Amit Choudhary, Gautam Singh, and Ashok M. Biradar. Advances in gold
nanoparticle-liquid crystal composities. Nanoscale, 6:7743-7756, 2014.

Claudio Zannoni. Computer Simulations. In The Molecular Physics of Liquid Crys-
tals, pages 191-220. 1979.

Michael P. Allen, Mark A. Warren, Mark Richard Wilson, Alain Sauron, and William
Smith. Molecular dynamics calculation of elastic constants in Gay-Berne nematic
liquid crystals. The Journal of Chemical Physics, 105(7):2850-8, 1996.

C. Chiccoli, S. Guzzetti, P. Pasini, and Claudio Zannoni. Computer Simulations of
Nematic Displays. Molecular Crystals and Liquid Crystals, 360:119-129, 2001.

Mojca Cepi¢ and Bostjan Zeks. Orihara-Ishibashi Continuous Model of Antiferro-
electric Liquid Crystals. Ferroelectrics, 349(1):21-32, April 2007.

Gaia Valeria Paolini, Giovanni Ciccotti, and Mauro Ferrario. Simulation of site-site
soft-core liquid crystal models. Mol. Phys., 80(2):297-312, 1993.

ZhanWei Li, YuHua Liu, YingTao Liu, and ZhongYuan Lu. A single-site anisotropic
soft-core model for the study of phase behavior of soft rodlike particles. Science
China, 54(9):1474-1483, September 2011.

90



[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

S. L. Price and A. J. Stone. A six-site intermolecular potential scheme for the azaben-
zene molecules, derived by crystal structure analysis. Molecular Physics, 51:569-583,
1984.

Hiroo Fukunaga, Jun-ichi Takimoto, and Masao. Doi. Molecular dynamics simulation
study on the phase behavior of the Gay-Berne model with a terminal dipole and a
flexible tail.allen. J. Chem. Phys., 120:7792-7800, 2004.

Robert Bukowski, Krzysztof Szalewicz, Gerrit C Groenenboom, and Ad van der
Avoird. Predictions of the properties of water from first principles. Science (New
York, N.Y.), 315(5816):1249-52, March 2007.

Axel D. Becke. Perspective: Fifty years of density-functional theory in chemical
physics. The Journal of Chemical Physics, 140(18):18A301, May 2014.

G. Jacucci. Monte Carlo calculation of the free energy difference between hard and
soft core diatomic liquids. Molecular Physics, 40(4):1005-1009, 1980.

F. Barmes, M. Ricci, Claudio Zannoni, and D. Cleaver. Computer simulations of
hard pear-shaped particles. Physical Review E, 68(2):021708, August 2003.

Luca Muccioli and Claudio Zannoni. A deformable Gay-Berne model for the simu-
lation of liquid crystals and soft materials. Chemical Physics Letters, 423(1-3):1-6,
May 2006.

Mark Richard Wilson. Molecular simulation of liquid crystals: progress towards a
better understanding of bulk structure and the prediction of material properties.
Chemical Society Reviews, 36:1881-1888, 2007.

P. A. Lebwohl and G. Lasher. Nematic-Liquid-Crystal Order - A Monte Carlo Cal-
culation. Physical Review A, 6(1):426-9, 1972.

P. A. Lebwohl and G. Lasher. Nematic-Liquid-Crystal Order - a Monte Carlo Cal-
culation (errata). Physical Review A, 7(6):2222, 1973.

Silvia Orlandi, Roberto Berardi, Joachim Steltzer, and Claudio Zannoni. A Monte
Carlo study of the mesophases formed by polar bent-shaped molecules. The Journal
of Chemical Physics, 124:124907, 2006.

J. E. Lennard-Jones. On the Determination of Molecular Fields . II. From the Equa-
tion of State of a Gas. Proceedings of the Royal Society of London . Series A, Con-
taining Papers of a Mathematical and Physical Character, 106(738):463-477, 1924.

91



[56]

[57]

J. E. Lennard-Jones. On the Forces between Atoms and Ions. Proceedings of the Royal
Society of London. Series A, Containing Papers of a Mathematical and Physical
Character1, 109(752):584-597, 1925.

J. E. Lennard-Jones and P. A. Taylor. Some Theoretical Calculations of the Physical
Properties of Certain Crystals. Proceedings of the Royal Society of London. Series
A, Containing Papers of a Mathematical and Physical Character, 109(751):476-508,
1925.

Rabia Naeem. Lennard-Jones Potential, 2013. UC Davis STEMWiki Hy-
perlibrary - collaborative Open Access textbook environment. Available from
http://chemwiki.ucdavis.edu.

J. Corner. The Second Virial Coefficient of a Gas of Non-Spherical Molecules. Pro-
ceedings of the Royal Society of London. Series A, Mathematical and Physical Sci-
ences, 192(1029):275-292, 1948.

J. G. Gay and B. J. Berne. Modification of the overlap potential to mimic a linear
sitesite potential. The Journal of Chemical Physics, 74(6):3316-9, 1981.

Leonid Paramonov and Sophia N. Yaliraki. The directional contact distance of two

ellipsoids: coarse-grained potentials for anisotropic interactions. The Journal of
Chemical Physics, 123(19):194111, November 2005.

Alejandro Cuetos and Bruno Martinez-Haya. Columnar phases of discotic sphero-
cylinders. The Journal of Chemical Physics, 129:214706, 2008.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of State Calculations by Fast Computing Ma-
chines. The Journal of Chemical Physics, 21(6):1087-1092, 1953.

Daniel V. Schroeder. An Introduction to Thermal Physics. Addison-Wesley, 2000.

M. A. Bates and G. R. Luckhurst. Biaxial nematics: computer simulation studies of
a generic rod-disc dimer model. Physical Chemistry Chemical Physics, 7:2821-2829,
June 2005.

Claire Rist and Alexandre Faure. A Monte Carlo error estimator for the expansion of
rigid-rotor potential energy surfaces. Journal of Mathematical Chemistry, 50(3):588—
601, May 2011.

92



[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

Daan Frenkel and Berend Smit. Understanding Molecular Simulation From Algo-
rithms to Applications. Academic Press, San Diego, California, 2nd edition, 2002.

W. W. Wood. Monte Carlo Calculations for Hard Disks in the Isothermal-Isobaric
Ensemble. The Journal of Chemical Physics, 48(1):415-434, January 1968.

[. R. McDonald. Monte Carlo Calculations for One- and Two-Component Fluids
in the Isothermal-Isobaric Ensemble. Chemical Physics Letters, 3(4):241-243, April
1969.

I. R. McDonald. NpT-ensemble Monte Carlo calculations for binary liquid mixtures.
Molecular Physics, 23(1):41-58, 1972.

S. L. Price and A. J. Stone. Evaluation of anisotropic model intermolecular pair
potentials using an ab initio SCF-CI surface. Molecular Physics, 40(4):805-822,
1980.

S. L. Price and A. J. Stone. The anisotropy of the CI2-CI2 pair potential as shown
by the crystal structure: Evidence for intermolecular bonding or lone pair effects?
Molecular Physics, 47(6):1457-1470, 1982.

S. L. Price, A. J. Stone, and M. Alderton. Explicit formulae for the electrostatic en-
ergy, forces and torques between a pair of molecules of arbitrary symmetry. Molecular
Physics, 52(4):987-1001, 1984.

T. Kihara. Convex Molecules in Gaseous and Crystalline States. Advances in Chem-
1cal Physics, 5:147-188, 1963.

John D. Weeks, David Chandler, and Hans C. Andersen. Role of Repulsive Forces in
Determining the Equilibrium Structure of Simple Liquids. The Journal of Chemical
Physics, 54(12):5237-5247, June 1971.

Pu Tian, Grant D. Smith, and Matthew Glaser. Molecular dynamics simulations
studies of nanoparticles in an isotropic liquid crystal matrix: Single particle behavior
and pairwise interactions. The Journal of Chemical Physics, 124:161101, April 2006.

Pu Tian and Grant D. Smith. Molecular dynamics simulations of nanoparticles in
dense isotropic nematogens: The role of matrix-induced long-range repulsive inter-
actions. The Journal of Chemical Physics, 124:184701, May 2006.

93



(78]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

[36]

Alejandro Cuetos, Bruno Martinez-Haya, S. Lago, and L. F. Rull. Liquid crystal
behavior of the Kihara fluid. Physical Review E: Statistical, Nonlinear, and Soft
Matter Physics, 68:011704, July 2003.

Alejandro Cuetos, Bruno Martinez-Haya, S. Lago, and L. F. Rull. Parsons-Lee and
Monte Carlo Study of Soft Repulsive Nematogens. Journal of Physical Chemistry B,
109:13729-13736, Juny 2005.

Mauricio Piedrahita, Alejandro Cuetos, and Bruno Martinez-Haya. Transport of
spherical colloids in layered phases of binary mixtures with rod-like particles. Soft
Matter, 11:3432-3440, March 2015.

H. Zewdie. Computer-simulation studies of diskotic liquid crystals. Physical Review
E, 57(2):1793-1805, February 1998.

Roberto Berardi, Matteo Ricci, and Claudio Zannoni. Ferroelectric Nematic and
Smectic Liquid Crystals from Tapered Molecules. ChemPhysChem, (7):443-447,
2001.

Roberto Berardi, Matteo Ricci, and Claudio Zannoni. Ferroelectric and Structured
Phases from Polar Tapered Mesogens. Ferroelectrics, 309(1):3-12, January 2004.

A. J. Stone. The description of bimolecular potentials, forces and torques: the S and
V function expansions. Molecular Physics, 36(1):241-256, 1978.

Giorgio Cinacchi and Alessandro Tani. Computer simulations of pure and mixed
systems of disklike particles interacting with the S-function Corner potential. The
Journal of Chemical Physics, 117(24):11388-11395, December 2002.

Giorgio Cinacchi, Giovanni La Penna, and Angelo Perico. Anisotropic Internucleo-
some Interactions and Geometrical Constraints in the Organization of Chromatin.
Macromolecules, 40(26):9603-9613, December 2007.

R. Memmer. Liquid crystal phases of achiral banana-shaped molecules: a computer
simulation study. Liquid Crystals, 29(4):483-496, 2002.

Roberto Berardi, C. Fava, and Claudio Zannoni. A generalized Gay-Berne inter-
molecular potential for biaxial particles. Chemical Physics Letters, 236(4):462-468,
1995.

Roberto Berardi and Claudio Zannoni. Biaxial Discotic Gay-Berne Mesogens and
Biaxial Nematics. Mol. Cryst. Lig. Cryst., 396:177-186, 2003.

94



[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

98]

Giorgio Cinacchi. Ordering of biaxial solutes in a smectic solvent. Chemical Physics
Letters, 416(4-6):238-245, December 2005.

Lara Querciagrossa, Matteo Ricci, Roberto Berardi, and Claudio Zannoni. Mesogen

polarity effects on biaxial nematics. Centrally located dipoles. Physical Chemistry
Chemical Physics, 15:19065-19072, 2013.

R. K. Shukla, X. Feng, S. Umadevi, T. Hegmann, and W. Haase. Influence of different
amount of functionalized bulky gold nanorods dopant on the electrooptical, dielectric
and optical properties of the FLC host. Chemical Physics Letters, 599:80-85, April
2014.

Mitya Reznikov, Anshul Sharma, and Torsten Hegmann. Ink-Jet Printed Nanopar-
ticle Alignment Layers: Easy Design and Fabrication of Patterned Alignment Layers
for Nematic Liquid Crystals. Particle and Particle Systems Characterization, 31:257—
265, 2014.

Sarmenio Saliba, Christophe Mingotaud, Myrtil L. Kahn, and Jean-Daniel Marty.
Liquid crystalline thermotropic and lyotropic nanohybrids. Nanoscale, 5:6641-6661,
2013.

P. Oswald, J. Milette, S. Relaix, L. Reven, A. Dequidt, and L. Lejcek. Alloy harded-
ning of a smectic A liquid crystal doped with gold nanoparticles. EPL (Europhysics
Letters), 103:46004, August 2013.

R. Pratibha, W. Park, and I. I. Smalyukh. Colloidal gold nanosphere dispersions
in smectic liquid crystals and thin nanoparticle- decorated smectic films. Journal of
Applied Physics, 107(6):063511:1-6, 2010.

S. Umadevi, H. C. Lee, V. Ganesh, X. Feng, and T. Hegmann. A versatile, one-pot
synthesis of gold nanostars with long, well-defined thorns using a lyotropic liquid
crystal template. Liquid Crystals, 41(3):265-276, 2014.

Jonathan Milette, Violeta Toader, Linda Reven, and R. Bruce Lennox. Tuning the
miscibility of gold nanoparticles dispersed in liquid crystals via the thiol-for-DMAP
reaction. Journal of Materials Chemistry, 21:9043-9050, May 2011.

Jonathan Milette, Stephen J. Cowling, Violeta Toader, Cyrille Lavigne, Isabel M.
Saez, R. Bruce Lennox, John W. Goodby, and Linda Reven. Reversible long range
network formation in gold nanoparticle - nematic liquid crystal composites. Soft
Matter, 8:173-179, 2012.

95



[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

Jonathan Milette, Sabrina Relaix, Cyrille Lavigne, Violeta Toader, Stephen J. Cowl-
ing, Isabel Saez, R. Bruce Lennox, John W. Goodby, and Linda Reven. Reversible
long-range patterning of gold nanoparticles by smectic liquid crystals. Soft Matter,
8:6593-6598, 2012.

Jonathan Milette, Violeta Toader, Ezequiel R. Soulé, R. Bruce Lennox, Alejandro D.
Rey, and Linda Reven. A Molecular and Thermodynamic View of the Assembly of

Gold Nanoparticles in Nematic Liquid Crystal. Langmuir, 29:1258-1263, January
2013.

Satoru Sano, Tomohiro Miyama, Kohki Takatoh, and Shunsuke Kobayashi. En-
hancement of the characteristics of LCDs by doping nanoparticles: reduction of the
operating voltage, viscosity, and response times. Proceedings of SPIE-The Interna-
tional Society for Optical Engineering, page 613501, February 2006.

Ezequiel R. Soulé, Linda Reven, and Alejandro D. Rey. Thermodynamic Modelling of
Phase Equilibrium in Nanoparticles - Nematic Liquid Crystals Composites. Molecular
Crystals and Liquid Crystals, 553(1):118-126, 2012.

Ezequiel R. Soulé, Jonathan Milette, Linda Reven, and Alejandro D. Rey. Phase
equilibrium and structure formation in gold nanoparticles-nematic liquid crystal com-
posites: experiments and theory. Soft Matter, 8:2860-2866, 2012.

Denis Andrienko, Guido Germano, and Michael P. Allen. Computer simulation of
topological defects around a colloidal particle or droplet dispersed in a nematic host.
Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 63:041701, March
2001.

Evelina B. Kim, Orlando Guzman, Sylvain Grollau, Nicholas L. Abbott, and Juan J.
de Pablo. Interactions between spherical colloids mediated by a liquid crystal:

A molecular simulation and mesoscale study. The Journal of Chemical Physics,
121(4):1949-1961, July 2004.

Pu Tian, Grant D. Smith, and Matthew Glaser. Erratum: ”Molecular dynamics
simulations studies of nanoparticles in an isotropic liquid crystal matrix: Single par-
ticle behavior and pairwise interactions” [J. Chem. Phys.124, 161101 (2006)] and
"Molecular dynamics simulations of nanoparticles in dense isotropic nematogens:
The role of matrix-induced long-range repulsive interactions” [J. Chem. Phys.124,
184701 (2006)]. The Journal of Chemical Physics, 128:159901, April 2008.

96



108

[109]

[110]

[111]

Jianqing Xu, Dmitry Bedrov, Grant D. Smith, and Matthew A. Glaser. Molecu-
lar dynamics simulation study of spherical nanoparticles in a nematogenic matrix:
Anchoring, interactions and phase behavior. Physical Review F, 79:011704, January
2009.

Alejandro Cuetos, Bruno Martinez-Haya, Santiago Lago, and Luis F. Rull. Use of
Parsons-Lee and Onsager theories to predict nematic and demixing behavior in binary
mixtures of hard rods and hard spheres. Physical Review E: Statistical, Nonlinear,
and Soft Matter Physics, 75:061701, 2007.

Stavros D. Peroukidis, Alexandros G. Vanakaras, and Demetri J. Photinos. Liquid
crystalline phases and demixing in binary mixtures of shape-anisometric colloids.
Journal of Materials Chemistry, 20:10495-10502, 2010.

Carlos Avendano, Alejandro Gil-Villegas, and Enrique Gonzalez-Tovar. A Monte
Carlo simulation study of binary mixtures of charged hard spherocylinders and
charged hard spheres. Chemical Physics Letters, pages 67-71, January 2009.

97



	List of Tables
	List of Figures
	Introduction
	Objectives
	Thesis Organization

	Background
	Liquid Crystal Phases
	Types of Mesogens
	Types of Thermotropic LC Phases
	Types of Anchoring
	Measurements of Liquid Crystal Domain Order

	Nanoparticles
	Simulations of Liquid Crystals
	Simulation Scales
	``Hard'' and ``Soft'' Particles
	``On-Lattice'' and ``Off-Lattice'' Schemes

	Pairwise Intermolecular Potentials
	Isotropic Potential - Lennard-Jones
	Anisotropic Potential - Gay-Berne

	Metropolis Monte Carlo

	Literature Review
	Anisotropic Pairwise Potentials
	LC-NP Mixtures Experimental Work
	LC-NP Mixtures Simulation Work

	The Development and Behaviour of the Pairwise Potential
	Fitting of the Range and Strength Parameters
	Fitting the Range Parameter
	Fitting the Strength Parameter

	Simulation Studies of Pure LC Domains
	Simulation Conditions
	The Behaviour Exhibited by the Potential Upon Variation of the Strength Parameter Expansion Coefficients
	The Behaviour of the Pairwise Potential with  = 2.0 and  = 1.0 Upon T* Variation


	Simulations of LC-NP Mixtures
	The Resulting Phase Diagrams
	The Resulting Radial Distribution Functions and Domain Snapshots

	Conclusions and Recommendations
	Conclusions
	Recommendations

	Appendices
	Approximating the Number of Mesogenic Molecules in a Pixel of a Liquid Crystal Display
	Reduced Units for Pressure and Temperature Employed in Some Scientific Publications
	Plots of Other Potentials Employed in Section 4.2.2
	References

